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Exploring continuum structures with a pseudo-state basis
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The ability of a recently developed square-integrable discrete basis to represent the properties of the continuum
of a two-body system is investigated. The basis is obtained performing a simple analytic local scale transformation
to the harmonic oscillator basis. Scattering phase-shifts and the electric transition probabilities B(E1) and B(E2)
have been evaluated for several potentials using the proposed basis. Both quantities are found to be in excellent
agreement with the exact values calculated from the true scattering states. The basis has been applied to describe
the projectile continuum in the 6He scattering by 12C and 208Pb targets at 240 MeV/nucleon and the 11Be
scattering by 12C at 67 MeV/nucleon. The calculated breakup differential cross sections are found to be in very
good agreement with the available experimental data for these reactions.
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I. INTRODUCTION

Quantum collisions involving weakly bound systems are
known to be influenced by the coupling to the unbound
states. In nuclear collisions, this was first evidenced in the
pioneering study by Johnson and Soper [1], who recognized
the relevance of the breakup channels to understand deuteron-
induced reactions. In their survey, the deuteron continuum
was represented by a single s state. Later developments by
Rawitscher [2] and Austern et al. [3] helped to introduce a
more realistic representation of the continuum, leading to the
development of the continuum-discretized coupled-channels
(CDCC) method. This method reduces the many-body prob-
lem to an effective three-body problem and expands the full
three-body wave function in a selected set of continuum wave
functions of a given pair subsystem Hamiltonian. Projection of
the Schrödinger equation onto the selected internal states gives
rise to a set of coupled differential equations. The practical
implementation of the method requires a discretization proce-
dure, that is, an approximation of the two-body continuum
spectrum by a finite and discrete representation. Although
not strictly necessary, it is numerically advantageous to use
for this representation a set of L2 (that is, square-integrable)
functions. The standard method of continuum discretization
consists in dividing the continuum into a set of energy or
momentum intervals. For each interval, or bin, a representative
wave function is constructed by superposition of the scattering
states within the interval (the average method).

An alternative to the discretization method based on bins
is the pseudo-state (PS) method, in which the wave functions
describing the internal motion of the projectile are obtained
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as the eigenstates of the projectile Hamiltonian in a truncated
basis of square-integrable functions. A variety of PS bases
have been proposed in the literature for two-body continuum
discretization [4–6] and, more recently, also for the three-body
continuum [7–10].

In a recent work [6], we proposed a PS method based on a
local scale transformation (LST) of the harmonic oscillator
(HO) basis. The LST, adopted from a previous work of
Karataglidis et al. [11], is such that it transforms the Gaussian
asymptotic behavior into an exponential form, thus ensuring
the correct asymptotic behavior for the bound wave functions.
The accuracy of this transformed harmonic oscillator (THO)
basis was tested for several reactions induced by deuterons and
halo nuclei, showing an excellent agreement with the standard
binning method and an improved convergence rate.

Due to their vanishing asymptotic behavior, it is not obvious
that genuine continuum properties, such as the scattering
phase-shifts, can be well described using square-integrable
states. However, in this case one can make use of integral
formulas, which require only the wave function within a
finite region. Several prescriptions have been proposed in
the literature to extract the phase shifts from continuum-
discretized states [12–14]. In this work, we make use of the
stabilization method of Hazi and Taylor [12,15,16] to show that
the THO basis reproduces very well the exact phase-shifts.
As an additional test of the quality of the THO basis, we
calculate several transition probabilities and their associated
sum rules. Finally, we apply the THO basis to calculate
the breakup of the reactions 6He + 12C and 6He + 208Pb at
240 MeV/nucleon and 11Be + 12C at 67 MeV/nucleon,
making use of the CDCC formalism. The calculations are
compared with existing experimental data for these reactions.

The work is structured as follows. In Sec. II we review
the THO method based on the parametric LST. In Sec. III we
introduce an integral formula suitable for the calculation of
scattering phase-shifts with PS functions. In Sec. IV we recall
some useful formulas to evaluate the dipole and quadrupole
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transition probabilities from the scattering states and from the
pseudo-states. In Sec. V these formulas are applied to study
the continuum of the deuteron and 6He nuclei. In Sec. VI the
method is applied to the scattering of 6He by 12C and 208Pb at
240 MeV per nucleon and by 11Be + 12C at 67 MeV/nucleon.
Finally, in Sec. VII we summarize the main results of
this work.

II. THE ANALYTIC LST

In this section, we briefly review the features of the PS
basis used in this work. This basis was originally developed in
Ref. [11] to describe the single-particle orbitals within a mean-
field approach. In a later work [6], we adopted this method
to discretize the continuum of a two-body system within
the context of the continuum-discretized coupled-channels
method.

The starting point is the HO basis in angular momentum
representation. The radial part of the nth HO function for a
given partial wave � is here denoted as φHO

n,� (s). These functions
are orthogonal and constitute a complete set and, therefore,
they can be used to expand the eigenstates (bound and
unbound) of an arbitrary potential. For a finite well, the bound-
state wave functions decay exponentially at large distances and
hence the HO basis does not provide a suitable representation
due to its Gaussian asymptotic form. A possible approach
to overcome this limitation, while retaining the appealing
properties of the HO basis, is to perform a LST that converts
the Gaussian behavior into an exponential one [17,18]. This
gives rise to the so-called transformed harmonic oscillator
(THO) basis. We denote the radial part of these basis
states as

φTHO
n,� (r) =

√
ds

dr
φHO

n,� [s(r)]. (1)

Note that, by construction, the family of functions φTHO
n,� (r)

is orthogonal and constitutes a complete set with the following
normalization: ∫ ∞

0
dr

∣∣φTHO
n,� (r)

∣∣2 = 1. (2)

Moreover, they decay exponentially at large distances, thus
ensuring the correct asymptotic behavior for the bound wave
functions. In practical calculations a finite set of functions (1)
is retained, and the internal Hamiltonian of the projectile is
diagonalized in this truncated basis with N states, giving rise
to a set of eigenvalues and their associated eigenfunctions,
denoted, respectively, as {εn} and {ϕ(N)

n,� (r)} (n = 1, . . . , N ).
As the basis size is increased, those eigenstates with negative
energy will tend to the exact bound states of the system, while
eigenstates with positive eigenvalues can be regarded as a finite
representation of the unbound states.

With the aforementioned criterion, the LST is indeed not
unique. In Ref. [19] the LST is defined in such a way that the
first HO state is exactly transformed into the exact ground-state
wave function. Therefore, by construction, this wave function
is exactly recovered for any arbitrary size of the basis. In
a more recent work [6] we adopted the parametric form of

Karataglidis et al. [11],

s(r) = 1√
2b

[
1(

1
r

)m + (
1

γ
√

r

)m

] 1
m

, (3)

which depends on the parameters m, γ , and the oscillator
length b. Following Ref. [6], the oscillator length b is treated
as a variational parameter used to minimize the ground-state
energy. Asymptotically, the function s(r) behaves as s(r) ∼
γ

b

√
r
2 and hence the functions obtained by applying this LST

to the HO basis behave at large distances as exp(−γ 2r/2b2).
Therefore, the ratio γ /b can be related to an effective linear
momentum, keff = γ 2/2b2, which governs the asymptotic
behavior of the THO functions; as the ratio γ /b increases, the
radial extension of the basis decreases and, consequently, the
eigenvalues obtained upon diagonalization of the Hamiltonian
in the THO basis tend to concentrate at higher energies.
Therefore, γ /b determines the density of PS as a function
of the excitation energy. This property was used in Ref. [6]
to determine a suitable value for the ratio γ /b in scattering
calculations. For a more quantitative measurement of the
density of states we define the magnitude:

ρ(N)(k) =
N∑

n=1

〈ϕ�(k)
∣∣ϕ(N)

n,�

〉
, (4)

with |ϕ�(k)〉 denoting the scattering wave function for a
momentum k.

With this definition the integral of the density with respect
to the momentum is just the number of basis states, that is,∫ ∞

0
dk ρ(N)(k) = N, (5)

regardless of the choice of the parameters of the LST.
In all the calculations presented in this work, the power m

is just taken as m = 4. This was one of the choices made in
Ref. [11] and, in fact, the authors of that work found a very
weak dependence of the results on this parameter.

III. EXTRACTING THE PHASE SHIFTS FROM
THE THO BASIS

The properties of the continuum states are completely
determined by the phase shifts. In a two-body problem, the
phase shifts are readily obtained from the asymptotics of the
radial part of the wave function. Ignoring spins for simplicity,
the radial part corresponding to a partial wave � can be written
at large distances as

ϕ�(k, r) →
√

2

π
[cos δ�(k)F�(kr) + sin δ�(k)G�(kr)] , (6)

where F� and G� are the regular and irregular Coulomb
functions. If the potential is real, the functions ϕ� as well
as the phase shifts δ� are also real.

Equation (6) cannot be applied to PS functions to extract
the phase shifts, because these functions vanish asymptotically.
However, the phase shifts can be also obtained from integral
expressions, which require only the interior part of the wave
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functions. Here, we make use of the integral formula proposed
by Hazi and Taylor [12,16], who applied this formula to extract
the phase shifts in a one-dimensional scattering problem using
a harmonic oscillator representation. We have generalized this
formula to three-dimensional cases. The formula so obtained
reads

tan δ�(k) = −
∫ ∞

0 ϕ�(k, r)[E − H ]f (r)F�(kr) dr∫ ∞
0 ϕ�(k, r)[E − H ]f (r)G�(kr) dr

. (7)

This formula can be derived following the same arguments
outlined in Ref. [12] for the one-dimensional case. We note
that, if the exact wave functions are used for ϕ�(k, r), this
expression becomes an alternative to Eq. (6) to calculate the
exact phase shifts. The function f (r) appearing in Eq. (7)
verifies the following properties:

f (r)
r→∞−→1; f (0) = f ′(0) = 0. (8)

Following Ref. [12], we adopt the explicit form f (r) = 1 −
exp(−βr2), with β > 0. The aim of this function f (r) is to
avoid evaluating the function G�(kr) at the origin, where it
becomes singular. Therefore the parameter β should be small
enough to make f (r) ≈ 0 for distances of the order of the
nuclear range. In the cases studied here, we have chosen β =
0.01 fm−2.

IV. ELECTRIC TRANSITION PROBABILITIES
IN THE PSEUDO-STATE BASIS

The accuracy of the PS basis to represent the continuum
can be studied by comparing the ground-state to continuum
transition probability due to a given operator. Here we consider
the important case of the electric dissociation of the initial
nucleus a into the fragments b + c. This involves a matrix
element between a bound state (typically the ground state) and
the continuum states.

The electric transition probability between two bound
states, |(�is)ji〉 and |(�f s)jf 〉 (assumed here to be normalized
to unity), is given by the reduced matrix element

B(Eλ; i → f ) = 2jf + 1

2ji + 1
|〈(�f s)jf ||M(Eλ)||(�is)ji〉|2,

(9)

where M is the multipole operator,

M(Eλµ) = Z
(λ)
eff er

λYλµ(r̂), (10)

with the effective charge

Z
(λ)
eff = Zb

(
mc

mb + mc

)λ

+ Zc

(
− mb

mb + mc

)λ

. (11)

In the case of a transition to a continuum of states,
|k(�f s)jf 〉, the preceding definition is replaced by (see, e.g.,
Ref. [20])

dB(Eλ)

dε
= 2jf + 1

2ji + 1

µbck

(2π )3h̄2

× |〈k(�f s)jf ||M(Eλ)||(�is)ji〉|2 , (12)

with k = √
2µbcε/h̄. Note that the extra factor appearing

in Eq. (12) with respect to Eq. (9) is consistent with the
convention 〈k(�s)j |k′(�s)j 〉 = δ(k − k′) and the asymptotic
behavior of Eq. (6).

In the calculations presented in this work, we ignore for
simplicity the internal spins of the clusters and hence s = 0,
ji = �i , and jf = �f . In addition, we consider only transitions
from the ground state, so 〈r|(�is)ji〉 = ϕg.s.(r) (where the index
�i is omitted for shortness). This reduces Eq. (12) to

dB(Eλ)

dε
= 2�f + 1

2�i + 1

µbck

(2π )3h̄2 |〈ϕ�f
(k)||M(Eλ)||ϕg.s.〉|2.

(13)

The reduced matrix element is given by

〈ϕ�f
(k)||M(Eλ)||ϕg.s.〉 = 4π

k
ZeffeD

(λ)
�i ,�f

Rλ
�i ,�f

(k) , (14)

with D
(λ)
�i ,�f

being a geometric factor [20] and Rλ
�i ,�f

(k) the
radial integral

Rλ
�i ,�f

(k) =
∫ ∞

0
dr ϕ�f

(k, r)rλϕg.s.(r). (15)

Using a finite basis, one may calculate only discrete values
for the transition probability. According to Eq. (9), the B(Eλ)
between the ground state and the nth PS is given by

B(N)(Eλ; g.s. → n) = 2�f + 1

2�i + 1

∣∣〈ϕ(N)
n,�f

∣∣∣∣M(Eλ)
∣∣∣∣ϕg.s.

〉∣∣2
.

(16)

To relate this discrete representation with the continuous
distribution (13) one may use the simple approximation

dB(Eλ)

dε

∣∣∣∣∣
ε=εn

	 1

�n

B(N)(Eλ; g.s. → n), (17)

where �n = (εn+1 − εn−1)/2 is an estimate for the energy
width of the nth PS. This expression provides the B(Eλ) values
only for the PS eigenvalues εn.

Alternatively, one may derive a continuous approximation
to Eq. (13) by introducing the identity in the truncated PS
basis, that is,

IN
� =

N∑
n=1

∣∣ϕ(N)
n,�

〉〈
ϕ

(N)
n,�

∣∣. (18)

For N → ∞ this expression tends to the exact identity
operator for the Hilbert space spanned by the eigenfunctions
of the considered Hamiltonian. By inserting Eq. (18) into the
exact expression (13), we obtain the approximated continuous
distribution:

dB(Eλ)

dε
	 2�f + 1

2�i + 1

µbck

(2π )3h̄2

×
∣∣∣∣∣

N∑
n=1

〈ϕ�(k)
∣∣ϕ(N)

n,�

〉〈
ϕ

(N)
n,�

∣∣|M(Eλ)||ϕg.s.〉
∣∣∣∣∣
2

.

(19)
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To test the accuracy of the THO basis to describe the
continuum, we calculate also the following magnitudes:

(i) The non-energy-weighted sum rule (NEWSR):

NEWSR ≡
∫

dε
dB(Eλ)

dε

= 2�f + 1

2�i + 1

(
D

(λ)
�i ,�f

)2〈r2λ〉g.s., (20)

with 〈r2λ〉g.s. ≡ 〈ϕg.s.|r2λ|ϕg.s.〉.
(ii) The energy-weighted sum rule (EWSR):

EWSR ≡
∫

dε
dB(Eλ)

dε
(ε − εg.s.)

= h̄2

2µbc

λ(2λ + 1)
2�f + 1

2�i + 1

(
D

(λ)
�i ,�f

)2〈r2λ−2〉g.s..

(21)

(iii) The energy-inverse-weighted integral (or polarizability):

α ≡ 8π

9

∫
dε

1

(ε − εg.s.)

dB(Eλ)

dε
. (22)

Due to their respective weight factors, the EWSR and the
polarizability are useful quantities to test the accuracy of
the basis to describe high-energy and low-energy parts of the
spectrum, respectively. Note that the closed expression for
the EWSR is only valid for angular-momentum-independent
Hamiltonians. We note also that there is no closed expression
for the polarizability, but to calculate this quantity with the
desired accuracy, as well as the EWSR for angular-momentum-
dependent Hamiltonians, one can directly evaluate Eq. (22)
using the exact continuum states integrated up to a sufficiently
high excitation energy.

V. APPLICATION TO NUCLEAR STRUCTURE

A. Application to the deuteron

As an illustration of the expressions derived in the preceding
sections, we first consider the case of the p-n system with a
central potential. Following Ref. [21], the interaction between
the proton and the neutron is parametrized in terms of the
Poeschl-Teller potential,

Vpn(r) = − V0

cosh(ar)2
, (23)

with V0 = 102.706 MeV and a = 0.9407 fm−1. With these
values, the ground-state energy is 2.2245 MeV, in agreement
with the experimental value.

The oscillator length was chosen to minimize the ground-
state energy obtained upon diagonalization of the Hamiltonian
in a small THO basis. This yields the value b = 1.5 fm. Once
the value of b is fixed, the ratio γ /b determines the extension
of the PS eigenstates; increasing the value of γ reduces the
radial extension and pushes the eigenvalues to higher energies.
This is better seen in terms of the density of states, defined
according to Eq. (4). This magnitude is plotted in Fig. 1 for
the � = 0 continuum, using a basis of N = 30 states, and three
different choices of γ , namely, γ = 1 fm1/2, 2.48 fm1/2, and
5 fm1/2. It is seen that small values of γ (which correspond

0 1 2 3

k (fm
-1

)

0

5

10

15

20

25

30

ρ(
k)

γ=1 fm
1/2

γ=2.48 fm
1/2

γ=5 fm
1/2

HO

FIG. 1. (Color online) Density of states for the � = 0 continuum
obtained with a THO basis with N = 30 states, defined according to
Eq. (4) for different choices of the γ parameter. The dot-dashed curve
is the density obtained with a HO basis with 30 states and b = 2 fm.
See text for details.

to an extended THO basis in configuration space) produce
a fine description of the continuum at low energy. This is
useful, for example, to study Coulomb breakup. Increasing the
value of γ will decrease the density of states at low energies,
which is compensated by an increase of the density at higher
excitation energies. The most suitable choice for this parameter
will depend on the problem at hand, depending on the energy
region of interest. We emphasize, however, that the dependence
on γ is not critical and, in the applications shown here, different
values of γ converge to the same results for sufficiently large
bases. For comparison, we include also in Fig. 1 the density
obtained with a HO basis with N = 30 states and b = 2.0 fm,
which minimizes the ground-state energy for the HO basis.

We next consider the scattering phase-shifts. These are
displayed in Fig. 2 as a function of the relative p-n energy.
The top, middle, and bottom panels correspond to the s, p, and
d waves. The solid line is the calculation using the asymptotics
of the exact scattering states, whereas the circles represent the
calculation obtained with Eq. (7), using a THO basis with
N = 30 states. The LST was generated with the parameters
b = 1.5 fm and γ = 2.48 fm1/2. In the three cases, we find an
excellent agreement between the exact and the approximate
phase-shifts in the whole energy range.

Note that the calculated phase shifts are consistent with
the Levinson theorem (see, e.g., Ref. [22]), which establishes
that the phase shift at zero energy is given by δ�(0) = nπ ,
where n is the number of bound states for the partial wave �.
So, because the s wave supports a bound state (the deuteron),
we have δ0(0) = π , whereas for � = 1 and � = 2 we have
δ1(0) = δ2(0) = 0.

We now consider the electric transition probabilities, B(E1)
and B(E2). These are shown in Fig. 3. The solid line corre-
sponds to the calculation using the scattering states Eq. (13),
the solid circles correspond to the discrete approximation using
the THO basis Eq. (17), and the dashed line is the calculation
obtained folding the discrete distribution with the continuum
states [Eq. (19)]. Both the discrete and folded approximations
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FIG. 2. (Color online) Phase shifts for the deuteron system as a
function of the relative p-n energy. The upper, middle, and bottom
panels correspond to � = 0, 1, and 2 continuum states, respectively.
See text for details.
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FIG. 3. (Color online) Electric transition probabilities for the d =
p + n system. The top and bottom panels correspond to λ = 1 and
λ = 2 transitions, respectively. See text for details.

TABLE I. Convergence of the ground-state energy and the total
B(E1) and B(E2) transition probabilities for the deuteron case.

N Total Total
εg.s. (MeV) B(E1)(e2 fm2) B(E2)(e2 fm4)

HO THO HO THO HO THO

10 −2.157 0 −2.215 0 0.813 80 0.852 86 14.699 3 17.972 9
20 −2.220 1 −2.224 5 0.862 00 0.871 29 19.125 7 20.793 8
30 −2.223 7 −2.224 5 0.869 26 0.871 36 20.291 9 20.829 7
40 −2.224 1 −2.224 5 0.870 79 0.871 36 20.642 2 20.829 7
50 −2.224 2 −2.224 5 0.871 19 0.871 36 20.759 1 20.829 7
60 −2.224 3 −2.224 5 0.871 30 0.871 36 20.801 5 20.829 7
70 −2.224 3 −2.224 5 0.871 34 0.871 36 20.817 8 20.829 7

Exact −2.224 5 0.871 36 20.829 7

show an excellent agreement with the exact distribution. We
include also the calculation using the HO basis with N = 30
states and b = 2.0 fm (open circles and dot-dashed line). Both
the B(E1) and B(E2) distributions depart significantly from
the exact distributions. In addition, the HO basis produces
a small density of states at low energy, which might be a
drawback for scattering calculations.

In Tables I and II we present the convergence of the ground-
state energy and the E1 and E2 sum rules with respect to the
basis size. The last row lists the exact values obtained with the
closed expressions of Eqs. (20) and (21). It is seen that with a
moderately small basis one obtains a very good convergence
to the exact values. For comparison, in these tables we include
also the calculations using the HO basis. From the quoted
numbers, it is clear that the convergence rate is much faster for
the THO basis.

It is worth noting that, despite the simple Hamiltonian
adopted in this work for the p-n system, the calculated
polarizability is fully consistent with the experimental value,
αexp = 0.61 ± 0.04, quoted in Ref. [23].

B. Application to 6He

We now consider a situation in which more complicated
continuum structures are present, such as resonances. For
this purpose, we take the 6He nucleus, treated as a two-body

TABLE II. Convergence of the polarizability and EWSR for the
deuteron case.

N Energy-weighted
α (fm)3 B(E1)(e2fm2MeV)

HO THO HO THO

10 0.413 988 0.515 397 8.605 586 8.102 094
20 0.557 520 0.619 350 7.742 321 7.442 755
30 0.599 683 0.620 899 7.526 588 7.437 322
40 0.613 204 0.620 922 7.466 005 7.434 683
50 0.617 923 0.620 931 7.446 418 7.433 209
60 0.620 109 0.620 936 7.439 133 7.432 331
70 0.620 395 0.620 940 7.435 989 7.431 757

Exact 0.620 953 7.429 937
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FIG. 4. (Color online) Phase shifts for the 6He system as a
function of the relative α + 2n energy. The top, middle, and bottom
panels correspond to � = 0, 1, and 2 continuum states, respectively.
See text for details.

system α + 2n. Following Ref. [24], the interaction between
the two clusters is described with a Woods-Saxon shape, with
R = 1.9 fm and a = 0.39 fm. For � = 0 states, the depth
of this potential is adjusted to give the effective separation
energy of 1.6 MeV between the two clusters. It was shown in
Ref. [24] that using this effective binding energy, instead of the
two-neutron separation energy (S2n = 0.97 MeV), provides a
more realistic description of the ground-state wave function.
For � = 2, the intercluster potential is adjusted to yield a
resonance at an excitation energy of Ex = 1.8 MeV. For � = 1,
we simply took the depth found for � = 0. A THO basis with
N = 50 states was used, and the LST was generated with the
parameters b = 1 fm and γ = 1.89 fm1/2.

The s-, p-, and d-wave phase shifts are displayed in Fig. 4
as a function of the α + 2n relative energy, ε. For � = 2, the
energy scale has been restricted to the energy interval ε =
0–6 MeV to emphasize the region of the resonance. Again,
we find a perfect agreement between the exact (solid line)
and the approximate (circles) phase shifts in the whole energy
range. Note that, in this case, the s-wave potential supports
two bound states, the Pauli forbidden 1S state and the 2S

ground state. Consistently, the phase shift at zero energy is
given by δ0(0) = 2π . Analogously, for � = 1 the phase shift
tends to π , due to the presence of a (Pauli forbidden) bound
state in this partial wave. Finally, for � = 2 no bound states are
supported by this potential and, therefore, δ2(0) = 0. For the
d-wave, the phase shift crosses abruptly π/2 at ε = 0.20 MeV,
reflecting the presence of a narrow 2+ resonance. Interestingly,
this behavior is also observed in the THO basis, where there
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FIG. 5. (Color online) Radial part of the continuum wave function
at the resonance for the 6He system.

is a PS that appears exactly at the nominal energy of the
resonance. It is then tempting to conclude that this PS will
carry most of the character of the resonance, and in fact this
is confirmed in Fig. 5, where we show the radial part of the
exact scattering wave function, calculated at the energy of the
resonance (solid line) along with the radial part of the PS
eigenstate that appears at the energy of the resonance (dashed
line). The former has been arbitrary normalized so that the two
wave functions coincide at the maximum. It is seen that both
wave functions are very similar up to very large distances.
For comparison, we have included also the PS eigenstates
associated with the eigenvalues just below (dotted-dashed
line) and above (dotted line) the resonant one. They are very
different from the scattering wave function at the resonance.
In particular, it can be seen that a significant part of the norm
of the resonant wave function is concentrated in the interior,
as expected for a resonance, whereas for the nonresonant PS
eigenstates, the probability in the interior is very small. This
leads to the conclusion that in this case the character of the
resonance is very well described by a single PS eigenstate.
Indeed, if the basis is increased, the resonant character will
be distributed among several PS. These results clearly show
that a distinctive feature of the continuum such as the resonant
structures are very well accounted for by the PS basis, despite
its wrong asymptotic behavior.

In Fig. 6 we compare the E1 and E2 transition probabilities
obtained from the scattering states by means of Eq. (13)
(solid line), with the approximate distributions calculated
with the THO basis. The circles correspond to the discrete
expression of Eq. (17), whereas the dashed line is the smooth
distribution obtained with Eq. (19). Both the discrete and
smooth distributions are in excellent agreement with the exact
distribution.

In Table III we display the convergence of the ground-state
energy and the E1 and E2 sum rules with respect to the
basis size. As in the deuteron case, both observables converge
very fast to their exact value, given by the sum rule of
Eq. (20).

Finally, in Table IV we present the convergence of the
integrated-energy-weighted B(E1) and the polarizability. For
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FIG. 6. (Color online) Electric transition probabilities for the
6He = α + 2n system. The top and bottom panels correspond to
λ = 1 and λ = 2 transitions, respectively. See text for details.

the former, we cannot use the closed expression of Eq. (21),
because the 6He Hamiltonian depends on the angular mo-
mentum. The exact value listed in this Table corresponds
to the explicit calculation using the scattering states up to a
high excitation energy. The same holds for the polarizability,
because for this observable there is no closed expression.

VI. APPLICATIONS TO NUCLEAR REACTIONS

A. Application to the reactions 6He + 12C
and 6He + 208Pb at 240 MeV/nucleon

The THO basis considered in this work is intended to
provide a suitable discrete representation of the continuum
spectrum of a loosely bound system, which can be useful for

TABLE III. Convergence of the ground-state energy and the
total B(E1) and B(E2) transition probabilities for the 6He = α + 2n

system.

N εg.s. Total B(E1) Total B(E2)
(MeV) (e2 fm2) (e2 fm4)

10 −1.591 3 1.353 8 8.552 4
20 −1.599 9 1.385 4 9.747 1
30 −1.599 9 1.385 5 9.747 1
40 −1.599 9 1.385 5 9.747 1
50 −1.600 0 1.385 5 9.747 1
80 −1.600 0 1.385 5 9.747 1

Exact −1.600 0 1.385 5 9.747 1

TABLE IV. Convergence of the polarizability and energy-
weighted B(E1) for the 6He = α + 2n system.

N α Total-energy-weighted B(E1)
(fm3) (e2 fm2MeV)

20 1.865 2 6.562 3
30 1.874 6 6.546 4
40 1.875 0 6.543 8
50 1.875 2 6.542 5
60 1.875 3 6.541 8
70 1.875 3 6.5412
120 1.875 5 6.540 1

Exact 1.875 6 6.539 3

scattering calculations within the CDCC method [3]. As a
test case, we apply the THO basis to the reactions 6He + 12C
and 6He + 208Pb at 240 MeV/nucleon. These reactions were
measured by Aumann et al. [25] at the GSI facility with the
aim of extracting information on the 6He nucleus. The breakup
of 6He on 208Pb was already analyzed using the CDCC method
with the THO basis in Ref. [6], showing an excellent agreement
with the binning discretization method for the modulus of
the breakup S matrix. In this work, we extend the analysis of
Ref. [6] to compare with the data of Ref. [25]. In particular,
we consider the exclusive breakup differential cross section as
a function of the excitation energy of the projectile dσ/dEx .
In Ref. [25], this observable was obtained by reconstructing
the kinematics of the 6He c.m. from the measured momenta
of the outgoing fragments (4He + n + n) and integrating
up to a laboratory scattering angle of 80 mrad. To obtain
this observable in our calculations, we first construct the
double-differential cross section dσ/d�dEx from the breakup
S matrices. In principle, the breakup S matrix is a continuous
function of the asymptotic momentum k. However, within a
PS representation of the continuum, only discrete values of
the S matrix are obtained, corresponding to the eigenvalues
εn. A continuous breakup S matrix can be obtained from the
solution of the coupled equations following the procedure
used in Refs. [4,6,26], in which the discrete S matrices
are folded with the exact scattering states, similarly to what
was done with the B(Eλ) distribution in Eq. (19), that is,

Sf :i(k) ≈
N∑

n=1

〈ϕ�f
(k)

∣∣ϕ(N)
n,�f

〉
Ŝ

(N)
n:i (kn), (24)

where Ŝ
(N)
n:i (kn) are the discrete S matrix elements resulting

from the solution of the coupled-channels equations using
a PS basis with N states. The subscripts i, n, and f

denote the channels {ϕg.s.; Li, �i, J }, {ϕ(N)
n,�f

; Lf , �f , J }, and
{ϕ�f

(k); Lf , �f , J }, respectively, where Li (Lf ) is the initial
(final) orbital angular momentum for the projectile-target rela-
tive motion and J is the total angular momentum of the system.

We first consider the Pb target. For the 2n-α potential and
the parameters of the THO basis we keep the same values
of the preceding section. These parameters were found to
provide an appropriate distribution of eigenstates for the 6He +
208Pb reaction at 240 MeV/nucleon [6]. The α + 208Pb and
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2n + 208Pb interactions are needed to generate the diagonal
and nondiagonal coupling potentials of the CDCC equations.
For the α + 208Pb interaction we have adopted the first optical
potential used in Ref. [27]. For the 2n + 208Pb interaction, we
used the following single-folding model:

U (R) =
∫

ρnn(rnn)
{
Un

(
R + rnn

2

)
+ Un

(
R − rnn

2

)}
drnn,

(25)

where Un is the neutron-208 Pb optical potential taken from the
parametrization of Madland [28], evaluated at the apropriate
energy per nucleon, and ρnn(r) is the neutron-neutron density
distribution. The latter was calculated by integrating the square
of the three-body wave function of the 6He nucleus along the
2n-α coordinate, that is,

ρ(rnn) = r2
2n−α

∫
|�3b(rnn, r2n−α)|2dr2n−αd�nn, (26)

where �3b(rnn, r2n−α) is the three-body wave function and
�nn denotes the angular variables (θnn, φnn). In the present
calculations, the function �3b was taken from Ref. [24].

Very good convergence of the CDCC calculations was
achieved with a basis of N = 30 states. In addition, we found
that continuum states above 50 MeV have a negligible effect
on the scattering observables, and hence these eigenstates
were removed from the coupled-channels calculation. This
reduces the number of PS included in the CDCC equations to
ns = np = 14 and nd = 15 for s, p, and d waves. The coupled
equations were integrated up to 100 fm and for a total angular
momentum up to Jmax = 2000.

In Fig. 7 we show the calculated energy differential breakup
cross section, along with the GSI data. The dotted, dashed,
and dotted-dashed lines are the separate contributions of the
s, p, and d continuum states. For this angular range (θlab <

80 mrad) the cross section is largely dominated by the coupling
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FIG. 7. (Color online) Angle-integrated breakup differential
cross section, as a function of the excitation energy, for the reaction
6He + 208Pb at 240 MeV/nucleon. The dotted, dashed, and dotted-
dashed lines are the contribution of the s, p, and d states. The thin
solid line is the sum of these contributions and the thick solid line is
the full calculation convoluted with the experimental resolution. The
circles are the data from Ref. [25].

to the j = 1− states due, mainly, to the strong dipole Coulomb
interaction.

The thin solid line in Fig. 7 is the sum of the s, p, and
d contributions. For a meaningful comparison with the data,
this curve has to be convoluted with the experimental energy
resolution, which we took from the same work [25]. The result
of this folding is shown by the thick solid line. At low excitation
energies, this calculation reproduces very well the shape and
magnitude of the data. For excitation energies Ex > 4 MeV, the
calculation underpredicts the data. This discrepancy was also
found in the semiclassical calculations reported in Ref. [25].
Note that the narrow peak due to the 2+ resonance in 6He
disappears in the folded calculation.

The dominance of the dipole Coulomb couplings at these
very small angles was used in Ref. [25] to extract the
dB(E1)/dε distribution, by comparing the measured differ-
ential cross section, dσ/dEx , with semiclassical calculations.
Although our calculations confirm the dominance of the
E1 couplings, we have found that nuclear potentials have
a small but not negligible effect on this observable. In
addition, starting from the same structure model for the 6He
nucleus, our CDCC calculations show some departure from
the semiclassical calculations, suggesting that the connection
between the energy differential cross section and the under-
lying E1 probability is more complicated than suggested by
the semiclassical approach. These results are potentially very
interesting because they may affect the extracted dB(E1)/dε

distribution from the cross section data. This analysis is beyond
the scope of the present work and we leave it for a separate
publication.

We consider now the 12 C target. The 2n-α interaction and
the parameters of the LST were the same as those used in the
Pb case. For the 6 He continuum states, � = 0–3 waves were
included. In this case, we used a THO basis with N = 40 states.
The α + 12C potential was adopted from Ref. [29]. For the
2n + 12C interaction we used the same single-folding model as
for the 208Pb case taking also the neutron-target potential, n +
12C in this case, from the parametrization of Madland [28].
The coupled equations were integrated up to 100 fm and for
a total angular momentum up to Jmax = 200. In Fig. 8 we
compare the CDCC calculations with the experimental data
from Ref. [25]. The meanings of the curves are the same as
those in Fig. 7. In this case, the low-energy cross section is
dominated by the population of the 2+ continuum, with s

and p waves contributing to the background. The contribution
of the f wave was found to be very small and hence it
has not been included in this figure. As in the Pb case, the
d-wave cross section shows a narrow peak corresponding to
the well-known resonance at Ex = 1.8 MeV. The width of
the peak in our calculation is significantly smaller than the
experimental width of this resonance (�exp ≈ 100 keV). This
is a consequence of our simple two-body model adopted for the
6He nucleus. Nevertheless, when the calculation is convoluted
with the experimental resolution (thick solid line) it becomes
very close to the data. Despite the simplicity of the structure
model adopted in these calculations, these results show that
the THO discretization method constitutes a useful method to
describe accurately detailed structures of the continuum that
may show up in scattering observables.
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FIG. 8. (Color online) Energy breakup differential cross section,
as a function of the excitation energy, for the reaction 6He + 208Pb at
240 MeV/nucleon. The dashed line is the CDCC calculation with the
THO discretization method. The solid line is the result of convoluting
the CDCC calculation with the experimental resolution. The circles
are the data from Ref. [25].

As a final remark on these results, we note that, at
these energies, relativistic effects might affect the calculated
observables. Some recent exploratory studies [30,31] have
shown that these effects produce an increase of about 10%–
15% on the calculated breakup cross section for the 8B + 208Pb
and 11Be + 208Pb reactions at 250 MeV/nucleon. These effects
affect only the very small angles and are mostly due to
the modification of the Coulomb potential. Therefore, we
might expect a similar effect in our 6He + 208Pb case. For the
6He + 12C case, we do not expect these effects to be important,
because dynamical relativistic corrections to the nuclear
interaction were found by the same authors to be negligible
at these energies. These corrections refer to dynamical effects
exclusively. Relativistic kinematics effects were included in
the referred works, as well as in our calculations, by using the
appropriate relativistic momentum. In any case, the aim of our
work is to show the ability of the THO basis to describe the
continuum of a two-body system, and so the emphasis of our
study is more on the description of the structure, rather than
on the reaction mechanism.

B. Application to the 11Be + 12C reaction at 67 MeV/nucleon

As a final example, we consider the scattering of the halo
nucleus 11Be on a carbon target. This reaction has been recently
measured by Fukuda and collaborators at RIKEN [32], to
extract information on the 11Be continuum by measuring
neutron-10Be coincidences following the projectile breakup.
The angle-integrated differential cross section as a function
of the relative energy between the outgoing neutron and 10Be
displays a structure dominated by a prominent resonance at
Ex = 1.78 MeV. This resonance was interpreted as a d5/2

neutron coupled to the 10Be ground state. A second bump
was also observed at Ex = 3.41 MeV, which was given a
tentative assignment of 3/2+, with a small contribution of

the d3/2 wave coupled to 10Be(0+) and a larger contribution
of the 10Be(2+) ⊗ ν2s1/2 configuration. As in previous
analyses of this reaction [33,34], we use a two-body model of
the projectile, 11Be = 10Be(g.s.) + n, and hence those states
based on the core excited states are absent from our model
space.

In the present CDCC calculations, the neutron-10Be inter-
action was taken from Ref. [35]. This potential reproduces the
separation energy of the ground state (1/2+) and first excited
state (1/2−) and the position of the 5/2+

1 resonance, assuming
the configurations 2s1/2, 1p1/2, and d5/2, respectively. The
11Be continuum was described with a THO basis with N = 25
states. The LST was generated with the parameters b = 2.4 fm
and γ = 3.6 fm1/2. Continuum states with configurations s1/2,
p1/2, p3/2, d3/2, and d5/2 were considered. After diagonal-
ization of the projectile Hamiltonian in this THO basis, only
those eigenstates with excitation energies below E < 20 MeV
were included in the coupled-channels calculations, because
the breakup cross section was found to be very small above
this energy. This leaves about 10–11 eigenstates for each
partial wave. Following Ref. [34], the n + 12C and 10Be + 12C
potentials were taken from Refs. [36] and [37], respectively.
The coupled-channels equations were integrated up to a
matching radius of R = 90 fm and for total angular momenta
up to J = 350.

In Fig. 9 we compare the experimental [32] and calculated
energy differential cross sections as a function of the n-10Be
relative energy. Both the data and the calculations correspond
to the angular range 0◦ � θc.m. � 12◦. The calculated contri-
bution of each partial wave is shown. The symbols correspond
to the contribution of specific pseudo-states, whereas the con-
tinuous lines are obtained convoluting the discrete S matrices
with the exact continuum states. The low-lying continuum is
dominated by the p3/2 and d5/2 waves, with the latter being
responsible for the resonant peak at Ex = 1.78 MeV. The
dotted line is the sum of the different partial waves, and the
thick solid line is the result of folding this full calculation with
the instrumental resolution quoted in Ref. [32]. At energies
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FIG. 9. (Color online) Energy breakup differential cross section,
as a function of the excitation energy, for the reaction 11Be + 12C at
67 MeV/nucleon. The separate contribution of each partial wave is
shown. The dotted line is the full contribution, and the thick solid
line is the folding of the latter with the instrumental resolution. The
experimental data are from Ref. [32].
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close to the breakup threshold, the calculation overestimates
the data. At energies above the resonance peak, the shape and
magnitude of the data are well reproduced, with the exception
of the broad peak due to the second resonance. We remind,
however, that this resonance is believed to contain a significant
contribution of 10Be(2+) and, therefore, it is not expected to
be well described with our model space. Our results are very
close to those obtained by Howell et al. [34], including the
overestimation of the data at low excitation energies. Because
the calculations of that work used a continuum discretization
in terms of energy bins, we attribute this discrepancy with the
data to the choice of the interactions or to the restrictions of our
three-body model, rather than to the method of discretization.
As discussed in the 6He + 12C case, an advantage of the
THO discretization over the standard binning method is the
ability of describing fine structures of the continuum with a
relatively small basis. For example, to describe d5/2 resonance,
the CDCC calculations of Ref. [34] used 15 bins for ε = 0.5–
2 MeV, whereas in the present calculations about 10 PS are
enough to describe the full energy region, including the narrow
resonance.

As in the 6He case, for the d5/2 continuum we get an
eigenstate at ε = 1.25 MeV, which is close to the nominal
energy of the resonance (ε = 1.27 MeV) and hence it is
plausible to associate this eigenstate with the resonance
structure. To corroborate this conclusion, in Fig. 10 we
compare the experimental angular distribution of the resonance
region [32] with the angular distribution of the three eigenstates
closer to the nominal resonance energy. As anticipated, the
eigenstate at ε = 1.25 MeV reproduces fairly well the shape
and magnitude of the data, supporting our conclusion that this
eigenstate carries most of the resonant character. It has to be
borne in mind that, as the basis size is increased, the resonant
character will be distributed among several eigenstates and
hence this identification is not possible. In fact, for the present
basis size (N = 25) there might be some mixing between the
three eigenstates shown in Fig. 10.
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FIG. 10. (Color online) Angular distribution for the Ex =
1.78 MeV resonance. The circles are the data points from Ref. [32].
The curves are the angular distribution due to the three PS around the
resonance. See text for details.

VII. SUMMARY AND CONCLUSIONS

In this work we have dealt with the problem of the study of
the continuum properties of a weakly bound system in terms
of basis of square-integrable functions, or PS. The general
idea of the PS method is to diagonalize the Hamiltonian of the
two-body system in a truncated PS basis. The eigenstates with
negative energies represent the bound states of the system,
whereas those at positive energies are regarded as a finite and
discrete representation of the continuum spectrum. Among
the many possible choices of the PS basis, in this work we
have made use of the THO basis proposed in Refs. [6,11], in
which the PS functions are generated by applying a parametric
LST to the HO basis. The analytic form of the LST makes
very simple the calculation of the PS basis. In addition, the
radial extension of the basis and the energy distribution of the
eigenvalues can be controlled through the parameters defining
the LST. This permits one to adapt the properties of the basis
to the problem at hand.

To test the accuracy of the THO basis to represent the
continuum, we have evaluated the scattering phase-shifts
for the deuteron and 6He systems, treated as two-body
systems (p + n and α + 2n) interacting with a simple central
interaction. Because the THO states vanish at large distances,
the phase shifts have been evaluated using an integral formula,
following the prescription of Hazi and Taylor [12]. In both
cases, we find an excellent agreement with the exact phase
shifts, obtained from the asymptotic part of the scattering
states. Even the sharp resonance in the 6He case is very
well described with a small THO basis. As an additional test,
we have evaluated the electric transition probabilities B(E1)
and B(E2) for the same systems, finding again an excellent
agreement with the results obtained with the scattering states.
For this observable, a simple smoothing procedure has been
proposed to provide a continuous distribution (dB(Eλ)/dε) in
terms of the discrete values obtained with the PS basis.

Finally, we have presented CDCC calculations for the
reactions 6He + 12C and 6He + 208Pb at 240 MeV/nucleon
and 11Be + 12C at 67 MeV/nucleon for which experimental
data exist [25,32]. For the 11Be + 12C reaction, we have
used a two-body model 10Be(g.s.) + n of the projectile. To
compare with the recent data of Fukuda et al. [32], we have
calculated the breakup differential cross section as a function
of the neutron-10Be relative energy. Using a relatively small
THO basis, we have been able to reproduce fairly well the
data, including the narrow d5/2 resonance at ε = 1.27 MeV.
Interestingly, one of the THO eigenstates appears at an energy
very close to this energy and its associated differential angular
cross section reproduces fairly well the experimental angular
distribution obtained for the resonance region.

For the 6He reactions, we have used a simple two-body
model (α + 2n). Our calculations, which are parameter free,
reproduce quantitatively and qualitatively the experimental
energy differential cross sections reported in Ref. [25] both
for the heavy target (208Pb) and for the light target (12C).
Furthermore, these calculations indicate that, for the 6He +
208Pb reaction at excitation energies below ∼4 MeV, breakup
cross sections are Coulomb dominated, with monopole and
quadrupole components contributing only about 6%. However,
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for 6He + 12C, the dominant component is the quadrupole,
so that for excitation energies below ∼2.5 MeV, dipole and
monopole components contribute about 24%.

The role of nuclear forces and higher-order effects has
been investigated by comparing our full coupled channels
calculation with Coulomb calculations using the equivalent
photon model. Differences as large as 28% have been found,
indicating the need for performing CDCC calculations to
extract structure information from breakup reaction data, at
least in this energy regime.

The agreement between theory and experiment is very
encouraging, given the simplicity of the dineutron model used
in the present calculations. One has to bear in mind, however,
that some of the details of the breakup distributions might
be hidden due to the energy resolution of the experiment.
New measurements with better energy resolution will be
useful to test more stringently the breakup distributions at
energies closer to the threshold. An accurate description of
these reactions will require a realistic three-body model to

describe the 6He nucleus. In this respect, it is worth noting
that the THO method used in this work can be generalized
to three-body problems. This can provide a useful yet simple
method to study continuum structures (e.g., resonances) in
nuclei with a three-body structure (9,14Be, 6He, 11Li, 8B, etc.)
as well as reactions involving these nuclei. A similar approach
proposed very recently, making use of a different PS basis, has
been found to provide very promising results [38,39].
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