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6He + 12C elastic scattering using a microscopic optical potential
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The 6He + 12C elastic scattering data at beam energies of 3, 38.3, and 41.6 MeV/nucleon are studied utilizing
the microscopic optical potentials obtained by a double-folding procedure and also by using those inherent in
the high-energy approximation. The calculated optical potentials are based on the neutron and proton density
distributions of colliding nuclei established in an appropriate model for 6He and obtained from the electron
scattering form factors for 12C. The depths of the real and imaginary parts of the microscopic optical potentials
are considered as fitting parameters. At low energy the volume optical potentials reproduce sufficiently well
the experimental data. At higher energies, generally, additional surface terms having the form of a derivative
of the imaginary part of the microscopic optical potential are needed. The problem of ambiguity of adjusted
optical potentials is resolved requiring the respective volume integrals to obey the determined dependence on the
collision energy. Estimations of the Pauli blocking effects on the optical potentials and cross sections are also
given and discussed. Conclusions on the role of the aforesaid effects and on the mechanism of the considered
processes are made.
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I. INTRODUCTION

Experimental and theoretical studies of exotic light nuclei
with a localized nuclear core and a dilute few-neutron halo or
skin have been an important and advanced area in the nuclear
physics in the past decades. The availability of radioactive ion
beams facilities made it possible to carry out many experiments
and to get more information regarding the structure of these
nuclei and the respective reaction mechanisms (for more
information see, e.g., the recent review of the problem in
Ref. [1]). In this sense, 6He is a typical nucleus having the weak
binding energy and extended neutron halo in its periphery.
The latter is the reason why in collisions with the proton and
nuclear targets the projectile nucleus 6He is breaking up with
a comparably large probability that causes the flux loss in the
elastic channel. Therefore, the study of elastic scattering of
6He on protons or light targets is a powerful tool to get infor-
mation on peculiarities of the mechanism of such processes.

The data on cross sections of processes with light exotic
nuclei have been analyzed using various phenomenological
and microscopic methods. Among the latter we should mention
the microscopic analysis using the coordinate-space g-matrix
folding method (e.g., Ref. [2]), as well as works where the
real part of the optical potential (ReOP) is microscopically
calculated (e.g., Ref. [3]) using the folding approach (e.g.,
Refs. [4–7]). Usually the imaginary part of the OPs (ImOP)
and the spin-orbit terms have been determined phenomeno-
logically, which has led to the usage of a number of fitting
parameters. In our previous works [8,9], instead of using
a phenomenological imaginary part of the OP, we have
performed calculations of 6He + p [8] and 8He + p [9] elastic
differential cross sections by means of the microscopic OP
with the imaginary part taken from the OP derived in [10,11]
in the frameworks of the high-energy approximation (HEA)
[12–14] that is known as the Glauber theory. In the case of
6He + p elastic scattering, it has been shown in our previous
study [8] that the depth of the imaginary part of the respective

microscopically calculated OP has to be appreciably changed
to get an agreement with the existing experimental data.
The present study of 6He + 12C scattering could give novel
information on the mechanism of the process because of the
more complicated dependence of the microscopic OP not only
on the density of the projectile 6He but also on the density of
the target nucleus.

In recent years a number of works have been devoted
also to the elastic scattering of 6He on the 12C nucleus and,
particularly, to the study of the mechanism of this process,
including the role of breakup channels. In the present article
we perform an analysis of the 6He + 12C elastic scattering
data at three beam energies E = 3 [15], 38.3 [16], and
41.6 MeV/nucleon [17] using the microscopically calculated
OP. The data have been already considered individually in
the frameworks of other theoretical models. In Ref. [15]
the differential cross sections at total energy 18 MeV were
analyzed by means of the Woods-Saxon (WS) OP with radius
parameter of the imaginary part RI = 5.38 fm being about
twice larger than that of the real part (RR = 2.4−2.7 fm). The
so large absorbtion radius in the elastic channel is thought
to be caused by breakup channels that take place at the far
periphery of the OP. Recently, the same 6He + 12C elastic
scattering data were fitted in Ref. [18] by the OP having
a squared WS real part and a standard WS shape for its
imaginary part. Furthermore, a larger radius RI = 6.17 fm
was obtained for the latter. The different forms of the real part
of the OP and also the values of RI in Refs. [15] and [18]
just reflect the known problem of the ambiguity of parameters
of phenomenological OPs when fitting them to the restricted
amount of experimental data. In principle, this problem does
not arise in microscopic OPs whose basic parameters have
been already established by fitting to other data. In this line,
a part of the problem was overcome in Ref. [16], where
the elastic scattering data at E = 38.3 MeV/nucleon were
analyzed using the semimicroscopic OP. Its real part was
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defined in a double-folding model including the direct and
exchange convolution integrals, whereas the imaginary part
was taken phenomenologically in the WS form. Adjusting
the latter to the data at relatively small angles, the reduced
radius and diffuseness parameters were obtained in the range of
rI = 1.471−1.569 fm and aI = 0.358−0.524 fm. Then, to get
a better agreement at larger angles, the dynamic polarization
potential (DPP) in the form of a derivative of a WS function
was added to the volume OP. It affects strongly the total OP in
the surface region at radii around 4−5 fm.

Recently, in Ref. [19] five Gaussian-like forms for the 6He
matter density distributions were tested using the real part
of the OP without the exchange term [4] together with the
five-parameter phenomenological imaginary part (volume and
surface) based on the WS form. This model was adopted to
study the data at 38.3 and 41.6 MeV/nucleon. Also, the authors
generated another (microscopic) OP by involving in folding
calculations the complex Jeukenne-Lejeune-Mahaux (JLM)
effective nucleon-nucleon (NN ) potential [20]. Doing so, the
optimized values of the fitted parameters were fixed and then,
to improve slightly the fits to data the repulsive real DPP
term with two free parameters was introduced, as well. In
this way, the ambiguity problem is retained just in such semi-
microscopic models of OP.

In Ref. [21], an attention was paid to the dynamic
polarization term in the OP. A Monte Carlo method was
developed to calculate both the 6He variational wave function
and the Glauber amplitude of the microscopic scattering of
the nucleons of 6He by the nucleus 12C as a whole. To this
end, the phenomenological p + 12C OP was utilized and, as a
result, the full 6He + 12C OP was restored from the calculated
Glauber eikonal phase. Then, the difference between this OP
and the single-folding OP estimated without accounting for
the Glauber multiple-scattering terms, was defined as DPP
responsible for the breakup channels. One can see from Fig. 5
of Ref. [21] that at 40 MeV/nucleon in the range of 4−5 fm
the imaginary single-folding potential (negative) W is about
11−3 MeV and the DPP makes it deeper by about 7−3 MeV,
so the full eikonal W has to be about 18−6 MeV. The certain
way to investigate simultaneously the effects of elastic and
breakup processes can be performed in the framework of
coupled-channel (CC) methods. In Refs. [17,22] these methods
have been elaborated to estimate the effects of the elastic and
inelastic breakups of the projectile nucleus 6He→ α + n + n

on the elastic scattering of 6He + 12C. Two models for the
6He structure were explored in Ref. [17]. One of them uses the
modified wave function from [23] of the three-body α + n + n

system considered as a “Borromean” one. The second model
constructs the α “di-neutron” potential and the corresponding
two-body wave function. So far, the input potentials Uα+n,
Uα+2n and Uα+12C, Un+12C, U2n+12C have been taken from the
respective fits and estimations. Both of these models are com-
pletely parameter-free and explain the elastic scattering data
at 41.6 MeV/nucleon fairly well. The analysis of the breakup
effects of 6He on the elastic scattering is done in Ref. [22] using
the so-called continuum-discretized CC method. The reaction
system is described as a four-body model of α + n+ n+ 12C.
The wave function of the bound and continuum states of
the three-body system α + n + n is presented applying the

specified Gaussian expansion method, and the ground-state
wave function of 12C is calculated by the microscopic 3α

cluster model. The resulting microscopic OP was calculated
as double-folding integral with the calculated densities of
6He and 12C, and then multiplied by the complex factor
(NR + iNI ) with coefficients optimized by a fit to the elastic
scattering data. The exchange terms in the folding OP were
neglected. The results for the 6He + 12C scattering showed
that the optimum value of NI is 0.5 at 3 MeV/nucleon and 0.3
at 38.3 MeV/nucleon, respectively, whereas NR = 1. Also, it
was shown that the effects of the coupling of channels are more
important at comparatively large angles. The coupling smooths
the diffraction structure of the differential cross sections
at E = 3 MeV/nucleon and shifts down the corresponding
curve at E = 38.3 MeV/nucleon calculated without coupling.

It can be mentioned that calculations by coupled reaction
channel models with accounting for the cluster and continuum
states are encouraged to study their sensitivity to the input
information on the reaction mechanism. On the other hand,
the breakup reactions reveal themselves through the dynamic
polarization terms in the full OP for elastic scattering. The
explicit information on these channels can be obtained from
the unambiguous OP obtained from the respective analysis of
the elastic scattering experimental data. In our article we try
to realize the following idea. We start analyzing the elastic
scattering data by the microscopic optical potential obtained
in Ref. [10]. Its real part includes the direct and exchange terms
that are the same used in Ref. [16]. The imaginary part of the
OP is based on the Glauber theory of high-energy scattering of
complex systems and is an integral which folds the nucleon-
nucleon scattering amplitude fNN with the density distribution
functions of the bare nucleons of colliding nuclei. Therefore,
first, this OP consists of parameter-free real and imaginary
parts defined by the respective terms of fNN . However, this
potential reveals only the single-particle physical nature of
the colliding nuclei because it depends on the single-particle
nuclear densities. Then, we assume that additional terms to our
basic OP (which have to be added to explain the experimental
data) may be considered as a consequence of the presence of
more complicated channels. In the case of the loosely bound
6He projectile these terms are thought to arise from the breakup
channels. Thus, the main effort should be directed to minimize
the ambiguities in the fitted OPs by studying differential elastic
cross sections at different energies and to involve external
physical conditions to make as narrow as possible the corridor
of the deviations of selected theoretical curves.

The article is organized as follows. The theoretical scheme
to calculate the real and imaginary parts of the OP is given
in Sec. II. The results of the calculations of OPs and the
6He + 12C elastic scattering differential cross sections and
their discussion are presented in Sec. III. The summary of
the work and conclusions are given in Sec. IV.

II. THE MICROSCOPIC OPTICAL POTENTIAL

Here, we give the main expressions for the real and
imaginary parts of the nucleus-nucleus OP,

U (r) = V DF(r) + iW (r). (1)
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The real part V DF consists of the direct and exchange double-
folding (DF) integrals that include an effective NN potential
and density distribution functions of colliding nuclei:

V DF(r) = V D(r) + V EX(r). (2)

The formalism of the DF potentials is described in details (e.g.,
in Refs. [4,6]). In general, in Eq. (2) V D and V EX are composed
from the isoscalar (IS) and isovector (IV) contributions, but
in the considered case the isovector part is omitted because
Z = N in the target nucleus 12C and, thus, one can write:

V D(r) =
∫

d3rpd3rtρp(rp)ρt (rt )v
D
NN (s), (3)

V EX(r) =
∫

d3rpd3rtρp(rp, rp + s)ρt (rt , rt − s)

× vEX
NN (s) exp

[
iK(r) · s

M

]
, (4)

where s = r + rt − rp is the vector between two nucleons, one
of which belongs to the projectile and another one to the target
nucleus. In Eq. (3) ρp(rp) and ρt (rt ) are the densities of the
projectile and the target, respectively. In Eq. (4) ρp(rp, rp + s)
and ρt (rt , rt − s) are the density matrices for the projectile and
the target that are usually taken in an approximate form [24].
In the modern calculations of the DF potentials the effective
interaction vD

NN (of CDM3Y6-type) based on the Paris NN

forces and having the form,

vD
NN (E,ρ,s) = g(E)F (ρ)v(s), (5)

is usually applied with the distance dependence given by

v(s) =
3∑

i=1

Ni

exp (−µis)

µis
, (6)

and with terms of the energy and density dependencies:

g(E) = 1 − 0.003E, F (ρ) = C[1 + αe−βρ − γρ]. (7)

The energy-dependent factor in Eq. (7) is taken to be a linear
function of the bombarding energy per nucleon, whereas ρ

in F (ρ) is the sum of the projectile and target densities, ρ =
ρp + ρt . The parameters Ni, µi [Eq. (6)], C, α, β, γ [Eq. (7)],
and all details of the mathematical treatments and calculations
are given in Refs. [6,25].

In Eq. (4) vEX
NN is the exchange part of the effective NN

interaction. It is important to note that the energy dependence
of V EX arises primarily from the contribution of the exponent
in the integrand of Eq. (4). Indeed, there the local nucleus-
nucleus momentum

K(r) =
{

2Mm

h̄2 [E − V DF(r) − Vc(r)]

}1/2

, (8)

with Ap, At , m being the projectile and target atomic numbers
and the nucleon mass, and M = ApAt/(Ap + At ). As can be
seen, K(r) depends on the folding potential V DF(r) that has
to be calculated itself and, therefore, we have to deal with
a typical nonlinear problem. Usually, two different kinds of
effective NN potentials are employed in calculations, namely
the Paris CDM3Y6 and the Reid DDM3Y1 NN interactions,
which are defined by two different sets of the aforementioned

parameters. The direct parts of these potentials have different
signs and, for example, in the case of CDM3Y6 forces the V EX

is negative whereas V D is positive. So, if in the calculations
one takes only the direct part of V DF with the Paris M3Y NN

forces, then the corresponding real part of such an OP is a
positive one. Therefore, one should proceed carefully when
neglecting the exchange part of the OP.

Concerning the imaginary part of our OP, we take it in two
forms. In the first case the imaginary part has the same form
as the real one but with different strength. At the same time,
we test another shape of the imaginary part that corresponds
to the full microscopic OP derived in Refs. [10,11] within the
HEA [12,13]. In the momentum representation this OP has the
form,

UH
opt(r) = −E

k
σ̄N (i + ᾱN )

1

(2π )3

×
∫

e−iqrρp(q)ρt (q)fN (q)d3q. (9)

Here, σ̄N and ᾱN are the averaged over isospins of nuclei,
the NN total scattering cross section and the ratio of real
to imaginary parts of the forward NN amplitude, both being
parameterized (e.g., in Refs. [26,27]). The NN form factor
is taken as fN (q) = exp(−q2β/2) with the slope parameter
β = 0.219 fm2 [28]. It is easy to verify that the eikonal phase
for this potential,

�(b) = − 1

h̄v

∫ ∞

−∞
UH

opt(
√

b2 + z2)dz, (10)

is reduced to the HEA microscopic phase �N for nucleus-
nucleus scattering. To this end, let us substitute Eq. (9) in
Eq. (10) and simplify the latter in the cylindrical coordinate
system, where d3q = q⊥dq⊥dφdq|| and qr = q⊥b cos φ +
q||z, q2 = q2

⊥ + q2
||, q⊥ = q cos(ϑ/2), q|| = q sin(ϑ/2). Here,

ϑ is the angle of scattering and b is the impact parame-
ter of the projectile trajectory of motion directed straight
ahead along the z axis. In HEA one neglects the longi-
tudinal part of the transfer momentum q|| � q⊥ and the
small angle terms q||z � q||2R � kRϑ2 � 1 to give q �
q⊥ at ϑ � √

1/kR. Therefore, the smooth functions be-
come ρ(q) → ρ(q⊥), and fN (q) → fN (q⊥), and then one
can perform integrations

∫ ∞
−∞ dq|| exp(−iq||z) = 2πδ(z) and∫ 2π

0 dφ exp(−iq⊥b cos φ) = 2πJ0(q⊥b). Thus, as a result we
obtain the standard form of the HEA phase in the so-called
optical limit of the Glauber theory:

�N (b) = 1

4π
σ̄N (i + ᾱN )

∫ ∞

0
J0(qb)ρp(q)ρt (q)fN (q)qdq.

(11)

Here, one sets q⊥ = q = 2k sin(ϑ/2) that is valid at small
angles of scattering ϑ � √

1/kR.
As a rule this phase is employed to estimate the HEA elastic

scattering amplitude,

f (ϑ) = ik

∫ ∞

0
J0(qb)[1 − ei�N (b)]bdb. (12)

In applications of f (ϑ) from Eq. (12) the main limitations
E � |U | and ϑ � √

1/kR are connected with the basic
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assumption that the integration in Eqs. (10)–(12) is performed
along the z axis with a straight-line classical trajectory of
motion. To correct partly this approximation at lower energies
and larger angles one can take into account the trajectory dis-
tortion. For the Coulomb distortion, the respective prescription
was used (e.g., in Ref. [29]), where the impact parameter
b in (12) was replaced by bc = ā + √

ā2 + b2 with ā =
Z1Z2e

2/2Ec.m. being the half-distance of closest approach in
the Coulomb field of a point charge. The approximated method
for the inclusion of a distortion in the presence of a nuclear
potential was formulated (e.g., in Ref. [30]). However, all these
attempts cannot fully account for the distortion effects of the
classical trajectory caused by the total complex OP. Instead,
the conventional way to resolve this problem is to compute
numerically the Schrödinger equation with the initial OP given
by Eq. (9). Moreover, when using this original OP in the wave
equation, it becomes not necessary to neglect the longitudinal
terms in the momentum transfer. In this way, one expects that
the initial OP (9) can be used not only for the scattering at
high energies but also for comparably lower energies and for
a wider range of scattering angles.

Hereafter, we shall use only the imaginary part of the full
OP (9) transformed [by using the equality

∫
d�q exp (−iqr) =

4πj0(qr)] to the form,

WH (r) = − 1

2π2

E

k
σ̄N

∫ ∞

0
j0(qr)ρp(q)ρt (q)fN (q)q2dq.

(13)

In the further calculations the microscopic volume optical
potential has the following form:

U (r) = NRV DF(r) + iNIW (r), (14)

where W (r) is taken to be equal either to V DF(r) or to WH (r).
The parameters NR and NI entering Eq. (14) renormalize
the strength of the OP and are fitted by comparison with the
experimental cross sections. In the present work, attempting
to simulate the surface effects caused by the polarization
potential [31–33], we add to the volume potential [Eq. (14)] the
respective surface terms. Usually, they are taken as a derivative
of the imaginary part of the OP, as follows:

W sf(r) = −iN sf
I

dW (r)

dr
, (15)

= −iN sf
I r

dW (r)

dr
, (16)

= −iN sf
I r2 dW (r)

dr
, (17)

= −iN sf
I

dW (r − δ)

dr
, (18)

where N sf
I is also a fitting parameter, δ gives the shift of the

potential (18), and in our case is fixed to be δ = 1 fm.
Concluding this section, we would like to emphasize that

our basic OP contains the same real part as that one in
Ref. [16], but instead of the phenomenological ImOP, we
utilize a microscopically calculated imaginary potential. In
addition, in contrast to Ref. [19] where only the direct part of
the ReOP and a part of the ImOP were calculated microscop-
ically, in the present work we include also the microscopic

exchange part of the OP. Concerning the comparison with
the experimental data, we consider not only selected data (as,
e.g., at E = 38.3 MeV/nucleon in [16], and at E = 38.3 and
41.6 MeV/nucleon in [19]) but add also the data at fairly
low energy E = 3 MeV/nucleon and analyze simultaneously
the three sets of data. This allows us to determine the
ambiguities when adjusting the values of the OP parameters
[Eqs. (14)–(18)] because we include an additional condition
in the fitting procedure. Namely, we consider also the energy
behavior of the volume integrals of ReOP and ImOP as an
additional physical constraint. In this way, the information on
the dynamical polarization potentials obtained from a more
precise analysis can be considered as more reliable.

III. RESULTS AND DISCUSSION

In this section, we present the results of the calculations
of the microscopic OPs and the respective elastic scattering
differential cross sections at energies E < 100 MeV/nucleon
obtained following the theoretical scheme in Sec. II. In contrast
to the cases of 6,8He + p elastic scattering where only the
density of the projectile 6,8He takes part in the calculations,
in our case both densities, of the projectile 6He and the
target 12C, have to be included in the calculations of the
OP [see Eqs. (3) and (4)]. The results of our work [8]
on the 6He + p elastic scattering at E < 100 MeV/nucleon
showed that the large-scale shell model (LSSM) density of 6He
microscopically calculated in Ref. [7] using a complete 4h̄ω

shell-model space and the Woods-Saxon single-particle wave
function basis with realistic exponential asymptotic behavior
is the most preferable one and it is used also in the present
work. For 12C we use the symmetrized Fermi-type density
with the radius and diffuseness parameters c = 3.593 fm and
a = 0.493 fm from Ref. [34]. They were obtained by defolding
the 12C charge density distribution deduced in Ref. [35]
from analysis of the corresponding electron scattering form
factors.

In Fig. 1 are shown the densities of 6He and 12C, as
well as the OPs V DF calculated using Eqs. (1)–(7) and WH

obtained within the HEA [Eq. (13)] for the three cases of
the incident energy that are considered (E = 3, 38.3 and
41.6 MeV/nucleon). It can be seen that the increase of the
energy leads to reduced depths and slopes of ReOP and ImOP.

We calculated the 6He + 12C elastic scattering differential
cross sections using the program DWUCK4 [36] and the micro-
scopically calculated OP [Eq. (14)]. As already mentioned in
Sec. II, in the calculations we add to these volume potentials
the respective surface terms [Eqs. (15)–(18)]. The latter is done
only for the ImOP, having in mind that because of the breakup
channel effects there is a “loss of the flux” from the elastic
channel. We note that for the 6He + 12C process there is not a
spin-orbit contribution to the OP in contrast to the 6,8He + p

cases.
In our work we consider the set of the Ni coefficients

(NR , NI , and N sf
I ) as parameters to be found out from the

comparison with the empirical data. We should mention (as it
had been emphasized in our previous works [8,9] for 6,8He + p

scattering) that we do not aim to find a complete agreement
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FIG. 1. (Top) Total, point-proton and
point-neutron microscopic LSSM densities
of 6He (from Ref. [7]) (a) and the den-
sity of 12C [34,35] (b). (Bottom) Micro-
scopic OPs V DF (c) and WH (d) for the
6He + 12C elastic scattering at E = 3, 38.3
and 41.6 MeV/nucleon (NR = NI = 1 and
N sf

I = 0).

with the data. The introduction of the N ’s related to the depths
of the different components of the OPs can be considered as
a way to introduce a quantitative measure of the deviations
of the predictions of our method from the reality (e.g., the
differences of N ’s from unity for given energies).

The starting energy of our calculations was E =
38.3 MeV/nucleon. At this energy HEA can be applied as a
good approximation to calculate the ImOP. As a first example,
we present in Fig. 2 the results of our calculations using: (i)
only volume OP (14) for the two types of ImOP (V DF and
WH ) and (ii) different forms of the surface contributions to
the ImOP [Eqs. (15)–(18)]. The N parameters are determined
by a fitting procedure. The results of the calculations are close

dσ
/d

σ R

θc.m. [deg]

E=38.3A MeV

1

10

10-1

 0  5  10  15  20  25

FIG. 2. Cross sections of 6He + 12C elastic scattering at E =
38.3 MeV/nucleon calculated by fitting the NR, NI , N

sf
I parameters

of the microscopic OP [Eqs. (14)–(18)] (gray area). The experimental
data are taken from Ref. [16].

to each other and that is why all of them are presented inside
a gray area. Two definitions of χ2 are used:

χ2 = 1

N

N∑
i=1

[
σ exp(ϑi) − σ th(ϑi)

�σ exp(ϑi)

]2

, (19)

χ2
σ = 1

N

N∑
i=1

[σ exp(ϑi) − σ th(ϑi)]2

σ th(ϑi)
. (20)

In the first definition the χ2 values were obtained considering
uniform 10% errors for all the analyzed data. This procedure
is often used by other authors. Here, σ th(ϑi) and σ exp(ϑi) are
the theoretical and experimental values of the differential cross
sections (dσ/d�) or their ratio to the Rutherford cross section.
In the last case the χ2

σ is dimensionless and its values for the
results in Fig. 2 range in the interval 0.191 � χ2

σ � 0.362,
whereas the values of NR are in the interval 0.893 � NR �
1.268. The values of the predicted total reaction cross section
σR are also calculated.

One can see from Fig. 2 that the inclusion of different forms
of the surface potential leads to almost similar results for the
cross section. This was also the case of 8He + p processes
studied in our previous work [9]. As is known, the problem of
the ambiguity of the N values arises when the fitting procedure
concerns a limited number of experimental data.

The situation is ambiguous also for the case of the energy
E = 41.6 MeV/nucleon.

The case of E = 3 MeV/nucleon is a particular one because
of this rather low energy. Nevertheless, we made an attempt to
consider it using OP obtained in our method. The calculations
showed that for this energy the fitting procedure led to N sf

I = 0
for the case of the surface term given by Eq. (16). We note
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TABLE I. The optimal values of the parameters NR , NI for the
volume OP [Eq. (14)] for the elastic 6He + 12C cross sections at
energies E = 3, 38.3, and 41.6 MeV/nucleon when the imaginary
potential W was selected in the forms WH or V DF. The values of the
volume integrals JV and JW , χ 2, and total reaction cross sections σR

(in mb) are also given.

E W NR NI JV JW χ 2 σR

3 WH 0.826 0.154 297.109 212.952 9.121 1427.33
3 V DF 0.793 0.345 285.239 124.095 9.890 1428.52
38.3 WH 1.268 0.511 353.442 208.567 80.808 1028.77
38.3 V DF 1.123 0.472 313.025 131.565 50.847 1033.79
41.6 WH 0.897 0.689 244.933 265.680 3.737 1067.32
41.6 V DF 0.814 0.584 222.269 159.466 3.774 1067.55

that in the case of E = 3 MeV/nucleon the ambiguity in the
explanation of the data [15] still remains.

In what follows, we tried to choose the most physical
values of N ’s for the energies considered. As is known, the
fitting procedure belongs to the class of the ill-posed problems
(e.g., Ref. [37]). To resolve this problem it is necessary to
impose some physical constraints when fitting the parameters
of a model. In our case it might be the data on the total
cross sections but often the corresponding values are missing.
Another physical criterion that has to be imposed is the
obtained potentials to obey a determined behavior of the
volume integrals [4],

JV = − 4π

ApAt

∫
NRV DF(r)r2dr, (21)

JW = − 4π

ApAt

∫
NIW (r)r2dr, (22)

as functions of the energy. Indeed, it was shown for nucleon and
light-ions scattering on nuclei (see, e.g., Refs. [38–40]) that
the values of the volume integrals JV decrease with the energy
increase at E < 100 MeV/nucleon, whereas JW increases at
low energies up to 10–20 MeV/nucleon and then saturates. We
would like to note that such conditions were also imposed in
Ref. [9] when the microscopic OPs were introduced to study
the 8He + p scattering and their depth parameters NR and
NI were fitted. The values of JV and JW for the 6He + 12C
scattering that fulfill the condition for their energy dependence
are presented in Tables I–III. In the cases when we include
surface terms to the ImOP we modify JW accounting for them.

In the next part of the work we select those sets of the N
parameters that lead to the already mentioned behavior of JV

and JW as functions of the energy for three cases: (1) only the
volume terms; (2) the volume terms plus the surface term given

 0
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 500

(a) U = NR VDF + i NI W

 0

 100

 200

 300

J 
[M

eV
 fm

3 ]

(b) U = NR VDF + i(NI W - NI
sf r dW/dr)

JV  W=WH

JW  W=WH
JV  W=VDF

JW  W=VDF

 0

 100

 200

 300

 0  10  20  30  40

E [MeV/nucleon]

(c) U = NR VDF + i(NI W - NI
sf r2 dW/dr)

FIG. 3. The energy dependence of the volume integrals JV and
JW that are related to the selected OPs from a number of fitted
microscopic OPs with and without surface terms. The values of N ’s,
JV , JW , χ 2, and σR corresponding to the symbols in panels (a)–(c)
are given in Tables I–III, respectively.

by Eq. (16); (3) the volume terms plus the surface term from
Eq. (17). The behavior of the volume integrals as functions of
the energy is presented in Fig. 3.

Using the same values of the N parameters already selected,
we present in Figs. 4–6 the cross sections for the three energies
and for the three cases mentioned previously. One can see that
the best agreement with the data for all the three energies can be
obtained by the OP with the volume and surface term [Eq. (17)]
whose volume integrals follow (though approximately) the
already mentioned energy dependence.

In Figs. 7(a) and 7(b) are given those microscopic ReOP and
ImOP that lead to the best agreement with the experimental
data for the 6He + 12C elastic scattering cross sections shown

TABLE II. The same as Table I but for the parameters NR , NI , and N sf
I of the total OP with the surface term from Eq. (16).

E W NR NI N sf
I JV JW χ 2 σR

38.3 WH 1.000 0.023 0.082 278.740 109.172 17.399 1055.67
38.3 V DF 0.924 0.082 0.101 257.556 106.420 5.006 1174.66
41.6 WH 0.852 0.337 0.051 232.645 188.590 3.734 1070.77
41.6 V DF 0.800 0.500 0.014 218.446 147.876 3.781 1072.40
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TABLE III. The same as Table I but for the parameters NR , NI , and N sf
I of the total OP with the surface term from

Eq. (17). The values of N sf
I are in fm−1.

E W NR NI N sf
I JV JW χ 2 σR

3 WH 0.790 0.074 0.002 284.160 137.506 8.912 1449.98
3 V DF 0.725 0.040 0.008 260.779 55.924 9.418 1533.22
38.3 WH 0.932 0.028 0.019 259.786 110.017 5.059 1185.22
38.3 V DF 0.932 0.204 0.012 259.786 105.469 8.425 1161.91
41.6 WH 0.797 0.255 0.011 217.627 152.281 3.711 1091.46
41.6 V DF 0.578 0.041 0.022 157.827 98.546 2.398 1224.91

in Figs. 4–6 for energies E = 3, 38.3 and 41.6 MeV/nucleon.
For E = 3 MeV/nucleon there are only volume OPs, whereas
for E = 38.3 MeV/nucleon there is a surface contribution
to the ImOP using W = V DF in Eq. (16) and W = WH in
Eq. (17); for E = 41.6 MeV/nucleon there are only volume
OPs.
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Ω
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]
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1
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1
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σ R

θc.m. [deg]

E=41.6A MeV(c)

FIG. 4. Differential cross section of elastic 6He + 12C scattering
at E = 3 (a), 38.3 (b), and 41.6 MeV/nucleon (c) calculated using
only volume OP [Eq. (14)]. Solid line, W = WH ; dashed line, W =
V DF. The values of the fitted parameters NR and NI corresponding
to the curves in the top, middle, and bottom part are given in Table I.
The experimental data are taken from Refs. [15–17].

In Figs. 8(b) and 8(c) the real and imaginary parts of the
OP for E = 3 MeV/nucleon obtained in the present work
are compared with the phenomenological OPs from Ref. [15]
(where WS forms have been used for ReOP and ImOP)
and from Ref. [18] (with the OP having a squared WS real
part and a standard WS shape for the ImOP). The results
for the cross sections are shown in Fig. 8(a). One can see
much better agreement for our cross sections obtained using
microscopic OPs than those obtained in a phenomenological
way in Refs. [15,18].

We should note also that in Ref. [18] the ReOP (V0)
increases and the ImOP (W0) decreases with the energy
increase, which is in contradiction with the generally accepted
results and with the behavior of the volume integrals as
functions of the energy [38–40].

In Fig. 9 the deviations of the OPs from their volume
parts are presented for the three energies considered. In our

1

10

10-1

102

 0  5  10  15  20  25

dσ
/d

σ R

E=38.3A MeV(a)

1

10

10-1

 0  5  10  15  20

dσ
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σ R

θc.m. [deg]

E=41.6A MeV(b)

FIG. 5. The same as in Fig. 4 (without the case for E =
3 MeV/nucleon) at E = 38.3 (a) and E = 41.6 MeV/nucleon (b)
calculated using volume OP and surface contribution to the ImOP
[Eq. (16)]. The values of the N parameters are given in Table II. The
experimental data are taken from Refs. [16,17].
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FIG. 6. The same as in Fig. 4 but for the volume OP and
surface contribution to the ImOP [Eq. (17)]. The corresponding
N ’s are given in Table III. The experimental data are taken from
Refs. [15–17].

theoretical scheme they are related to the surface parts of the
ImOP in the form of N sf

I rdWH (DF)/dr and N sf
I r2dW (H )DF/dr .

As is known, these contributions can be considered as
the so-called dynamical polarization potential that owes
its origin to effects of the breakup of a pair of neutrons
from 6He.

In what follows, we would like to discuss the deviations
of the values of the coefficients N ’s (and, particularly, of NI )
from unity. As known, a folding model can be thought as
meaningful only when the renormalization coefficients of the
folded potential are close to unity. In our case (see Table I)
NI = 0.154 for E = 3 MeV/nucleon and NI = 0.689 for E =
41.6 MeV/nucleon. Here, we would like to emphasize that the
obtained values of NI within the HEA for the small energy
E = 3 MeV/nucleon reflect the effects of Pauli blocking (see,
e.g., [41]) that in the case of nucleus-nucleus scattering reduce
the depth of ImOP by a factor of 10 or more. This is related
to the fact that in the HEA the microscopic optical potential is
proportional to the free NN cross section (σN ), that in nuclear
matter is reduced by the so-called in-medium factor fm that

-100
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R
eU
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]

(a)

3A MeV W=WH

3A MeV W=VDF

38.3A MeV W=WH

38.3A MeV W=VDF
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FIG. 7. Selected OPs that lead to best agreement with the data of
the 6He + 12C cross sections shown in Figs. 4–6. The values of the
N parameters for the curves at E = 3 and 41.6 MeV/nucleon (with
W = WH and W = V DF) are listed in Table I, whereas the values
at E = 38.3 MeV/nucleon are given in Table II for W = V DF and
Table III for W = WH .

accounts for, in particular, the Pauli blocking effect:

σ
(m)
N = σNfm. (23)

There are many estimations of the factor fm, for example, those
based in the Brückner-Hartree-Fock (BHF) theory [42–44]. In
Ref. [43] the expression for fm is obtained by a least-squares
fit to the experimental total reaction cross-section data over a
wide incident energy range. The latter gives the separate forms
for the σpp and σpn cross sections accompanied by the factors,

fm(np) = 1 + 20.88E0.04ρ2.02

1 + 35.86ρ1.90
, (24)

fm(nn) = 1 + 7.772E0.06ρ1.48

1 + 18.01ρ1.46
, (25)

where E is the kinetic energy in laboratory system per nucleon
of the projectile nucleus, and ρ = ρp + ρt . [One can guess that
in Eqs. (24) and (25) the numerical coefficients in the second
terms of fm have the respective dimensions to measure Elab

in MeV and ρ in fm−3]. Recently, expressions for fm were
presented in Ref. [44] in the approximation of the isotropic
free NN cross section. In this approach the Pauli projection
operator in the g-matrix as a solution of the Bethe-Goldstone
equation is considered as a geometrical factor that restricts the
conditions on the available angles of scattering of the NN pair
to unoccupied final states. The result for the NN correction
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FIG. 8. (a) Differential cross section of elastic 6He + 12C scat-
tering at E = 3 MeV/nucleon. Solid and dotted lines show the
results with microscopic ImOP WH and V DF, respectively. The
results with the phenomenological OPs from Refs. [15] and [18]
are given by dashed and dash-dotted lines, correspondingly. The
experimental data are taken from Ref. [15]. The ReOP and ImOP
for E = 3 MeV/nucleon microscopically obtained in the present
work and those from Refs. [15] and [18] are given in (b) and (c),
respectively.

factor is in the form [44]:

fm = 1

1 + 1.892
( |ρp−ρt |

ρ̄ρ0

)2.75
f (E), (26)

where

f (E > 46.27ρ̄2/3) = 1 − 37.02

E
, (27)

f (E < 46.27ρ̄2/3) = E

231.38ρ̄2/3
. (28)

E is the laboratory energy per nucleon in MeV, ρ0 =
0.17 fm−3, and ρ̄ = (ρp + ρt )/ρ0. In practice, hard numerical
problems arise when one intends to use these formulas in
calculations of folding integrals for the microscopic potentials.

-4

-3

-2

-1

 0

E=3A MeV

(a)

-15

-10

-5

 0

- 
N

Isf
 W

sf
 [M

eV
]

E=38.3A MeV

(b)

-10

-5

 0

 0  2  4  6  8  10

r [fm]

E=41.6A MeV

(c)

FIG. 9. The surface ImOPs (dynamical polarization OPs) used in
the calculations of the cross sections of 6He + 12C elastic scattering
at E = 3 (a), 38.3 (b), and 41.6 MeV/nucleon (c). Solid and dashed
lines, using Eq. (16) with N values of from Table II and with W = WH

and W = V DF, respectively; dot-dashed and dashed two-dot lines,
using Eq. (17) with N ’s from Table III and with W = WH and W =
V DF, respectively.

Instead, it is easy to estimate the in-medium effects in the
realistic case suggesting that the main contribution comes
from the region of half-density radii of the colliding nuclei,
where ρ = ρp + ρt = ρ0, ρp − ρt = 0, and ρ̄ = 1. Then,
the first term in Eq. (26) equals to 1, and thus one gets
f (E) � 0.013 for E = 3 MeV/nucleon and f (E) � 0.18 for
E = 41.6 MeV/nucleon. The use of Eqs. (24) and (25) (from
[43]) lead to the following estimations: fm(np) = 0.717 and
fm(nn) = 0.68 for E = 3 MeV/nucleon and fm(np) = 0.75
and fm(nn) = 0.74 for E = 41.6 MeV/nucleon. One can see
that the results for NI = 0.154 (at E = 3 MeV/nucleon)
and NI = 0.689 (at E = 41.6 MeV/nucleon) from our work
mentioned previously and obtained by a fitting procedure are
in a correct “direction” and they are between the estimations
using Refs. [43] and [44].

We note that these estimations are valid only for the
volume OPs (even in the local density approximation). We
emphasize that one has to account also for the competition
with the channels at the nuclear periphery (the breakup)
that, according to the coupled-channel calculations, play an
important role. Their contribution that had been initially
obtained only accounting for the channels of NN scattering
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inside the nuclear matter leads to changes of the ImOP in the
elastic channel. An example for such a “renormalization” of
ImOP for elastic d + A scattering from the stripping channel
was given in Ref. [45]. For more complex systems this is
difficult to be done because only in the (d, p) reaction one can
use the approximation of the “delta” potential in the deuteron.
Thus, we note that not only the Pauli blocking, but also other
processes from different mechanisms (breakup and others)
play a role, as it is considered in various references mentioned
in Sec. I of the present work.

IV. SUMMARY AND CONCLUSIONS

The results of the present work can be summarized as
follows:

(i) The microscopic optical potential and cross sections
of 6He + 12C elastic scattering were calculated at
the energies of E = 3, 38.3, and 41.6 MeV/nucleon.
Comparisons with the experimental data and results
of other approaches were presented. The direct and
exchange parts of the real OP (V DF) were calculated
microscopically using the double-folding procedure
and density-dependent M3Y (of CDM3Y6-type) ef-
fective interaction based on the Paris nucleon-nucleon
potential. The imaginary parts of the OP were taken in
the forms of V DF or WH , the latter being calculated
using the high-energy approximation. The microscopic
densities of protons and neutrons in 6He calculated
within the large-scale shell model were used. The
nucleon density distribution functions of 12C were
taken as defolded charged densities obtained from the
best fit to the experimental form factors from electron
elastic scattering on 12C. In this way, in contrast to
the phenomenological and semi-microscopic models
we deal with a fully microscopic approach as a physical
ground to account for the single-particle structure of the
colliding nuclei. The elastic scattering differential cross
sections were calculated using the program DWUCK4.

(ii) Although at low energies the volume OPs can repro-
duce sufficiently well the experimental data, at higher
energies additional surface terms in the OP having a
form of a derivative of the imaginary part of the OP
became necessary and were used in the present work.

(iii) The depths of the real and imaginary parts of the
microscopic OPs are considered as fitting parameters.
As is expected when one utilizes the fitting procedure in
the case of a limited number of experimental data, the

problem of the ambiguity of these parameters arises.
To overcome (at least partly) this ambiguity, additional
physical constraints should be imposed. Doing so,
we require in our work the values of the depth’s N
parameters to lead to volume integrals JV and JW

with realistic energy dependence for energies 0 < E <

100 MeV/nucleon. Namely, JV ’s must decrease while
JW ’s increase to some constant values with the increase
of the energy.

(iv) The comparison of our results with those of some phe-
nomenological approaches pointed out the advantages
of using microscopic real and imaginary parts of the
optical potential imposing realistic physical constraints
on their depths, e.g. the behavior of the volume integrals
as functions of the energy.

(v) As in works of other authors (e.g., Ref. [5]) we consider
in more details the behavior of the OP in the nuclear
periphery. This gives us the possibility of making some
conclusions about the contributions of the dynamical
polarization terms of the OP or, in other words, about
the coupled-channel effects.

(vi) It is shown that the deviations of the N values from
unity (given in Table I for the volume OPs) that
are obtained by a fit to the experimental data for
6He + 12C elastic scattering are related to the Pauli
blocking effects. These values are smaller than unity
and turn out to be between the approximate estimations
performed using the results of approaches where Pauli
blocking is taken into account (e.g., Refs. [43,44]). It is
also mentioned that together with the important Pauli
blocking effects, the role of other mechanisms, such as
breakup processes, also have to be accounted for in the
study of the reaction considered.
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