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Role of noncollective excitations in low-energy heavy-ion reactions
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We investigate the effect of single-particle excitations on heavy-ion reactions at energies near the Coulomb
barrier. To this end, we describe single-particle degrees of freedom with the random matrix theory and solve
the coupled-channels equations for one-dimensional systems. We find that the single-particle excitations hinder
the penetrability at energies above the barrier, leading to a smeared barrier distribution. This indicates that the
single-particle excitations provide a promising way to explain the difference in a quasielastic barrier distribution
recently observed in 20Ne + 90,92Zr systems.
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I. INTRODUCTION

Heavy-ion reactions near the Coulomb barrier provide
a good opportunity to investigate an interplay between the
reaction process and internal excitations in the colliding nuclei.
For example, it is well known that sub-barrier fusion cross
sections are significantly enhanced as compared to a prediction
of a simple barrier penetration model because of the couplings
of the relative motion between the colliding nuclei to nuclear
intrinsic degrees of freedom [1–3]. It has been well recognized
by now that the enhancement of fusion cross sections can be
explained in terms of a distribution of Coulomb barrier heights
originating from the couplings [4]. The barrier distribution can
be actually extracted directly from the experimental data by
taking the second derivative of the product of fusion cross
section σfus and the center of mass energy E with respect
to E, that is, d2[Eσfus(E)]dE2 [4]. The experimental data
have clearly shown that the barrier distribution makes a useful
representation for understanding the reaction dynamics of
heavy-ion sub-barrier fusion reactions [1,5].

A similar concept of barrier distribution has been applied
also to heavy-ion quasielastic scattering (that is, a sum of
elastic and inelastic scattering and transfer reactions) [6,7]. In
this case, the barrier distribution is defined as the first derivative
of the ratio of the quasielastic scattering cross section at
a backward angle σqel to the Rutherford cross section σR,
that is, −d(σqel/σR)/dE. The fusion and quasielastic barrier
distributions have been found to behave similarly to each other,
at least in a qualitative way [6,8].

To analyze the sub-barrier enhancement of fusion cross
sections and fusion and quasielastic barrier distributions, the
coupled-channels method has been successfully employed.
Typically, a few low-lying collective excitations are taken
into account in a calculation [1,9]. With this approach, the
barrier distribution arises naturally through the eigenchannel
representation [1,10–12].

Recently, however, a few experimental data that cannot be
accounted for by the conventional coupled-channels calcula-
tion have been obtained [13–17]. One of these examples is
the quasielastic scattering experiment for the 20Ne + 90,92Zr
systems [17]. The experimental data show that the quasielastic
barrier distribution for these systems behaves in a significantly
different way from each other: The barrier distribution for

the 20Ne + 92Zr system is much more smeared than that for
the 20Ne + 90Zr system [17]. However, the coupled-channels
calculations that take into account the collective rotational
excitations in 20Ne as well as the vibrational excitations in
90,92Zr lead to similar barrier distributions for both systems
because the strongly deformed 20Ne nucleus mainly deter-
mines the barrier structure while the difference in the collective
excitations in the two Zr targets plays a minor role. In Ref. [17],
it was suggested that single-particle excitations in the colliding
nuclei are responsible for smearing the barrier distribution
for the 20Ne + 92Zr system. Notice that the single-particle
excitations are expected to be much more important for the
92Zr nucleus compared to the 90Zr nucleus, which has the
N = 50 shell closure. In fact, while there are only 12 states in
the 90Zr nucleus up to 4 MeV, there are 53 known states in the
92Zr nucleus [18]. For 5 MeV, the number of known states is
35 and 87 for 90Zr and 92Zr, respectively (for another nucleus,
116Sn, there are 81 known levels up to 3.9 MeV and 112 levels
up to 4.3 MeV [19,20]).

The aim of this article is to investigate the effect of low-lying
single-particle excitations on low-energy heavy-ion reactions,
as conjectured in Ref. [17]. To understand qualitatively the
effect of noncollective excitations, in this article we shall use a
schematic model, that is, one-dimensional barrier penetration
in the presence of the couplings to intrinsic degrees of freedom.
The single-particle degrees of freedom can be described in
several ways [21–26]. For instance, Ref. [21] used the Lindblad
approach to discuss the role of quantum decoherence in deep
sub-barrier hinderance of fusion cross sections. In this article,
we employ the random matrix theory (RMT) to describe
the single-particle excitations (see Refs. [27–30] for recent
reviews on RMT). The random matrix approach for heavy-ion
reactions was developed in 1970s by Weidenmüller and
his collaborators to analyze heavy-ion deep inelastic collisions
[22–25]. At that time, they derived the transport coefficients
based on RMT [31] and solved the classical transport
equations (see also Refs. [32,33]). The RMT has also been
employed to discuss quantum dissipation [34–36]. In this
article, instead of solving the classical equations, we directly
solve the coupled-channels equations quantum mechanically
by including the single-particle excitations described by RMT.
Our approach is therefore similar to that in Ref. [26], in
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which the coupled-channels equations with 200 dimension
were solved for a one-dimensional model using a semiclassical
approximation. In contrast to Ref. [26], we apply our formal-
ism to the sub-barrier regime without using the semiclassical
approximation. This will enable us to assess the effect of
single-particle excitations on quantum tunneling and thus on
the barrier distribution. By treating the single-particle states
explicitly, we can also discuss the excitation spectra as a
function of incident energy.

The article is organized as follows. In Sec. II, we detail the
coupled-channels formalism with single-particle excitations
described by RMT. In Sec. III, we apply the formalism to one-
dimensional models for quantum tunneling. We discuss the
effect of single-particle excitations on the barrier penetrabil-
ity, the barrier distribution, and the excitation spectra. Using
the results for the one-dimensional model, we also discuss
the effect of noncollective excitations on quasielastic barrier
distribution for the 20Ne + 92Zr system. We then summarize
the article in Sec. IV.

II. FORMALISM

A. Coupled-channels method

The aim of this article is to discuss the effect of single-
particle excitations on one-dimensional barrier penetrability.
For this purpose, we assume the following Hamiltonian:

H = − h̄2

2µ

d2

dx2
+ Vrel(x) + H0(ξ ) + Vcoup(x,ξ ). (1)

Here µ is the reduced mass and Vrel(x) is a potential for the
relative motion. H0(ξ ) is a Hamiltonian for the intrinsic degrees
of freedom of the colliding nuclei, and the last term, Vcoup(x,ξ ),
is a coupling Hamiltonian between the relative motion and the
internal degrees of freedom.

The coupled-channels equations for this Hamiltonian are
obtained by expanding the total wave function in terms of the
eigenfunctions of H0(ξ ) and read{

− h̄2

2µ

d2

dx2
+ Vrel(x) + εn − E

}
ψn(x)

+
∑
m

Vnm(x)ψm(x) = 0. (2)

Here εn and ψn(x) are the excitation energy and the wave
function for the nth channel, respectively. Vnm(x) is a coupling
matrix and is a function of the coordinate x.

The coupled-channels equations are solved by imposing the
boundary conditions of

ψn(x) → δn,0 e−ik0x + rn eiknx for x → +∞, (3)

→ tn e−iknx for x → −∞, (4)

where kn =
√

2µ(E − εn)/h̄2 is the wave number for the
nth channel and 0 represents the entrance channel. We have
assumed that the projectile is incident from the right-hand
side of the potential barrier. With the transmission coefficients
tn, the penetration probability for the inclusive process is

calculated as

P (E) =
∑

n

Pn(E) =
∑

n

kn

k0
|tn|2. (5)

The barrier distribution is obtained by taking the derivative of
P (E), that is, dP (E)/dE [11].

To take into account the single-particle excitations, as we
show in the next section, one has to include a large number of
channels. Because it is time and memory consuming to solve
the coupled-channels equations with a large dimensionality, in
this article we employ a constant coupling approximation [10].
In this approximation, the coupling matrix is assumed to be a
constant over the whole range of x. Then one can diagonalize
the matrix A = (Vnm + εnδn,m) with a coordinate independent
unitary matrix U ,

UAU † = diag{λ1, λ2, . . .}, (6)

where λ1, λ2, . . . , are the eigenvalues of A. Transforming the
channel wave functions as

ψ̃n(x) =
∑
m

Unmψm(x), (7)

the coupled-channels equations are transformed to a set of the
uncoupled equations,{

− h̄2

2µ

d2

dx2
+ Vrel(x) + λn − E

}
ψ̃n(x) = 0. (8)

We call the transformed channels the eigenchannels and, for
each eigenchannel, Vn(x) = Vrel(x) + λn the eigenpotential.

The boundary conditions for ψ̃n(x) are given by

ψ̃n(x) → Un0(e−ik0x + r̃ne
ik0x) for x → +∞ (9)

and

ψ̃n(x) → Un0 t̃n e−ik0x for x → −∞, (10)

where the reflection and transmission coefficients are re-
lated to the original coefficients in Eqs. (3) and (4)
by r̃n =

∑
m

Unmrm/Un0 and t̃n =
∑

m
Unmtm/Un0, respec-

tively. Here we have assumed that the excitation energies
are small compared to the incident energy so that kn can
be approximated by k0 [10]. Using the coefficients t̃n, the
penetrability is calculated as

P (E) =
∑

n

|Un0|2 |̃tn(E)|2. (11)

The reflection coefficients in the original basis are given by

rn =
∑
m

(U−1)nm Um0 r̃m, (12)

from which the Q-value distribution (that is, the excitation
spectrum) is computed as

f (ε) =
∑

n

kn

k0
|rn|2 δ(ε − εn) ∼

∑
n

|rn|2 δ(ε − εn). (13)

B. Coupling matrix elements

We solve the coupled-channels equations Eq. (2) using the
constant coupling approximation by including both collective
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and noncollective excitations. For the collective excitations,
we assume either the vibrational or the rotational couplings.
The coupling matrix for the vibrational coupling is given by

(Vnm) = F

(
0 1

1 0

)
, (14)

if we truncate the phonon space up to 1-phonon state [9]. Here
F is a coupling constant, and we have assumed linear coupling.
For rotational coupling, the coupling matrix is given by

(Vnm) = F2√
4π

⎛
⎜⎜⎝

0 1 0

1 2
√

5
7

6
7

0 6
7

20
√

5
77

⎞
⎟⎟⎠

+ F4√
4π

⎛
⎜⎜⎝

0 0 1

0 6
7

20
√

5
77

1 20
√

5
77

486
1001

⎞
⎟⎟⎠ (15)

up to the 4+ state in the rotational band [9], where F2 and
F4 are the quadrupole and hexadecapole coupling strengths,
respectively.

For the single-particle excitations, we consider an ensemble
of coupling matrix elements based on the RMT [22–24]. We
assume that the matrix elements are uncorrelated random
numbers obeying a Gaussian distribution with zero mean. That
is, we require that the first and the second moments of the
coupling matrix elements satisfy the following equations [37]:

Vnm(x) = 0, (16)

VrsVnm = (δr,nδs,m + δr,mδs,n)gnm, (17)

gnm = w0√
ρ(εn)ρ(εm)

e
− (εn−εm)2

2	2 , (18)

where the overbar denotes an ensemble average and ρ(ε)
is the nuclear level density. Here, we have assumed the
coordinate independent matrix elements according to the
constant coupling approximation.

For the single-particle excitations, we generate the coupling
matrix elements according to these equations many times. For
each coupling matrix, we do not vary the matrix elements
for the collective excitations, which are uniquely determined
once the coupling is specified. For each coupling matrix, we
solve the coupled-channels equations and calculate the pene-
trability and the reflection probability. The physical results are
then obtained by taking an average of these quantities.

In the actual calculations shown in the next section, we
discretize the quasicontinuum single-particle spectrum in
the coupled-channels equations [38,39] (see also Ref. [40]).
Introducing the level density ρ(ε),

ρ(ε) =
∑

n

δ(ε − εn), (19)

the coupled-channels equation can be written in the following
form: {

− h̄2

2µ

d2

dx2
+ Vrel(x) + εn − E

}
ψn(x)

+
∫

dερ(ε)Vnε(x)ψε(x) = 0. (20)

In this equation, we assume a quasicontinuum spectrum for the
single-particle excited states, and discretize the integral with
a constant energy spacing, 	ε. For the ground-state and the
collective excitation channels, we then obtain{

− h̄2

2µ

d2

dx2
+ Vrel(x) + εn − E

}
ψn(x) +

∑
m/∈sp

Vnm(x)ψm(x)

+
∑
m∈sp

	ερ(εm)Vnεm
(x)ψεm

(x) = 0, (21)

while for the single-particle channels denoted by εn we
obtain{

− h̄2

2µ

d2

dx2
+ Vrel(x) + εn − E

}
ψεn

(x) +
∑
m/∈sp

Vεnm(x)ψm(x)

+
∑
m∈sp

	ερ(εm)Vεnεm
(x)ψεm

(x) = 0. (22)

Here, m /∈ sp denotes a summation over the ground state
and the collective channels, while m ∈ sp is a summation
over the single-particle channels. These equations can be
expressed in a simpler way by multiplying a factor

√
ρ(εn)	ε

for each index εn representing the single-particle channels.
That is,

ψ̃εn
(x) =

√
ρ(εn)	ε ψεn

(x), (23)

Ṽnεm
(x) =

√
ρ(εm)	ε Vnεm

(x), (24)

Ṽεnεm
(x) = 	ε

√
ρ(εn)ρ(εm) Vεnεm

(x). (25)

With these wave functions and the coupling matrix elements,
Eqs. (21) and (22) read

{
− h̄2

2µ

d2

dx2
+ Vrel(x) + εn − E

}
ψn(x)

+
∑
m/∈sp

Vnmψm(x) +
∑
m∈sp

Ṽnεm
(x)ψ̃εm

(x) = 0, (26)

and {
− h̄2

2µ

d2

dx2
+ Vrel(x) + εn − E

}
ψ̃εn

(x)

+
∑
m/∈sp

Ṽεnmψm(x) +
∑
m∈sp

Ṽεnεm
(x)ψ̃εm

(x) = 0, (27)

respectively. From Eqs. (3) and (4), the boundary conditions
for ψ̃εn

(x) are given by

ψ̃εn
(x) →

√
ρ(εn)	ε tne

−iknx = t̃ne
−iknx

for x → −∞ (28)

and

ψ̃εn
(x) →

√
ρ(εn)	ε rne

iknx = r̃ne
iknx

for x → +∞, (29)
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where, t̃n = √
ρ(εn)	ε tn and r̃n = √

ρ(εn)	ε rn. The pene-
trability is then given by

P (E) =
∑
n/∈sp

kn

k0
|tn|2 +

∑
n∈sp

kn

k0
ρ(εn)	ε |tn|2

=
∑
n/∈sp

kn

k0
|tn|2 +

∑
n∈sp

kn

k0
|̃tn|2. (30)

This method with a constant energy step considerably re-
duces the computation time as compared to the case of treating
the exponentially increasing number of single-particle levels
as they are. It also validates the use of the RMT. An important
assumption in RMT is that the ensemble average of a quantity
is equivalent to the energy average of that quantity over the
spectrum [28]. In our case, we expect that the ensemble average
of the calculated results corresponds to the energy average of
the same quantities within the energy spacing of 	ε.

III. RESULTS

A. Vibrational coupling

We now numerically solve the coupled-channels equations
and discuss the effect of single-particle excitations on barrier
penetrability. We first consider the vibrational coupling. We
assume that there is a collective vibrational state at 1 MeV
whose coupling to the ground state is given by Eq. (14) with
F = 2 MeV. For the single-particle states, we consider a level
density given by ρ(ε) = ρ0 e2

√
aε with ρ0 = 0.039 MeV−1

and a = 29/8 MeV−1, starting from 2 MeV. The value of ρ0

was determined so that the number of single-particle levels
is 200 up to 5 MeV. For the parameters for the couplings in
Eq. (18), we follow Ref. [37] to use 	 = 7 MeV. We arbitrarily
choose the coupling strength to be w0 = 0.005 MeV. The
energy spectrum for this model is shown in Fig. 1. For the
potential for the relative motion, Vrel(x), we use a Gaussian

0
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3

3.5

4

4.5

5

ε   
(M
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)

ground state

collective
state

single-particle
state

FIG. 1. (Color online) The energy spectrum for the model
calculation we employ. There is a collective vibrational state at 1 MeV,
while single-particle states exist from 2 MeV with an exponentially
increasing level density.
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 = 23 MeV

∆ε = 0.02 MeV
(1013 chs.)

FIG. 2. (Color online) The potential penetrability obtained with
several methods. The dotted line is obtained without channel
coupling, while the dashed line takes into account only the collective
vibrational excitation. The solid line shows the result with both the
collective and the single-particle excitations.

function

Vrel(x) = VBe
− x2

2s2
0 , (31)

with VB = 100 MeV and s0 = 3 fm [10]. The reduced mass µ

is taken to be 29mN , mN being the nucleon mass.
Figure 2 shows the penetrabilities thus obtained. The cor-

responding barrier distributions are shown in Fig. 3. The
dotted and the dashed lines show the results without the
channel couplings and those only with the collective excitation,
respectively. The solid line shows the results with both the
single-particle excitations and the collective excitation. We
include the single-particle states up to εmax = 23 MeV with
energy spacing of 	ε = 0.02 MeV. With this model space, the
number of channels included is 1013 (we treat the low-lying
single-particle states as discrete states when the energy spacing
is larger than 	ε). This result is obtained by generating
the coupling matrix elements 30 times to take an ensemble
average. We have found that the fluctuation around the
average is small. For instance, at E = 100 MeV, the averaged
penetrability is P = 0.622, whereas the root-mean-square
deviation is 4.366×10−3. As we mentioned in the previous
section, the results shown in Fig. 2 are obtained with the
constant coupling approximation. With a smaller value of
εmax, we have solved the coupled-channels equations exactly
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E
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vibration + s.p.

ε
max

 = 23 MeV

∆ε = 0.02 MeV
(1013 chs.)

FIG. 3. (Color online) The barrier distribution defined by the first
derivative of the penetrability. The meaning of each line is the same
as in Fig. 2.
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FIG. 4. The Q-value distribution for the reflected flux at four
energies as indicated in the figure. It is obtained by smearing the
discrete distribution with a Lorentzian function with the width of
0.2 MeV. The peaks at E∗ = 0 and 1 MeV correspond to the elastic
and the collective excitation channels, respectively.

and have confirmed that the constant coupling approximation
works qualitatively well.

The collective excitation leads to a double-peaked structure
of barrier distribution. One can see that the single-particle
excitations suppress the penetrability at energies above the
barrier and at the same time smear the higher energy peak in
the barrier distribution, although the main structure of the bar-
rier distribution is still determined by the collective excitation.
The single-particle excitations also lower the barrier and thus
increase the penetrability at energies below the barrier, owing
to the well-known potential renormalization [41].

The Q-value distribution for the reflected flux is shown in
Fig. 4 at four incident energies indicated in the figure. For
presentation purposes, we fold the discrete distribution with a
Lorentz function,

g(ε) = 1

π

η

ε2 + η2
, (32)

with the width of η = 0.2 MeV. That is, with the function
defined by Eq. (13), we compute

F (E∗) =
∫

dεf (ε)g(E∗ − ε) =
∑

n

|rn|2 1

π

η

(E∗ − εn)2 + η2
.

(33)

In the figure, the peaks at E∗ = 0 MeV and E∗ = 1 MeV
correspond to the elastic channel and the collective excitation
channel, respectively. One can see that at energies well below
the barrier the elastic and the collective peaks dominate in
the distribution. As the energy increases, the single-particle
excitations become more and more important. This behavior
is consistent with the experimental Q-value distribution ob-
served for 16O + 208Pb [42,43] and 16O + 184W [43] reactions.
At energies above the barrier, the single-particle contribution is
even larger than the contribution of the elastic and the collective
peaks.

B. Rotational coupling

Let us next consider the rotational coupling. For this
purpose, we mock up the 20Ne + 92Zr system. That is, we
consider the rotational excitations in 20Ne up to the 4+
state and the single-particle excitations in 92Zr. The energies
of the rotational states are thus ε2+ = 1.634 MeV and
ε4+ = 4.248 MeV for the 2+ and 4+ states, respectively. The
values of the coupling strengths F2 and F4 in Eq. (15) are
estimated with the collective model for the coupling form
factor at the barrier position with the deformation parameters
of β2 = 0.46 and β4 = 0.27. This yields F2 = −6.892 MeV
and F4 = −4.632 MeV. For the single-particle excitations in
92Zr, we consider the energy range of 2 MeV � ε � 16 MeV,
with the exponential level density with ρ0 = 0.034 MeV−1

and a = 30/8 MeV−1. For the coupling strength, we use
w0 = 0.005 MeV and 	 = 4.0 MeV. These parameters are
adjusted so that the rotational excitation in 20Ne gives the
main structure of the barrier distribution.

In the calculation shown in what follows, we also include
the mutual excitations of the projectile and the target nuclei.
To avoid closed channels, we introduce the energy cutoff and
include those channels whose total excitation energy is below
16 MeV. With this setup, the number of channels included is
1688.

We use the Gaussian function for the potential for the
relative motion with VB = 51.76 MeV and s0 = 2.475 fm.
This yields the same barrier height and the curvature as those
with a Woods-Saxon potential with the parameters of V0 =
59.9 MeV, r0 = 1.2 fm, and a = 0.63 fm for the 20Ne + 92Zr
system. The reduced mass is taken to be 20 × 92 mN/112.

Figures 5 and 6 show the penetrability and the barrier
distribution for this model, respectively. The meaning of each
line is the same as in Figs. 2 and 3 for the vibrational coupling.
With only the collective rotational excitations, there are three
eigenbarriers whose heights are 48.2, 53.3, and 55.6 MeV. In
contrast to the vibrational coupling, for the rotational coupling
with a prolate deformation the main peak in the barrier
distribution is not the lowest energy peak. For the parameters
we use, the highest energy barrier carries a relatively small
weight and the barrier distribution has only two visible
peaks. The effect of single-particle excitations on the barrier
distribution is similar to the case for the vibrational coupling
and smears the higher energy peak in the barrier distribution.

C. Quasielastic barrier distribution

Using the eigenbarriers and the corresponding weight
factors obtained in the previous subsection, one can compute

024606-5



S. YUSA, K. HAGINO, AND N. ROWLEY PHYSICAL REVIEW C 82, 024606 (2010)

40 45 50 55 60
E [MeV]

0

0.2

0.4

0.6

0.8

1
P

no coupling
rotation
rotation + s.p.

ε
max

 = 16 MeV

Nch = 1688

FIG. 5. (Color online) The same as Fig. 2, but for the rotational
coupling.

the quasielastic scattering cross sections and the quasielastic
barrier distribution in a three-dimensional space. That is, in the
eigenchannel representation, the quasielastic scattering cross
section is given by [7,44]

σqel(E, θ ) =
∑

i

wiσel(E − λi, θ ), (34)

where wi = |Ui0|2 is the weight factor for the ith eigenchannel
and σel is the elastic scattering cross section. To calculate
the elastic scattering cross sections, we use the Woods-Saxon
potential indicated in the previous section. For the imaginary
part of the optical potential, we assume an internal absorption,
in which the imaginary part is well localized only inside the
Coulomb barrier.

Figure 7 shows the quasielastic barrier distribution obtained
with the same wi and λi as in the previous subsection for the
one-dimensional model. We use the point difference formula
with 	Ec.m. = 2 MeV to calculate the quasielastic barrier
distribution. The meaning of each line is the same as in
Fig. 3. Because the quasielastic barrier distribution is by
itself smeared more than the fusion barrier distribution [7],
and also because we use the point difference formula rather
than taking the derivative, the higher energy peak in the
barrier distribution is more smeared by the single-particle
excitations as compared to the one-dimensional calculation
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FIG. 6. (Color online) The same as Fig. 3, but for the rotational
coupling.
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FIG. 7. (Color online) The quasielastic barrier distribution for
the 20Ne + 92Zr system calculated with the weight factors and
the eigenbarrier heights for the one-dimensional rotational model
discussed in Sec. III B. The meaning of each line is the same as in
Fig. 3.

shown in the previous section. The difference between the
dashed line (the collective excitations only) and the solid
line (the collective + single-particle excitations) is similar
to the difference in the experimental quasielastic barrier
distribution between 20Ne + 90Zr and 20Ne + 92Zr systems.
We therefore conclude that the single-particle excitations
indeed provide a promising way to explain the difference
in the quasielastic barrier distribution for the 20Ne + 90,92Zr
systems.

IV. SUMMARY

We have studied the role of single-particle excitations in
heavy-ion reactions at energies close to the Coulomb barrier.
To this end, we employed a RMT to describe the single-particle
degrees of freedom. We applied the model to one-dimensional
barrier-penetration problems by using the constant coupling
approximation. In addition to the single-particle excitations,
we also included the collective excitations with either a
vibrational or a rotational character. We calculated the potential
penetrability, the barrier distribution, and the Q-value distri-
bution. We also calculated the quasielastic barrier distribution
for the 20Ne + 92Zr system using the eigenbarriers and their
weight factors obtained with the one-dimensional model.
Our calculations show that the single-particle excitations
hinder the penetrability at energies above the barrier and
smear the high-energy part of the barrier distribution. In the
Q-value distribution, we found that the contribution from
the single-particle excitations increases significantly as the
incident energy increases.

The experimental quasielastic barrier distributions are
considerably different between 20Ne + 90,92Zr systems,
despite that the coupled-channels calculations with collective
excitations in the colliding nuclei lead to similar barrier
distributions to each other. Our calculations imply that the
difference can be indeed accounted for by the noncollective
excitations in the target nuclei, as has been conjectured in
Ref. [17]

To make a quantitative comparison to the experimental data
and draw a definite conclusion on the quasielastic barrier
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distribution for the 20Ne + 90,92Zr systems, it will be an
interesting future work to extend our study presented in this
article to three-dimensional calculations without resorting to
the constant coupling approximation. This is so espeically be-
cause the constant coupling approximation that we employed
in this article may introduce a significant phase error and
thus leads to an inconsistent angular-dependent interference
between different partial waves. It may also be interesting to
see whether this model accounts for the hindrance of fusion
cross sections at deep sub-barrier energies recently found
in several systems. For this purpose also, we would have

to take into consideration the coordinate dependence of the
coupling form factor, especially around the touching point of
the colliding nuclei [45].
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