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Elastic α+20Ne scattering in the α+16O model of 20Ne
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A folding potential for the elastic α+20Ne scattering is constructed based on the α+16O structure model of the
20Ne nucleus. The elastic scattering angular distributions of the α+20Ne system at incident energies Eα = 31.1,
54.1, and 104.0 MeV have been calculated by using the folding potential. The experimental angular distributions
and the anomalous large angle scattering (ALAS) features can be satisfactorily described. The anomaly of the
α+20Ne system is clearly reconfirmed in the present folding model analysis and should be further systematically
investigated.
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I. INTRODUCTION

The elastic α-nucleus scattering was extensively studied in
the past. The α scattering on some light and medium-heavy
nuclei exhibit strong enhancement of cross section at backward
angles [i.e., the so-called anomalous large angle scattering
(ALAS)]. This phenomenon brought considerable interest and
was explained by various approaches (e.g., modified Woods-
Saxon potential, L-dependent potential, folding potential, α

exchange, Regge poles, and so on [1–12]).
For the elastic α+20Ne scattering, there have been the mea-

sured differential cross sections over complete angular range:
in the lower incident energy region, the angular distributions
at Eα = 16.8 MeV [3], 18.0 MeV [4], 20.2–23.0 MeV [5],
and 25.8–31.1 MeV [6]; in higher incident energy region,
the very detailed measured angular distribution at Eα =
54.1 MeV [7]. All these experimental angular distributions
exhibit remarkable ALAS features. In Ref. [6], the elastic
α+20Ne scattering at incident energies of 25.8, 27.0, and
31.1 MeV have been analyzed in terms of a single Regge
pole [by adding a Regge pole Sl(Reg) to the optical model
S matrix Sl(diff), the two complex parameters were obtained
from best fits to the data], and good fits to the experimental
data were obtained. In Ref. [7], Abele et al. have calculated
the α+20Ne elastic angular distribution at incident energy
54.1 MeV by using the DDM3Y folding potential, but obtained
a very poor description to the experimental data. Michel and
Reidemeister [8] have systematically analyzed the 54.1-MeV
angular distribution using both parity-independent and parity-
dependent potentials. It is shown that the parity-independent
potentials were unable to obtain a satisfactory phasing with
the data on the whole angular range, whereas the data can be
quantitatively described by the introduction of a very small
parity splitting in the real part of the interaction.

Because ALAS is especially pronounced for α scattering on
A = 4N , α-particle nuclei, it implies that α cluster might play
a role. From the point of view of the nuclear cluster structure,
the 20Ne nucleus is constructed with two clusters of α and 16O.
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In the present work, basing on this viewpoint, we will construct
a folding potential for the analysis of elastic α+20Ne scattering
and do an examination for this nuclear structure model.

In the second section we present a brief outline of the
formulas of the α+16O model of the 20Ne nucleus, the
α+16O relative motion wave function, and the folding model
potential for the description of elastic α+20Ne scattering. The
comparisons of calculations with the experimental data and
discussions for the elastic α+20Ne scattering, by using the
folding model potential, are given in the last section.

II. BRIEF PRESENTATION OF THE α+16O MODEL OF
THE 20Ne NUCLEUS AND THE FOLDING MODEL

POTENTIAL FOR THE α+20Ne SCATTERING

From the point of view of the α+16O cluster structure of
the 20Ne nucleus, the real part of the optical potential for the
α+20Ne scattering can be represented by the folding potential:

V (R) =
∫ [

Vαα

(
R − 4

5
r
)

+ Vα16O

(
R + 1

5
r
)]

|χ0(r)|2dr,

(1)

where χ0(r) is the wave function for the relative motion of the
α and 16O clusters in the ground state of the 20Ne nucleus, and
r is the relative coordinate between the centers of mass of α

and 16O.
For the α-α interaction Vαα , we use the potential given by

Buck et al. [13], that is,

Vαα(r) = −122.6225 exp(−0.22r2) MeV. (2)

This potential can accurately reproduce the measured α-α
scattering phase shifts for center-of-mass energies up to
20 MeV and approximately reproduce the experimental data
for energies up to 40 MeV.

For the α-16O interaction Vα16O, we have constructed an
α-folding model potential for the α+16O scattering [14].
This potential has an analytical and simple form, and can
satisfactorily describe the experimental angular distributions
of the elastic α+16O scattering at incident energies between
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25 and 54 MeV. Thus this α-16O potential can be well used to
perform the α+20Ne folding potential of expression (1).

The α+16O relative motion wave function χ0(r) in Eq. (1)
can be obtained from the α+16O model of the 20Ne nucleus.
In our recent article [15], we have proposed an α+16O model
of the 20Ne nucleus. This model can very well reproduce
the experimental charge form factor of 20Ne and the elastic
proton-20Ne scattering differential cross sections. Based on
this model, the relative motion wave function for the ground
state of the 20Ne nucleus can be written as

χ0(r) = R0(r)Y00(θ, φ), (3)

where R0(r) is the radial wave function and normalized as∫
R2

0(r)r2dr = 1, and Ylm(θ, φ) is the spherical harmonic
function. R0(r) can be expanded by means of a set of complete
and orthogonal functions as

R0(r) =
∞∑

n=1

CnOn0(r). (4)

Here Cn is the expansion coefficient, and Onl(r) is the harmonic
oscillator radial function with principal quantum number n and
angular momentum l.

By fitting the experimental charge form factor of 20Ne, we
obtained

R0(r) = Sin
θ

2
O10(r) + Cos

θ

2
O20(r), (0 � θ � 2π ), (5)

where O10(r) and O20(r) are the harmonic oscillator radial
functions with the quantum numbers 1s and 2s, respectively,
that is,

O10(r) = 2(a6π )−
1
4 e

− r2

2a2 , (6)

and

O20(r) =
√

8

3
(a6π )−

1
4

[
3

2
−

(
r

a

)2
]

e
− r2

2a2 . (7)

The obtained parameters are a = 1.96 fm and θ = 282.4◦.
The wave function of expression (4) has the analytical and

simple form. This is a significant advantage that makes it
feasible and convenient to perform calculation of the α+20Ne
folding model potential of Eq. (1). Now from the analytical
and simple forms of the Vαα , Vα16O, and χ0, the folding
model potential (1) can be easily obtained and expressed as an
analytical function.

As usual folding model calculations, the total optical
potential used to describe the elastic α+20Ne scattering is
the form as

U (R) = NV (R) + W (R) + VC(R), (8)

where N is the renormalization factor, W (R) is the imaginary
part of the interaction, and VC(R) is the Coulomb interaction.
The Coulomb potential VC(R) used in our calculations is
usually taken to correspond to the uniformly charged sphere
of radius RC = 1.3A1/3.

For the imaginary part of the interaction between the
incident α particle and the target nucleus, we take the standard

Woods-Saxon form,

W (R) = −iW0

1 + exp(R−RW

aW
)
, (9)

with RW = rWA1/3.

III. RESULTS AND DISCUSSION

Among the available experimental angular distributions of
the elastic α+20Ne scattering, the data at 54.1 MeV is the
most interested and attended one. The authors of Ref. [7] have
measured the differential cross sections over complete angular
range for 54.1 MeV α elastic scattering on 10 nuclei from
11B to 24Mg. Scanning these measured angular distributions,
one can notice that the angular distribution for 20Ne has a
quite different behavior from those for the nearby targets 18O,
17O, 16O, and the lighter targets 15N, 14N, 13C. For the targets
18O, 17O, 16O, 15N, 14N, and 13C, the angular distributions
display analogical patterns and are “normal”: displaying a
midangle broad plateau followed by a rainbowlike exponential
falloff at larger angles. In contrast, the angular distribution for
20Ne shows remarkable ALAS [7]. And more unexpected, the
analyses for these measured angular distributions by Abele
et al. [7] show that the DDM3Y folding potential which works
well for the region of medium-heavy nuclei, can successfully
describe the data for targets 18O, 17O, 16O, 15N, 14N, and 13C,
but is completely failed to describe the data of 20Ne. Their
calculated result for 20Ne is shown as the dashed line in Fig. 1
here, convenient for review.

As the main work of this article, we firstly investigate
the 54.1-MeV α elastic scattering on 20Ne using the folding
potential constructed in Sec. II. The calculated angular
distribution is shown in Fig. 1. The corresponding values of the
parameters by fitting the data are N = 1.14, W0 = 22.5 MeV,
rW = 1.65 fm, and aW = 0.60 fm. From Fig. 1, one can see
that successful description for this data is obtained by the

FIG. 1. The angular distribution of elastic α+20Ne scattering at
incident energy Eα = 54.1 MeV. The solid curve is the result from
our folding model potential with a standard Woods-Saxon imaginary
part. The dashed curve displays the result from the DDM3Y folding
potential in Ref. [7].
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FIG. 2. The same as Fig. 1 but the differential cross section as a
ratio to Rutherford at the incident energy Eα = 31.1 MeV. The data
are from Ref. [6].

present α-folding potential. The intention of the present work
is to examine the α+16O model of the 20Ne nucleus by means
of the elastic α+20Ne scattering. For further examination, we
extend this α-folding potential to the lower incident energy
region, where the ALAS feature was observed, and the higher
incident energy region. Here, we choose the data of Eα = 31.1
and 104.0 MeV for further analysis. To see the dominant
effect of the model, we simplify the imaginary potential by
reducing the free parameters. In the following calculations
we take the parameters rW and aW as fixed values of 1.65
and 0.60 fm obtained previously, with only N and W0 as
the varying parameters to obtain the fit to the experimental
data. The calculated angular distributions for incident energies
Eα = 31.1 and 104.0 MeV are, respectively, shown in Figs. 2
and 3. The corresponding values of the parameters are listed
in Table I. One can see that for higher incident energy
Eα = 104.0 MeV, the quality of the fit is very good. In
the case of the lower incident energy Eα = 31.1 MeV, the
magnitude and trend of the variation of the cross section with
the scattering angle, especially the behavior of the remarkable
backward rising, have been well reproduced, but detailed
fits to the experimental data at the back angle region are
discrepant. These inaccurate fits result from the use of the
oversimplified imaginary potential with only one parameter

FIG. 3. The same as Fig. 1 but at the incident energy Eα =
104.0 MeV. The data are from Ref. [16].

TABLE I. Values of the renormalization factor, the central depth
of the imaginary potential, and the volume integrals of the real and
the imaginary potential.

Eα N W0 JR/4A JI/4A

(MeV) (MeV) (MeV·fm3) (MeV·fm3)

31.1 1.08 17.0 446.8 94.1
54.1 1.14 22.5 471.6 124.6

104.0 1.18 29.0 488.2 160.6

W0 adjustable. As is well known, the quality of the fit can
be significantly improved by increasing the flexibility of the
imaginary potential. For instance, we can choose an imaginary
potential as a sum of Fourier-Bessel functions with six
adjustable parameters as used in Ref. [7], or a generally used
form of a volume absorption term plus a surface absorption
term with six parameters. As an example, Fig. 4 shows the
result for Eα = 31.1 MeV by using the imaginary potential
of a Woods-Saxon (WS) volume term plus a surface term of
a Woods-Saxon derivative (WSD) shape. The parameters of
N , W0, rW , aW , WD , rD , and aD were adjusted to optimize
the fit to the experimental data. One can see from Fig. 4
that, with an imaginary potential of a Woods-Saxon volume
term plus a surface term, our folding potential can get a
very satisfactory fit to the experimental data. As mentioned
above, it is not the intention of the present article to find
the optimum fit to the experimental data for each individual
incident energy, but to get an examination for the α+16O model
of the 20Ne nucleus. For this aim, the quality of the fits shown
in Figs. 1–3, calculated by our folding model potential with an
imaginary potential of a standard Woods-Saxon type, should
be considered as good as the α+16O model of the 20Ne nucleus
that has been examined well.

In our calculations, the required renormalization factors are
N ≈ 1.14 ± 0.06. The obtained volume integrals for the real
potential JR/4A are about from 450 to 490 MeV·fm3 and for
the imaginary potential JI /4A are from 90 to 160 MeV·fm3

(see Table I). The volume integrals of the real potential show
very weakly dependent on energy in this incident energy

FIG. 4. The same as Fig. 2 but for an imaginary potential of
the sum of a Woods-Saxon volume term and a surface term of a
Woods-Saxon derivative shape.
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range, whereas the imaginary part is found to be increased
with increasing energy. It should be pointed out that, with the
required renormalization factor N ≈ 1.14 which is about 14%
discrepant to unity and is acceptable, the obtained volume
integral JR/4A ≈ 472 MeV·fm3 is “anomalous,” stronger
compared to those of “normal” potentials for lower mass
targets. Analyses [7,8,17,18] have shown that, for α scattering
on some lower mass targets, a real potential with volume
integral JR/4A around 350 MeV·fm3 can well reproduce the
experimental cross sections. For the case of the 54.1-MeV
elastic α+16O scattering, in our previous calculation by using
the α-folding model [14], the required renormalization factor is
N = 0.82 which gives a “normal” value of the volume integral
of the real potential JR/4A = 340 MeV·fm3. Here, we see the
anomaly of the α+20Ne scattering, which was revealed in the
analyses in Refs. [7,8].

From the analyses by Abele et al. in Ref. [7], a question
was revealed: why the “normal” folding model works well for a
series of light nuclei but completely fails for the 20Ne nucleus?
This problem was systematically investigated by Michel and
Reidemeister [8]. At first, using phenomenological potentials,
they found that the real potentials with volume integral JR/4A

in excess of about 500 MeV·fm3, which is much stronger
than those of “normal” potentials for lower mass targets, can
produce the backward angle enhancement for the 54.1-MeV
elastic α+20Ne scattering, but is unable to obtain a complete
fit to the data for whole angular range. Our present calculated
result is accordant with this conclusion. The present folding
potential with JR/4A = 472 MeV·fm3 can get a good fit to the
54.1-MeV data shown in Fig. 1, but one can see the phasing

difference of the calculations from the experimental data at
the backward angle. Further investigations by Michel and
Reidemeister [8] have shown that, using a real potential with
JR/4A about 350 MeV·fm3 similar to those for neighboring
mass targets, plus a small parity-dependent real part, a precise
agreement with the experimental angular distribution was
obtained. These analyses provide a possible answer to the
“anomaly” of elastic α+20Ne scattering. However, as is
pointed out in Ref. [8], the origin of the parity dependence
is not clear at this stage. And as far as we know there
is no evidence for the requirement to introduce the parity
dependence to the interaction for neighboring light targets.
The “anomaly” of 20Ne target is still an inexplicit problem for
us and further systematic investigation should be done to make
it clear.

In summary, based on the α+16O model of the 20Ne nucleus,
we have constructed a folding model potential to describe
the elastic α+20Ne scattering. This folding potential, with a
simple Woods-Saxon type imaginary part, can satisfactorily
describe the experimental angular distributions of the elastic
α+20Ne scattering for a wide incident energy region, and
especially can well reproduce the ALAS features. The anomaly
of the α+20Ne scattering is clearly reconfirmed in the present
analysis and should be further studied.
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