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Possibility of cold nuclear compression in antiproton-nucleus collisions
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We study the dynamical response of the 16O nucleus to an incident antiproton using the Giessen Boltzmann-
Uehling-Uhlenbeck microscopic transport model with relativistic mean fields. A special emphasis is put on the
possibility of a dynamical compression of the nucleus induced by the moving antiproton. Realistic antibaryon
coupling constants to the mean meson fields are chosen in accordance with empirical data. Our calculations show
that an antiproton embedded in the nuclear interior with momentum less than the nucleon Fermi momentum may
create a locally compressed zone in the nucleus with a maximum density of about twice the nuclear saturation
density. To evaluate the probability of the nuclear compression in high-energy p̄-nucleus collisions, we adopt
a two-stage scheme. This scheme takes into account the antiproton deceleration due to the cascade of p̄N

rescatterings inside the nucleus (first stage), as well as the nuclear compression by the slow antiproton before
its annihilation (second stage). With our standard model parameters, the fraction of p̄ annihilation events in the
compressed zone is about 10−5 for p̄16O collisions at plab = 3–10 GeV/c. Finally, possible experimental triggers
aimed at selecting such events are discussed.
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I. INTRODUCTION

The production of compressed nuclear matter in the
laboratory is one of the most important achievements of
heavy-ion physics during past decades. Heavy-ion-collision
experiments open the possibility of studying new phases of
matter, such as, for example, a quark-gluon plasma [1,2] (see
also Ref. [3] for a recent review). In a heavy-ion collision,
compression is accompanied by the strong heating of matter by
the shock-wave mechanism [4]. However, very little is known
about possible compressional effects induced by a slowly
moving or even stopped hadron in a nucleus. In this case, the
compression is associated with the enhanced concentration
of nucleons around the hadron, provided its interaction with
nucleons is sufficiently attractive. Several examples of such
systems are under discussion, but their existence is still an
open question.

The most famous example of strongly bound hadron-
nucleus systems consists of � hypernuclei. By measuring
the E2(5/2+ → 1/2+) transition in the 7

�Li hypernucleus, the
shrinkage of the 6Li core size by ∼19% has been found ex-
perimentally in Ref. [5]. The hypothetical multistrange nuclei
composed of several hyperons (�,�0, �−) and nucleons (see
Refs. [6,7] and references therein) could be self-bound and
have an enhanced baryon density.

As proposed in Ref. [8] on the basis of a phenomenological
potential model, hypothetical K̄ nuclei could be long-lived
and strongly bound compact systems with nucleon density
reaching almost 10ρ0, where ρ0 is the normal nuclear-matter
density. However, as stated in the recent work by Hayano
et al. [9], the measurement of 2p shift in the 3d-2p transition in
kaonic 4He, eliminating a long-standing discrepancy between
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the standard theory and experiment, poses severe limitations
on superstrong potentials with such high densities. Moderate
compressional (core polarization) effects, up to about 2ρ0, have
been found within the relativistic mean-field calculations of K̄

nuclei done in Ref. [10]. However, the depths of 100–200 MeV
for the real part of the K̄-nucleus potential at ρ0, which
follow from the phenomenological models of Refs. [8,10], are
disfavored by the chiral SU(3) models [11–13]. Nevertheless,
the existence of strongly bound K̄-nuclear systems largely
related to the nature of �(1405) is still under theoretical
debate [14,15] and experimental study [16].

Recently, strong compressional effects have been pre-
dicted in the strongly bound p̄-nucleus systems [17,18]
in the case of a deep real part of an antiproton optical
potential, Re(Vopt) � (150–200) MeV at ρ0. We remark,
however, that the antibaryon optical potentials in the nuclear
interior are largely unknown and their study requires more
efforts [19–25].

In the present work, we extend our previous study of the
dynamical compression induced by a stopped antiproton [26]
to the case of a moving p̄. The calculations are based on the
Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport
model [27]. First, we study kinematical and geometrical
conditions at which an antiproton can generate the increase
of nucleon density. Second, by performing the transport
simulations of p̄-nucleus collisions we evaluate the actual
probability of p̄ annihilation in the compressed zone for the
beam momenta of 0.3–10 GeV/c, relevant for future antiproton
beams at the Facility for Antiproton and Ion Research (FAIR)
in Darmstadt. Finally, we study possible triggering schemes
that can be used to select the events with p̄ annihilation in
the compressed nuclear environment. We have chosen the 16O
nucleus as a target. This is motivated by our earlier observation
[17,18,26] that the compressional effects associated with p̄ are
more pronounced in light nuclei.

0556-2813/2010/82(2)/024602(15) 024602-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.82.024602


LARIONOV, MISHUSTIN, SATAROV, AND GREINER PHYSICAL REVIEW C 82, 024602 (2010)

The article is organized as follows: In Sec. II, the description
of a calculational procedure is given. Then, in Sec. III, we
study the dynamical patterns of the nuclear compression by an
antiproton initialized at different momenta and positions inside
a nucleus. Sec. IV contains our results on the probabilities of a
p̄ annihilation in the compressed zone for energetic p̄-nucleus
collisions. In Sec. IV, we also discuss possible triggers based
on the fast proton emission and on the measurement of the
energy deposition. We analyze the influence of the possible
in-medium modifications of the p̄-annihilation rate and of the
different antiproton mean-field parameters on our results in
Sec. V. Summary and outlook are given in Sec. VI.

II. THE CALCULATIONAL PROCEDURE

In our calculations, we apply the GiBUU model [27]. This
model solves the coupled set of semiclassical kinetic equations
for various hadronic species: nucleons, antinucleons, mesons,
baryonic resonances, and their corresponding antiparticles.
We use the relativistic mean-field mode of calculations
[22,26,28,29], which provides a simple and natural description
of both baryonic and antibaryonic mean fields by using the
same Lagrangian. The kinetic equation for the hadron of the
type j (j = p, n,�++,�+,�0,�−, . . . , π+, π0, π−, . . . ,
and respective antibaryons) reads as

1

p∗
0

[
p∗µ ∂

∂xµ
+

(
p∗

µF
kµ

j + m∗
j

∂m∗
j

∂xk

)
∂

∂p∗k

]
fj (x, p∗)

= Ij [{f }], (1)

where fj (x, p∗) is the phase-space density of the j th-type par-

ticles, p∗ is the kinetic four momentum [p∗
0 =

√
p∗2 + (m∗

j )2],

m∗
j is the effective mass, and F

kµ

j is the field tensor. The left-
hand side of Eq. (1) describes the evolution of the phase-space
density fj (x, p∗) under the influence of the mean mesonic
fields. The right-hand side of Eq. (1) is the collision integral
Ij [{f }] describing the change of the phase-space density due
to the particle-particle collisions and resonance decays.

The kinetic equations (1) are solved by applying the
standard test particle technique in the parallel ensemble mode.
The phase-space densities are represented by the set of the
pointlike test particles:

fj (x, p∗) = (2π )3

gjNens

NensNj∑
i=1

δ[r − ri(t)] δ[p∗ − p∗
i (t)], (2)

where Nj is the number of physical particles of the type
j , Nens is the number of parallel ensembles, and gj is the
spin degeneracy. The test-particle representation (2) provides
a simple solution of the kinetic equations (1) in terms of
the Hamiltonian-like equations for the centroids [ri(t), p∗

i (t)]
(cf. Eqs. (2) and (3) in Ref. [22]). The collision integral
is simulated with the help of a usual geometrical collision
criterion (cf. Ref. [28]).

The mean mesonic fields are determined from the nonlinear
Klein-Gordon-like equations, with the source terms given by
the particle densities and currents. Therefore, to provide a
smooth coordinate dependence of the mean mesonic fields, the

coordinate space δ functions in the right-hand side of Eq. (2)
are replaced with the Gaussians of the width L � 0.5–1 fm in
actual calculations. Then, for example, the coordinate space
density and the scalar density of the j th-type hadrons are
computed as

ρj (x) = gj

(2π )3

∫
d3p∗fj (x, p∗)

= 1

(2π )3/2L3Nens

NensNj∑
i=1

exp

{
− [r − ri(t)]2

2L2

}
, (3)

ρSj (x) = gj

(2π )3

∫
d3p∗ m∗

j

p∗0
fj (x, p∗)

= 1

(2π )3/2L3Nens

NensNj∑
i=1

m∗
i

p∗0
i

exp

{
− [r − ri(t)]2

2L2

}
.

(4)

We are interested, in particular, in the values of the nucleon
density ρ = ρp + ρn. The antiproton density ρp̄ and the
nucleon scalar density ρS = ρSp + ρSn are also used in the
present analysis.

The width L in Eqs. (3) and (4) is a pure numerical
parameter of the GiBUU model. Its value is correlated with the
number of parallel ensembles and is set equal to the coordinate
grid step size (cf. Refs. [26,28]). The physical results do not
depend on L, provided that it is small enough to resolve
the physical nonuniformities of the system. In the present
calculations we use the value L = 0.5 fm from our earlier
work [26], where we have also studied the influence of L on
the compression dynamics.

For the nucleon mean field we apply the nonlinear Walecka
model. The nucleon-meson coupling constants and the pa-
rameters of the σ -field self-interactions are taken from the
NL3 parametrization [30]. This parametrization provides
the nuclear matter incompressibility K = 272 MeV and the
nucleon effective mass m∗

N = 0.6mN at ρ0 = 0.148 fm−3.
Within the NL3 set of parameters, the binding energies, charge,
and neutron radii of spherical nuclei, as well as deformation
properties of some rare-earth and actinide nuclei, have been
described quite well [30]. The isoscalar monopole resonance
energies in heavy spherical nuclei are also reproduced by this
set of parameters [30].

The antinucleon-meson coupling constants are more un-
certain. As it is well known, the G-parity transformation
of Walecka-type Lagrangians results in too deep antiproton
optical potentials. Therefore, following Refs. [18,19,22,26],
we introduce a common reduction factor ξ < 1 for the
antinucleon coupling constants to the σ , ω, and ρ mesons
as given by the G-parity transformation. In what follows, if it
is not explicitly stated otherwise, we use the value ξ = 0.22
obtained in Ref. [22] from the best fit of p̄-absorption cross
sections on nuclei at the beam momenta below 1 GeV/c. The
corresponding real part of an antiproton optical potential is
about −150 MeV in the nuclear center, which is somewhat
deeper than the real part derived from the most recent p̄-atomic
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calculations [19], however within the commonly accepted
uncertainty interval.1

Due to a big annihilation cross section, in a majority of
events, an antiproton colliding with a nucleus will annihi-
late already on peripheral nucleons. However, as argued in
Ref. [18], compressional effects are expected only in events
when the antiproton penetrates deep to the nuclear interior
and stops there due to (in)elastic collisions with nucleons.
Such events are presumably quite rare and their study requires
going beyond the ensemble-averaged description provided
by the kinetic mean-field theory. The quantum molecular
dynamics [31] or antisymmetrized molecular dynamics [32]
models seem to be better theoretical tools for studying such
rare events. However, to our knowledge, at present there exists
no version of a molecular dynamics model that incorporates all
relevant antibaryon-baryon collision channels and relativistic
potentials.

In the present work, we treat compressional effects in a
p̄-nucleus collision perturbatively. It means that the influence
of the compressional response of a nucleus on the deceleration
process and eventual annihilation of an antiproton is neglected.
Thus, the collisional dynamics of the incident antiproton is
simulated within standard GiBUU until its annihilation. We
assume further that the position and momentum of the p̄ at the
beginning of compression process are not much different from
those at its annihilation point. Then we study the compressional
response of the nucleus to slow antiprotons and evaluate their
survival probability.

Therefore, we adopt a two-stage calculational scheme:
On the first stage, an antiproton penetrates into the nucleus
while experiencing one or more rescatterings on nucleons.
We describe this process by the standard GiBUU simulation
in the parallel ensemble mode with Nens = 1000 parallel
ensembles. Each parallel ensemble is considered as one
event. For each impact parameter, Nruns = 100 simulation
runs have been done, which gives NensNruns = 105 events
per impact parameter. We have chosen 32 impact parameters
b = 0.25, 0.50, . . . , 8 fm for the p̄16O system. Final results
are impact-parameter weighted. Because the incoming p̄ can
be transformed to another antibaryons, for example, n̄ or �̄,
we consider in what follows the antibaryon annihilation in
general. The coordinates rB̄ and the kinetic three momenta
p∗̄

B
of an antibaryon just before the annihilation or, for events

without annihilation, at the end of the computational time
(40 fm/c) have been determined and stored for every event. In
the following, we always deal with the kinetic three momenta
of particles but omit the word “kinetic” and the star symbol
for brevity.2 Due to the averaging of the mean field over
parallel ensembles, the compressional effects are practically
unnoticeable in the standard GiBUU calculation, because rare
events with a deep penetration of p̄ into the nucleus are diluted
with the majority of events when the antiproton annihilates on

1For detailed discussion, see Ref. [22] and references therein.
2In fact, if the collective motion of nuclear matter is negligible,

for example, when a fast hadron passes through the undisturbed
nuclear target, the space components of the canonical and kinetic
four momenta are practically the same.

the nuclear periphery. This is why we use the coordinates
and momenta of the antibaryon obtained on the first stage
as an input for another simulation based on the GiBUU
model [26,33]. Thus, on the second stage, an antiproton is
initialized inside the nucleus at the phase-space point (rB̄ , pB̄ )
using the Gaussian distribution in coordinate space and the
sharp-peaked distribution in momentum space. By doing so we
neglect the possibility that the annihilating antibaryon can be
different from the antiproton. This is, however, not important
in view that the mean-field contributions, apart from small
isospin and Coulomb effects, are the same for all antibaryons
in our model. The corresponding phase-space density of an
antiproton is written as (h̄ = c = 1)

fp̄(r, p) = 1

(2π )3/2σ 3
r

exp

{
− (r − rB̄)2

2σ 2
r

}
(2π )3

gp̄

δ(p − pB̄),

(5)

where gp̄ = 2 is the spin degeneracy of an antiproton and σr

is the width of the coordinate space Gaussian. Please notice
that the quantity σr is a physical parameter of our model,
while the quantity L in Eqs. (3) and (4) is pure technical
and should not be misidentified with σr . We stress that now
the antiproton test particles of all Nens parallel ensembles are
initialized according to Eq. (5) with the same centroid (rB̄ , pB̄ ),
and the calculation is repeated for every event of the first stage.
Thus, the antiproton test particle contributions to the mean
mesonic fields reflect the presence of a real antiproton at the
phase-space point (rB̄ , pB̄). In this new calculation, therefore,
the compressional effects will manifest themselves in full
strength without dilution. Further evolution of the p̄-nucleus
system is calculated in a similar way as in Ref. [26] by using the
GiBUU model without annihilation. However, in distinction to
Ref. [26], we now take into account all collisional channels
different from the annihilation one, in particular, NN → NN

and N̄N → N̄N . This models dissipation leading to some
small heating of the nuclear system and slowing down the
antiproton during compression process. For brevity, sometimes
we refer to the GiBUU calculations without annihilation as
“coherent” calculations in what follows.

Instead of explicitly treating the annihilation on the second
stage of calculations, we compute the survival probability of
an antiproton in the course of compression as

Psurv(t) = exp

{
−

∫ t

0
dt ′ �ann(t ′)

}
. (6)

Here

�ann = 〈vrelσann〉ρ (7)

is the antiproton width with respect to the annihilation, ρ is
the local nucleon density, vrel is the relative velocity of an
antiproton and a nucleon, and σann is the p̄-annihilation cross
section on a nucleon. Brackets in Eq. (7) denote averaging over
the nucleon Fermi motion.

The two-stage scheme described earlier is not fully equiva-
lent to the true molecular-dynamics simulation. However, the
most interesting phenomenon that we want to study, that is,
the dynamical compression of a nucleus by a slow antiproton,
can be realistically simulated in this way.
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As we see in what follows (cf. Figs. 1 and 7), the width σr

of the Gaussian in Eq. (5) is a very important parameter, which
cannot be determined from our model. We therefore consider
two most representative values: σr = 1 fm and σr = 0.14 fm.
The first choice corresponds to a rather wide wave packet
which presumably describes the static wave function of a
strongly bound antiproton implanted in a nucleus [17,18,26].
The second choice of a narrow wave packet is adjusted to
describe the charge rms radius of a physical (anti)proton,
rp = 0.9 fm [34]. Indeed, in our model, the true source charge
distribution of an antiproton is given by folding the coordinate
space Gaussian (5) with the test particle Gaussian. Thus,
we have σp = √

σ 2
r + L2, where σp = rp/

√
3 is the charge

distribution width of a physical (anti)proton.
The second-stage calculations can be significantly accel-

erated if one neglects the changes in a target nucleus caused
by the antiproton cascade on the first stage. Then the spherical
symmetry of the 16O target nucleus can be utilized. In this case,
the compressional evolution depends only on three variables:
the absolute values of the antiproton initial radius-vector r
and momentum p and the angle � = arccos(rp/rp) between
r and p. (One needs six variables r, p in the case of arbitrary
shape.) Therefore, the second-stage calculations have been
performed with the target nucleus for the set of the antiproton
initial positions r and momenta p taken on the uniform
7 × 20 × 9 grid in the space (r, p, cos �), where r ∈ [0.5; 3.5]
fm, p ∈ [0.05; 1.00] GeV/c, and cos � ∈ [−1; 1]. The results
of the second-stage calculations, in particular, the antiproton
survival probabilities at the time moments corresponding to the
system entering to and exiting from the compressed state, have
been stored. To determine the compression probability for a
given first-stage event, resulting coordinates and momenta of
the antibaryon at the annihilation point have been projected on
the grid.

III. DYNAMICS OF NUCLEAR COMPRESSION

In this section, the nuclear response to the moving antipro-
ton is considered disregarding p̄ annihilation. The latter is,
however, implicitly taken into account by following the time
dependence of the p̄-survival probability.

Figure 1 shows the time evolution of the nucleon and
antiproton density distributions for the p̄16O system for
different p̄ initializations. Only the cases where the initial
antiproton momentum p is (anti)parallel to the initial position
vector r, that is, � = 0 and � = π , are presented.

Let us start by considering how compression depends on
the initial antiproton coordinate z at fixed momentum p =
0.3 GeV/c. If the antiproton moves toward the nuclear center,
that is, � = π , the compression of a nuclear system up to
densities ∼2ρ0 is reached within the time interval of about
10 fm/c [see panels (a)–(d) and (e)–(h) of Fig. 1]. For the
outgoing antiproton (� = 0), the compression is much smaller
[panels (i)–(l) of Fig. 1] because the antiproton moves through
the nuclear periphery. It is interesting that at p = 0.3 GeV/c

the antiproton does not leave the nucleus but only bounces
off the nuclear boundary and finally gets captured. However,
the capture takes place on the time scale of ∼20 fm/c and
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FIG. 1. (Color online) Nucleon (thick black lines) and antiproton
(thin red lines) densities as functions of the longitudinal coordinate
z at different time moments for the p̄16O system. The antiproton has
been initialized on the axis passing through the nuclear center; that is,
x = y = 0 with momentum p along the positive z direction. Different
rows correspond to different p̄ initializations characterized by the
Gaussian width σr (fm), momentum p (GeV/c), and coordinate z

(fm): (a)–(d) (σr, p, z) = (1, 0.3, −2.5); (e)–(h) (1, 0.3, −0.5); (i)–(l)
(1, 0.3, 2.5); (m)–(p) (1, 0.8, −0.5); (q)–(t) (0.14, 0.3, −0.5). The
antibaryon annihilation is switched off in this calculation.

therefore would hardly be observed due to a very low survival
probability of the antiproton (see Fig. 2).

For a higher momentum p = 0.8 GeV/c [panels (m)–(p)
of Fig. 1], the compression is practically absent because the
nuclear response is much slower than the time needed by
the antiproton to cross the nucleus. We also see that at p =
0.8 GeV/c the antiproton escapes from the nucleus because
its total in-medium energy Ep̄ =

√
p2 + m∗ 2

p̄ + V 0
p̄ exceeds

the vacuum mass mN by about 165 MeV. Here m∗
p̄ = mN +

ξ (m∗
N − mN ) � 0.91mN is the antiproton effective mass and

V 0
p̄ = −(308 ξ )MeV � −68 MeV is the antiproton vector

potential at ρ = ρ0

The compression process is quite sensitive to the choice
of initial Gaussian width of the antiproton. One can see this
from Fig. 1 by comparing panels (e)–(h) and (q)–(t), where
the calculations are shown for the same initial positions and
momenta of p̄, but for the different widths σr . Due to a
deeper nucleon potential, a smaller initial p̄ width makes
the compression more pronounced and fast. Unless stated
otherwise, the case of σr = 1 fm is discussed in what follows.

In Fig. 2, we present the time dependence of the max-
imum nucleon density ρmax and of the antiproton survival
probability (6) for various antiproton initializations shown in
Fig. 1. As we have already seen in Fig. 1, for the initializations
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FIG. 2. (Color online) Maximum nucleon density (a) and antipro-
ton survival probability (b) as functions of time for the p̄16O system.
Different curves correspond to different p̄ initializations, as explained
in Fig. 1.

with z < 0 (i.e., for � = π ) and p = 0.3 GeV/c, nucleon
densities up to 2ρ0 are reached. The antiproton survives with
the probability Psurv ∼ 10−2 until the time moment when the
maximum density ρmax = 2ρ0 is achieved.

The nuclear compression caused by an antiproton could
only be observed, if the antiproton would annihilate in
the compressed nuclear environment. This process can be
detected by its specific final-state characteristics. As shown in
Refs. [18,26], possible observable signals include the en-
hanced radial collective flow of nuclear fragments, hardening
the energy spectra of emitted nucleons, and softening the
meson-invariant mass distributions. Moreover, the multinu-
cleon annihilation (MNA) channels with the baryonic number
B � 1 might be enhanced if the compressed zone is formed.
A more exotic scenario, the deconfinement of an annihilation
zone leading to the enhanced strangeness production, has
also been discussed in literature [18,35–37]. Herein we do
not consider any specific signals caused by annihilation in
the compressed nuclear state. We rather concentrate on the
evaluation of the total p̄-annihilation probability at enhanced
nucleon densities. For brevity, we refer to this possibility as to
the annihilation in a compressed zone (ACZ) in what follows.
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FIG. 3. (Color online) The contour plots of the antiproton ACZ
probability P c

ann at ρmax > 2ρ0 [see Eq. (8)] in the plane given by
initial values of the antiproton radial position r and momentum p

for the system p̄16O. The values of P c
ann are averaged over the cosine

of the angle between the initial radius vector and momentum of the
antiproton. Panel (a)[(b)] corresponds to the initial antiproton width
σr = 1(0.14) fm.

Let us define the compressed nuclear system as a system
where the maximum nucleon density ρmax exceeds some
critical value ρc. If not stated otherwise, we choose ρc = 2ρ0 in
calculations. Such density values can be reached, for example,
in central heavy-ion collisions at beam energies of hundreds
of MeV/nucleon [38]. The probability for the antiproton to
annihilate at ρmax > ρc is defined as

P c
ann = Psurv(t1) − Psurv(t2), (8)

where the time interval [t1; t2] encloses the high-density
phase of the time evolution; that is, ρmax(t1) = ρmax(t2) = ρc

with ρmax(t) > ρc for t1 < t < t2.3 For example, in the case
(σr, p, z) =(1 fm, 0.3 GeV/c, −0.5 fm) we obtain t1 =
8.4 fm/c and t2 = 11 fm/c (see Fig. 2). Because the p̄

survival probability drops exponentially with time, we have
Psurv(t1) 
 Psurv(t2) and, therefore, actually P c

ann � Psurv(t1).
Figure 3 shows the antiproton ACZ probability as a function

of the p̄ initial radial position and momentum. As expected,
the p̄ initializations with smaller momentum lead to larger
P c

ann. The radial dependence of P c
ann at fixed initial momentum

is somewhat more complicated. In the case of a larger width
of the initial antiproton space distribution (σr = 1 fm), P c

ann

3When there are more than one such interval, the earliest one is
chosen.
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has a weak maximum at r � 1–2 fm and decreases toward the
nuclear center slightly. This can be traced back to Fig. 1, where
we see that the p̄ initializations at different positions result in
practically the same compressional effect provided that the
antiproton moves to the nuclear center [cf. panels (a)–(d) and
(e)–(h)]. For a narrower initial antiproton space distribution
(σr = 0.14 fm), the maximum of the ACZ probability is
located at the nuclear center, because compression is much
faster in this case, and, thus, is more sensitive to the local
nucleon density.

IV. p̄-NUCLEUS COLLISIONS

As it was demonstrated in the previous section (cf. Fig. 3),
the ACZ probability depends on the position and momentum
of the antiproton at the beginning of compression process.
Therefore, before discussing the results of a full two-stage
calculation, it is instructive to study the distributions of an-
tibaryon annihilation points in the coordinate and momentum
space. These distributions are determined at the first stage of
calculations.

Figure 4 shows the radial distributions of the antibaryon
annihilation points for the p̄16O reaction at several beam
momenta. For inclusive events (a), the maxima of these
distributions are located at the peripheral region, where the
density is about 30% of the central density, independent of the
beam momentum. This is a pure geometrical effect caused
by mixing of events with all possible impact parameters.
However, for central collisions (b), the maxima are shifted
closer to the nuclear center. The shift becomes larger at higher
beam momenta. This is expected, because with increasing plab

the p̄-nucleon annihilation cross section drops [39], leading to
the larger fraction of deeply located annihilations.

Figure 5 demonstrates the momentum distributions of
antibaryons at the annihilation points. There is only a little
difference between the shapes of the distributions for the in-
clusive (a) and central (b) events at the same beam momentum.
However, the total annihilation probability is increased by a
factor of 3–10 for the central collisions, which is also seen
in Fig. 4. The distributions have a sharp peak at the beam
momentum and a long tail toward small momenta. In the
case of the smallest beam momentum plab = 0.3 GeV/c, the
peak is broader and shifted to the higher momenta p > plab

for the central collisions. This is caused by the antiproton
elastic collisions with the Fermi sea nucleons and by the
antibaryon acceleration in a strongly attractive mean-field
potential.

The acceleration is better visible in Fig. 6, which shows the
correlation between the radial position and the momentum of
an antibaryon at the annihilation point. The centrality depen-
dence is quite weak in this case; thus, we have presented the
results for the inclusive event set only. For plab = 0.3 GeV/c,
the average momentum of annihilating antibaryon increases up
to 0.5 GeV/c at the nuclear center. For larger beam momenta,
the mean field acceleration is hindered by the collisional
damping of an initial p̄ momentum.

We now discuss the results of the full two-stage calculations
(see Sec. II). The total annihilation cross section on a nucleus
σann and the ACZ cross section σcompr are determined as
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FIG. 4. (Color online) Radial distributions of annihilation points
for p̄16O collisions at different beam momenta (see key notations)
normalized to the total annihilation probability. For reference, thin
solid lines show the nucleon density profile of the 16O nucleus. Panels
(a) and (b) represent the inclusive spectra (b � 8 fm) and the spectra
for central collisions (b � 1 fm), respectively. Note different scales
of vertical axes in panels (a) and (b).

follows:

σann =
∑

b�bmax

2πb�b
Nann(b)

Nev(b)
, (9)

σcompr =
∑

b�bmax

2πb�b
1

Nev(b)

Nann(b)∑
i=1

P c
ann(ri , pi). (10)

Here Nev(b) and Nann(b) are, respectively, the total number of
events and the number of annihilation events calculated within
standard GiBUU (the first stage) for a given impact parameter
b. The quantity P c

ann(ri , pi) [see Eq. (8)], which depends on
the annihilation point position ri and momentum pi in a given
annihilation event i, is the annihilation probability at ρmax > ρc

computed within a coherent GiBUU run (the second stage).
The cutoff value of the impact parameter bmax has been chosen
to be 8 fm for an inclusive event set and 1 fm for central events.

Figure 7 shows the annihilation cross section σann (a) and
the relative fraction of ACZ σcompr/σann (b) as functions of
the beam momentum. While σann drops with increasing plab

due to the momentum dependence of the p̄N annihilation
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FIG. 5. (Color online) Momentum distributions of annihilation
points for p̄16O collisions at different beam momenta (see key
notations). Panels (a) and (b) represent the inclusive spectra and the
spectra for the central collisions, respectively.

cross section, the ratio σcompr/σann reveals an interesting
nonmonotonic behavior. First, it drops with increasing beam
momentum up to plab � 1 GeV/c and then starts to increase
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FIG. 6. (Color online) Average momentum of annihilating an-
tibaryon as a function of the radial position for the inclusive set of
events p̄16O at different beam momenta. The error bars represent the
dispersion of momentum distribution at a given r .
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FIG. 7. (Color online) Antiproton annihilation cross section on
16O (a) and the probability of annihilation at ρmax > 2ρ0 (b) vs a
beam momentum. Different lines correspond to different centralities:
b � 8 fm, inclusive set of events; b � 1 fm, central events. The cases
of a narrow (σr = 0.14 fm) and a wide (σr = 1 fm) initial antiproton
space distribution are depicted in panel (b) by lines with open and
solid squares, respectively.

saturating at plab � 3 GeV/c. The growth of this ratio at plab >

1 GeV/c is caused by opening the inelastic production chan-
nels N̄N → N̄Nπ with the threshold beam momentum pthr =
0.787 GeV/c, N̄N → N̄Nππ with pthr = 1.210 GeV/c, etc.
The inelastic production leads to the additional deceleration of
an antibaryon and, therefore, increases the probability of the
nuclear compression [18] (see also Fig. 8). Selecting the central
events increases the ratio σcompr/σann by about a factor of three,
which is caused by a larger relative fraction of annihilations at
small radii [cf. Fig. 4(b)].

The important result of the previous section is that only a
slow antiproton can induce nuclear compression. In practice,
we have used the ensemble of annihilation points to initialize
the coherent GiBUU runs assuming that antiprotons become
slow not far away from their annihilation points. To check
this assumption, we have performed additional calculations
with other transition criteria from collisional deceleration
stage to the coherent compression dynamics. In the first
calculation, we have generated the ensemble of points where
the momenta p and coordinates r of antibaryons satisfy the
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FIG. 8. (Color online) Same as in Fig. 7(b) for the inclusive
event set with σr = 1 fm, but for different criteria of transition to
the coherent compression dynamics (see text). The lines with solid
and open circles represent, respectively, the results obtained with
a criterion using the critical momentum pc = 0.3 and 0.5 GeV/c,
respectively. The line with solid triangles corresponds to the criterion
requiring that the antibaryon becomes bound. The line with solid
squares shows the calculation with the default criterion using the
annihilation points, the same as in Fig. 7(b). Additionally, the line
with open pentagons shows the results obtained by switching off
the inelastic channels of the N̄N scattering. In this case, the ACZ
probability quickly drops with increasing beam momentum and
becomes less than 10−8 at plab > 1 GeV/c.

conditions |p| < pc and |r| < rc simultaneously, that is, when
the antibaryons become slow enough and close enough to the
nuclear center. Here, pc and rc are parameters to be chosen.
As follows from Fig. 3, the choice pc � 0.3–0.5 GeV/c,
rc � 3 fm provides almost the full coverage of the (r, p)
region where a significant (ρ > 2ρ0) compression is expected.
Another criterion selects the antibaryon momentum and
position at the first time instant, when the antibaryon becomes
bound, that is, its energy falls below its bare mass. Figure 8
shows the ACZ probability calculated by using the different
transition criteria. All results are quite similar, except for the
calculation with pc = 0.5 GeV/c which becomes unphysical
at plab < pc.

To give more insight into the p̄-induced nuclear compres-
sion, in Figs. 9 and 10 we show the distributions of annihilation
events on the longitudinal coordinate z and the longitudinal
momentum pz of the antibaryon for central (a) and peripheral
(c) p̄16O collisions. The relative probability of annihilation in
the compressed zone as a function of z and pz is shown in
panels (b) and (d) for central and peripheral collisions, respec-
tively. Independent of the beam momentum, the maximum
ACZ probability is reached if the antibaryon is stopped in
the central region. However, the longitudinal coordinates for
events most favorable for compression are rather uncertain, as
expected already from Fig. 1. On the other hand, we definitely
observe a rather strong impact parameter dependence with the
clear preference of central collisions for selecting the ACZ
events. At large beam momenta (Fig. 10), the compression
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FIG. 9. (Color online) Panels (a) and (c) show the contour
lines of the antiproton annihilation cross section dσann/(dzdpz)
[mb/(fm GeV/c)] in the plane of longitudinal coordinate z and
longitudinal momentum pz of the annihilation points for central (a)
and peripheral (c) collisions. Panels (b) and (d) show the contour
lines of relative fraction of annihilations at high density (ρmax >

2ρ0), σcompr/σann, in the same plane for central (b) and peripheral
(d) collisions. The colliding system is p̄16O at 0.3 GeV/c.

can only be reached at the extreme tail of the antibaryon
longitudinal momentum distribution, and the total probability
of ACZ is small. As one can see from the right panels in
Figs. 9 and 10, a significant compression (ρmax > 2ρ0) can be
produced by antibaryons whose longitudinal momenta are less
than 200 MeV/c. However, the maximum relative probability
of ACZ in the (z, pz) plane is practically independent on the
beam momentum. This is expected because in our model
the probability of ACZ depends only on the position and
momentum of the antibaryon prior the annihilation.

Because nuclear compression is most probable for stopped
annihilations, one needs a trigger to select the events with slow
antiprotons. We discuss two possible triggers here.

The first trigger requires the detection of a fast proton in
the forward direction [21]. The idea behind this is that the
incoming antiproton can be decelerated and captured in a
nucleus by experiencing a hard collision with a single nucleon.

Figure 11(a) shows the cross section σpmin of an antiproton
annihilation on 16O accompanied by the emission of a proton
with momentum exceeding some value pmin as a function of
pmin. For simplicity, we did not apply any angular cuts for the
proton momentum. At large beam momenta, 3 and 10 GeV/c,
the cross section σpmin sharply drops with pmin near pmin �
plab. In panel (b) of Fig. 11, we show the relative fraction
σcompr/σpmin of ACZ as a function of the minimum proton
momentum pmin. For plab = 3 and 10 GeV/c, the quantity
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σcompr/σpmin grows by almost a factor of 30 while pmin increases
from zero to plab.

Emission of a fast proton with momentum close to
the p̄-beam momentum can be caused by the following
mechanisms: (i) elastic scattering p̄ + p → p̄slow + pfast,
(ii) inelastic production processes of the type p̄ + p →
p̄slow + pfast + mesons, and (iii) collisions with high-
momentum annihilational pions, π + p → pfast + X. We have
checked that inelastic reactions (ii) give the largest contribution
to the production of the fast proton at plab = 3 and 10 GeV/c.
This makes the fast proton trigger rather efficient at high beam
momenta. The contribution from process (iii) is relatively
small, while elastic scattering (i) practically does not contribute
to the yield of fast protons at plab = 3 and 10 GeV/c. However,
for small beam momenta, 0.3 and 1 GeV/c, the pionic
mechanism (iii) contributes dominantly to the fast proton yield
with only a small admixture of elastic scattering (i). Therefore,
the trigger based on a fast proton in final state is ineffective at
small beam momenta.

The second possible trigger is based on the energy deposi-
tion [40,41],

Edep = Tp̄ + 2mN −
∑

i

E(i)
mes, (11)

where Tp̄ is the antiproton beam energy, E(i)
mes is the energy of

ith outgoing meson, and the sum runs over all produced mesons
in a given event. Neglecting nucleon and antibaryon binding
energy, antiproton elastic and inelastic scattering before
annihilation and final-state interactions of produced mesons,
one has Edep = 0. In the case of low-energy antiproton-nucleus
collisions, annihilations with a larger energy deposition occur
deeper in the nucleus, as was found in Ref. [40]. The
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FIG. 11. (Color online) (a) The cross section σpmin of p̄ annihila-
tion on 16O accompanied by the emission of a proton with momentum
larger than pmin as a function of pmin. (b) The relative probability
σcompr/σpmin of the annihilation in the compressed zone (ρmax > 2ρ0)
vs the minimum momentum pmin of the emitted proton. Different
curves refer to different p̄-beam momenta.

explanation was that the annihilation mesons lose their energy
or get absorbed more effectively if the annihilation takes
place deeply inside the nucleus. For high-energy p̄-nucleus
interactions, the incoming antiproton can rescatter before
annihilation transferring a part of energy to the nucleons. This
also leads to larger values of Edep because the produced mesons
will have a smaller total energy in this case. Both types of
events, deep and/or slow antibaryon annihilations, should be
of the ACZ type with an increased probability. Results for
Edep trigger are shown in Fig. 12. As one can see, triggering
on a large energy deposition, Edep � Tp̄ + 2mN , increases the
fraction of ACZ events by about a factor of 30 with respect to
Edep � 0 for the beam momentum of 10 GeV/c.

V. IN-MEDIUM MODIFICATIONS OF
ANTIPROTON ANNIHILATION

So far we have used the vacuum p̄N annihilation cross
section and the fixed antibaryon mean-field parameters. As
the survival probability of an antiproton (6) is determined by
its annihilation width (7), it is important to consider possible
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FIG. 12. (Color online) (a) Antiproton annihilation cross section
on 16O at the condition of the energy deposition exceeding Edep

as a function of Edep. (b) The relative probability σcompr/σEdep of
a compressional annihilation (ρmax > 2ρ0) as a function of Edep.
Different curves correspond to different p̄-beam momenta.

in-medium modifications of the latter. At the same time, the
speed and the amplitude of the nuclear compression depend
on the value of the reduction factor ξ of the antibaryon-
meson coupling constants [26]. Thus, the probability of ACZ
is the result of the competition between compression and
annihilation. In this section, we discuss possible modifications
of the antiproton annihilation width in nuclear medium. The
sensitivity of our results to the in-medium modifications is
demonstrated in Fig. 15.

As discussed by many authors (see, e.g., Refs. [18,
23–25,35,42–46]), the annihilation rate of antiprotons in a
dense nuclear medium may significantly differ from simple
calculations using the vacuum p̄N annihilation cross section
σann [see Eq. (7)]. There are several effects that become
important at sufficiently high nucleon densities. First, the
dispersion relations of nucleons and antinucleons are modified
due to interactions with mean mesonic fields. In particular, the
effective masses m∗

N and m∗̄
N

are reduced compared to
the vacuum value. Generally, this leads to the reduction of
the imaginary parts of the nucleon and antinucleon self-
energies in nuclear medium. The influence of the baryon and
antibaryon in-medium dispersion relations on the antibaryon

annihilation rate has been studied in Ref. [18]. Other examples
of the influence of the baryonic effective masses on hadronic
processes are the in-medium reduced cross sections of the NN

elastic scattering [47,48] and of the �-resonance production
NN → N� [49,50]. As an illustrative example of the in-
medium reduction caused by effective masses, we consider
the two-pion annihilation channel later in this section.

Another important in-medium effect is the appearance
of the MNA channels. The famous Pontecorvo reaction
[51] p̄d → π−p is an example of the MNA processes.
It is commonly believed that MNA is responsible for the
emission of high-energy protons from low-energetic p̄ an-
nihilation on nuclei [24,52,53]. Moreover, the triggering on
high-momentum protons is already applied in experimental
techniques to distinguish MNA from the single-nucleon
annihilation (SNA) followed by the final-state interaction
(rescattering and absorption) of produced mesons [53].

Up to now the attempts to estimate the MNA contribution
performed by different theoretical and experimental groups
did not lead to definite conclusions. The experimental de-
terminations of the MNA probability give values of about
10%–30% for the p̄ annihilations at rest [52,53]. One has to
admit that these values agree with predictions of Hernández
and Oset (HO) [23–25]. It is important for this agreement,
however, that the annihilations of stopped antiprotons take
place at the nuclear fringe, ρ ∼ 0.1ρ0 [52]. On the other hand,
HO argue in Ref. [24] that the MNA channels are required to
describe the high-momentum tails of the proton momentum
spectra from p̄ annihilation at plab = 608 MeV/c on 12C [54].
However, the intranuclear cascade calculations [55] and the
GiBUU calculations [22] have demonstrated that the agree-
ment with the data [54] can be reached without any unusual
mechanisms.

Using a diagram language, HO have considered p̄N

annihilation vertices including virtual pions which may decay
into particle-hole excitations [23–25]. These diagrams can be
interpreted as MNA channels, which, according to the HO
calculations, have extremely high probability at ρ ∼ ρ0, one
order of magnitude higher than the ordinary SNA channels.
This result is in a clear contradiction with the theoretical
estimates by Cugnon and Vandermeulen [42,43] and by
Mishustin et al. [18], although these estimates are based on
relatively simple statistical considerations. In our opinion, the
HO calculations have a problem with convergence of the
series in powers of ρ at ρ � ρ0 (Eq. (4.3) in Ref. [24]).
Because it is very difficult to test the MNA probability at
ρ ∼ ρ0 experimentally, different theoretical predictions are
still possible here.

In Ref. [18], the relative importance of MNA channels was
evaluated by calculating the probability of finding more than
one nucleon in the annihilation volume Vann. This calculation
was done for a spherical volume with the radius Rann � 0.8 fm
assuming the Poisson distribution in the number of nucleons
n, P (n) = nn exp(−n)/n!, where n = ρVann is the average
number of nucleons in this volume. In the case of enhanced
density, ρ � 2ρ0, one has n � 0.6. This leads to the probability
of MNA channels with n > 1 on the level of 40% of the SNA
(n = 1), which is about one order of magnitude smaller than
the value predicted in Refs. [23–25].
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In the literature, one can also find other arguments against a
large enhancement of p̄N annihilation cross section in nuclear
medium. For instance, as argued in Refs. [44,45], the presence
of additional nucleon(s) in the annihilation volume may lead to
the “screening” of in-medium annihilation as compared to the
usual SNA mechanism. By introducing the screening effect
these authors achieve a better agreement with experimental
data on p̄ production in pA and AA collisions at AGS energies.

To illustrate the influence of the in-medium effective masses
on the antiproton annihilation, let us consider a relatively
simple case of the two-pion annihilation p̄p → π−π+. In
vacuum, this process can be described by the one-nucleon
exchange model [56,57]. In the Born approximation, the matrix
element can be written as follows:

M = −2F 2(t)v̄(msp̄, pp̄)[A− � kB(t)]u(msp, pp), (12)

where u and v are, respectively, the proton and antiproton
bispinors (ūu = 1, v̄v = −1), which depend on the spin mag-
netic quantum numbers msp,msp̄ and on the four momenta
pp, pp̄, and k is the four-momentum of π+. The scalar
parameters A and B are defined as

A = f 2

m2
π

2mN,B(t) = f 2

m2
π

(
1 + 4m2

N

t − m2
N

)
, (13)

where f = 1.008 is the pion-nucleon coupling constant and
t = (pp − k)2. The factor of −2 in Eq. (12) is obtained from
an isospin algebra. The off-shell nucleon form factor is chosen
as in Ref. [56]:

F (t) =
(

�2 − m2
N

�2 − t

)1/2

, (14)

where � is a cutoff parameter. In the center-of-mass (c.m.)
frame, the differential cross section of the process p̄p →
π−π+ is

dσp̄p→π−π+

dc.m.

= (2mN )2

64π2s
|M|2 qππ

qp̄p

, (15)

where s = (pp̄ + pp)2, qp̄p = q(
√

s,mN ), and qππ =
q(

√
s,mπ ) are the c.m. momenta of the incoming and outgoing

particles, respectively, with q(
√

s,m) = (s/4 − m2)1/2 and
|M|2 = 1

4

∑
ms p̄,msp

|M|2.

The solid line in Fig. 13 reports the total vacuum p̄p →
π−π+ cross section calculated in the Born approximation. This
is a quite rough approximation in the case of p̄p incoming
channel. We stress, however, that our main purpose here is
just to demonstrate the influence of the in-medium effects and
not to perform state-of-the-art calculations for the two-pion
annihilation in vacuum. To fit the data for slow antiprotons
(plab < 1 GeV/c), we have chosen a rather small value of
the cutoff parameter � = 1.0 GeV because the initial-state
interactions are neglected (see discussion in Refs. [56,57]).

Assuming for simplicity the G-parity transformed proton
scalar and vector potentials acting on the antiproton, the
baryonic mean fields can be now taken into account by
replacing mN → m∗

N , pp → p∗
p, pp̄ → p∗

p̄, s → s∗ = (p∗
p +

p∗
p̄)2, and t → t∗ = (p∗

p − k)2 in Eqs. (12), (13), and (15)
(cf. Refs. [50,63]). Note that we always keep the vacuum
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FIG. 13. (Color online) The cross section of the process p̄p →
π−π+ as a function of the total in-medium c.m. kinetic energy√

s∗ − 2m∗
N . The results are shown for the different choices of a

nucleon effective mass m∗
N . The calculation with m∗

N = mN (thick
solid line) corresponds to the vacuum cross section, which has
to be compared with experimental data. The calculations with
m∗

N = 0.6mN (thin solid line, full result; dashed line, vacuum matrix
element) and m∗

N = 0.3mN (dotted line, full result; dash-dotted line,
vacuum matrix element) represent the in-medium cross sections.
Experimental data are from Refs. [58–62].

nucleon mass in the numerator �2 − m2
N of the form factor

(14) because the preceding replacements are motivated by
the baryon in-medium self-energies that should not change
the form factor fixed in vacuum. Then the total in-medium
p̄p → π−π+ cross section reads

σ med
p̄p→π−π+ (

√
s∗) = (2m∗

N )2q(
√

s∗,mπ )

32πs∗q(
√

s∗,m∗
N )

×
∫ 1

−1
d cos �c.m. |Mmed|2(

√
s∗, cos �c.m.).

(16)

Here the quantity Mmed is the in-medium matrix element, while
�c.m. is the angle between the proton and π+ three momenta
in the c.m. frame. The results of calculation using Eq. (16)
at m∗

N = 0.6mN (ρ = ρ0) and m∗
N = 0.3mN (ρ � 2ρ0) are

shown in Fig. 13 by the thin solid and dotted lines, respectively.
As one can see, the in-medium p̄p → π−π+ cross section
is strongly reduced, largely due to the (2m∗

N )2 factor in
Eq. (16), which comes from the in-medium Dirac bispinor
normalization. For orientation, we present in Fig. 14 the baryon
density dependence of the nucleon effective mass m∗

N and of
the nucleon scalar density ρS (see Eqs. (8), (9), and (15) in
Ref. [26]). The effective mass m∗

N drops with increasing baryon
density, which is an important effect influencing in-medium
cross sections (see also Refs. [47–50].)

The two-pion annihilation channels represent, however, less
than 1% of the total annihilation cross section, while the
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FIG. 14. (Color online) Nucleon effective mass and scalar density
vs the baryon density in infinite nuclear matter in the case of NL3
interaction [30] applied in the present work.

direct calculation of multimeson annihilation matrix elements
is impossible. We will assume that the matrix elements are
not modified in nuclear medium and take into account only
the in-medium bispinor normalization, flux, and phase space
volume. This intuitive assumption has some support from
the earlier studies of NN → NN and NN → N� cross
sections in nuclear matter [47–50]. In this way, one can
write the following formula for the in-medium cross section
of the N̄N → M1,M2, . . . ,Mn annihilation channel with n

outgoing mesons (cf. Refs. [26,28,64]):

σ med
N̄N→M1,M2,...,Mn

(
√

s∗) = σN̄N→M1,M2,...,Mn
(
√

scorr)

(
m∗

N

mN

)2

× IN̄N

I ∗̄
NN

�n(
√

s∗; m1,m2, . . . , mn)

�n(
√

scorr; m1,m2, . . . , mn)
.

(17)

Here m1,m2, . . . , mn are the vacuum masses of outgo-
ing mesons,

√
scorr = √

s∗ − 2(m∗
N − mN ) is the so-called

corrected invariant energy of the colliding particles, the
analog of the invariant energy in vacuum. The quantities
IN̄N = q(

√
scorr,mN )

√
scorr and I ∗̄

NN
= q(

√
s∗,m∗

N )
√

s∗ are
the vacuum and in-medium flux factors, respectively. The
n-body phase space volume is defined as

�n(
√

s; m1,m2, . . . , mn)

=
∫

d3k1

(2π )32ω1

∫
d3k2

(2π )32ω2
· · ·

∫
d3kn

(2π )32ωn

× δ(4)(P − k1 − k2 − · · · − kn), (18)

where P2 = s and ω2
i − k2

i = m2
i (i = 1, 2, . . . , n). The quan-

tity σN̄N→M1,M2,...,Mn
(
√

scorr) is the vacuum cross section.
Application of Eq. (17) to the process p̄p → π−π+ leads to
the formula (16) with replacement |Mmed|2(

√
s∗, cos �c.m.) →

|M|2(
√

scorr, cos �c.m.). The results obtained using Eq. (17)
for m∗

N = 0.6mN and m∗
N = 0.3mN are shown in Fig. 13 by

the dashed and dash-dotted lines, respectively. The conclusion
is that using vacuum matrix element produces somewhat
less-pronounced in-medium reduction of the cross section.

To simulate the mean-field effects on the total annihilation
cross section, we represent it as a sum of partial annihilation
cross sections with various outgoing mesonic channels. In
practice, this is done by using the statistical annihilation
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FIG. 15. (Color online) Probability of p̄ annihilation at ρmax > ρ

vs ρ for p̄16O collisions at plab = 3 GeV/c. The calculations with
various values of the reduction factor ξ and vacuum p̄N annihilation
cross section are shown by lines with points denoted by the values of ξ

only. The calculation with the in-medium enhanced p̄N annihilation
probability by the HO formula [Eq. (5) in Ref. [25] with parameters
taken at the p̄ kinetic energy of 50 MeV] and ξ = 1 are shown by the
dashed line with solid boxes. The result taking into account both the
HO formula and the mean-field reduction of the p̄N annihilation cross
section according to Eq. (17) is shown by the dashed line with upside-
down solid triangles. The calculations for ρ � ρ0 are not shown
because they are influenced by the finite size of the (r, p, cos �) grid
in the space of the antiproton radial position r , momentum p, and
cos � = rp/rp (see Sec. II).

model of Refs. [65,66]. Then we apply Eq. (17) to every
annihilation channel with up to n = 6 outgoing mesons. The
mean-field effects on the annihilation channels with more than
six outgoing mesons are neglected.

In the following GiBUU calculations of the present section,
we keep the first stage (see Sec. II) unchanged: It is always
computed with the reduction factor ξ = 0.22 and vacuum p̄N

annihilation cross sections. This is reasonable because the
compressional response of a nuclear system on a fast-moving
antiproton is weak and can be neglected. The in-medium
corrections to the p̄N annihilation cross section should also
weaken for the fast antiproton. Thus, we vary the model
parameters for the second-stage compressional dynamics
only.

Figure 15 shows the probability of p̄ annihilation at
ρmax > ρ as a function of ρ for the inclusive set of p̄16O
events at the beam momentum of 3 GeV/c. First, we study
the influence of the reduction factor ξ of antiproton-meson
coupling constants on the ACZ probability. To this aim, we
have performed additional calculations by choosing ξ = 0.15
[Re(Vopt) = −105 MeV] and ξ = 1 [Re(Vopt) = −677 MeV],
where the values of the Shrödinger equivalent potential at
Elab = 0 (see Ref. [22] for details) in the center of the 16O
nucleus are given in brackets. We recall that our default value
ξ = 0.22 [Re(Vopt) = −153 MeV] is motivated by the best
agreement of the GiBUU calculations [22] with the measured
antiproton absorption cross sections on nuclei. The value ξ =
0.15 is in line with the results of p̄-atomic X-ray transitions and
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radiochemical data analysis [19], while the extreme choice of
ξ = 1 corresponds to the G-parity transformed nucleon mean
fields. As expected, larger (smaller) values of ξ give rise to
larger (smaller) ACZ probability at a given ρ. Results are
quite sensitive to the antiproton-meson coupling constants.
For instance, at ρ = 2ρ0, the ACZ probability is equal to zero
in the case of ξ = 0.15; that is, the maximum nucleon density
does not reach the value of 2ρ0 at all with this value of ξ .
At the same time, for ξ = 1, the ACZ probability is ∼10−2 at
ρ = 2ρ0, which is three orders of magnitude larger than for
ξ = 0.22.

Finally, we discuss the sensitivity of our results to the
choice of the in-medium annihilation cross section related to
the imaginary part of the antiproton optical potential

Im(Vopt) = − 1
2

〈
vrelσ

med
tot

〉
ρ. (19)

Here, σ med
tot is the total in-medium p̄N cross section, which

includes both (in-medium) annihilative and Pauli-blocked
nonannihilative contributions. Note that in distinction to
Eq. (7) for the annihilation width, Eq. (19) contains the total
p̄N cross section. Applying Eq. (19) for the case of the HO for-
mula for the annihilation probability per unit length (see Eq. (5)
in Ref. [25]) leads to an extremely deep imaginary part of the
antiproton optical potential, Im(Vopt) � −(1200–1700) MeV
at the center of the 16O nucleus, with the uncertainty due
to the antiproton mean field. This is more than one order of
magnitude larger than the value Im(Vopt) � −107 MeV in our
default choice of model parameters [22].

At this point, certainly, one wishes to get some phenomeno-
logical estimates of the antiproton-nucleus potential depths.
Unfortunately, it is very hard to get stringent phenomeno-
logical constraints on the optical potential of a hadron at
the nuclear center [67]. As has been known for a long time
from pionic atoms and low-energy pion nucleus scattering, the
different density shapes of the potential give the same result
for the atomic and scattering data, while they strongly differ at
ρ = ρ0 [68,69]. In a similar way, the p̄-nucleus scattering
and absorption cross sections (see [70–72] and references
therein) and the p̄-atomic data analysis [19,67,73] result in
quite uncertain real and imaginary parts of the p̄ optical
potential at the nuclear center Im(Vopt) = −(70–150) MeV
and Re(Vopt) = −(0–100) MeV. We stress that the actual
uncertainty in the potential depths may be much bigger due
to the extrapolation from the far periphery of a nucleus
using some assumed relation between the nuclear density and
potential. Nevertheless, the known phenomenological values
are in a fair agreement with our default model inputs.

As one can see from Fig. 15, using the HO formula leads to
eight orders of magnitude smaller ACZ probability at ρ = 2ρ0

as compared to the calculation with the vacuum annihilation
cross section (see the lines with solid boxes and with solid
diamonds). This is not surprising because the ρ-dependent
terms in Eq. (5) of Ref. [25] strongly enhance the annihilation
rate at high densities. However, as discussed earlier, the mean-
field and phase-space effects should reduce the annihilation
rate.

Now we implement both effects simultaneously by intro-
ducing corresponding multiplicative factors to the vacuum

p̄N annihilation cross section. The resulting ACZ probability
increases by eight orders of magnitude with respect to the one
given by the HO effect alone (see the lines with upside-down
solid triangles and with solid boxes in Fig. 15), that is,
practically brings it back to the original calculation with the
vacuum annihilation cross section. Certainly, this is only a
rough estimate of the in-medium effects in the annihilation
cross section. In our opinion, the full calculation in the spirit
of Refs. [23–25], but taking into account also the baryonic
mean fields, is needed to obtain the realistic values for the
antiproton width at high nucleon densities.

In spite of large uncertainties in the in-medium properties
of antiproton, we think that our standard choice of the model
parameters, that is, the vacuum p̄N annihilation cross section
and the reduction factor ξ = 0.22, is quite reasonable for the
present study of compressional effects. As has been shown
within the GiBUU model in Ref. [22], this set of parameters
accounts for the p̄ absorption data on nuclei at plab < 1 GeV/c

and pion and proton production data from p̄ annihilation on
nuclei at 608 MeV/c.

VI. SUMMARY AND OUTLOOK

We have generalized our previous analysis of the nuclear
compression dynamics induced by an antiproton at rest [26]
to the case of a moving antiproton. The p̄-nucleus collisions
at the beam momenta of 0.3–10 GeV/c have been simulated
within the transport GiBUU model [27] with relativistic mean
fields. In our two-stage calculational scheme, we apply, first,
the standard parallel ensemble mode of GiBUU to determine
the antibaryon coordinates and momenta at the annihilation
point. We have studied in detail the coordinate and momentum
distributions of annihilation points at different beam momenta.
This calculation is performed to evaluate the probability that
the antibaryon has been slowed down and reached the nuclear
interior before annihilation. Those rare events that satisfy these
conditions are used as the input for a more detailed calculation.
Namely, we perform the coherent GiBUU runs [26] initializing
the antiproton at the given momentum and position inside the
nucleus and following the evolution of the p̄-nucleus system.
In the coherent mode, the antibaryon-nucleon annihilation
channels are switched off, but, instead, the survival probability
of the antiproton is determined as a function of time. This
makes it possible to trace the compression process of the
p̄-nucleus system in time and determine the probability of
p̄ annihilation in the compressed nuclear configuration with
the maximum nuclear density ρmax � 2ρ0.

The results of our study are quite sensitive to the actual
strengths of the real and imaginary parts of the antiproton
optical potential. For example, by choosing Re[Vopt(ρ0)] −
100 MeV instead of our default Re[Vopt(ρ0)] − 150 MeV
reduces the ACZ probability by two orders of magnitude. The
−100 MeV value of the real part of the antiproton optical
potential is consistent with the X-ray data from antiprotonic
atoms and radiochemical data [19], while the −150 MeV
value is favored by GiBUU calculations of the antiproton
absorption cross sections on nuclei and of the pion and
proton momentum spectra from p̄ annihilation on nuclei [22].
Another important source of uncertainty is given by the
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value of Im[Vopt(ρ0)]. In our standard calculations, we adopt
Im[Vopt(ρ0)] � −100 MeV, which follows from a simple tρ ap-
proximation and is consistent with Re[Vopt(ρ0)] � −150 MeV,
as shown in Ref. [22]. However, according to the model of
Hernández and Oset [23–25], the antiproton annihilation rate
is increased by about one order of magnitude with respect
to the simple tρ approximation, even at the normal nuclear
matter density. This will result in Im[Vopt(ρ0)] � −1500 MeV,
which is well beyond the phenomenological expectations. If
this were, indeed, the case, the ACZ probability would be
five to eight orders of magnitude smaller than in our standard
calculations.

With all these reservations in mind, we now summarize
the results of our standard calculations which use the phe-
nomenological input parameters for the antiproton-nucleus
interaction. In general, antiproton initializations in a central
nuclear region with momenta of less or about the nucleon
Fermi momentum lead to the maximum probability of anni-
hilation in the compressed zone of the order of 10−3–10−1.
The uncertainty is caused by unknown spatial spread of the
antiproton distribution function. When combined with the
actual antibaryon positions and momenta at the annihilation
points determined from the first-stage GiBUU simulation, this
results in the ACZ probability ∼10−5–10−3 for the beam
momenta of 3–10 GeV/c. We have found that, within this
beam momentum range, the excitation function of the ACZ
probability is very flat (cf. Figs. 7 and 8). Therefore, the
range plab = 3–10 GeV/c is quite well suited for the study
of compressed nuclear systems. The beam momenta of about
1 GeV/c are clearly disfavored because the antiproton is
not decelerated enough due to the smallness of the N̄N

inelastic production cross section. At plab < 1 GeV/c, the
ACZ probability increases with decreasing beam momentum.
However, additional triggers demanding a fast proton [21] or
large energy deposition [40,41] are not very efficient for ACZ
selection at small beam momenta. At the same time, we have
found that these triggers increase the ACZ probability by more
than one order of magnitude in the beam momentum range
of 3–10 GeV/c. Such antiproton beams will be available at

FAIR, which would be the ideal place to search for the nuclear
compression effects induced by antibaryons. By taking the
expected luminosity L = 2 × 1032 cm−2 s−1 for the PANDA
experiment at FAIR [21], the ACZ rate can be estimated as Y =
σcomprL ∼ 102–103 s−1, where σcompr ∼ 10−3–10−2 mb is the
ACZ cross section above 1 GeV/c (see Fig. 7). Here we stress
once again that, due to the presently not-well-known antiproton
optical potential at ρ � ρ0 and due to uncertain spatial spread
of the antiproton distribution function, the preceding estimate
of the ACZ rate has a rather large uncertainty.

We have also shown that the selection of small impact
parameter events increases the ACZ probability by a factor
of 2–3. This selection could be reached, for example, by
triggering on the events with a small azimuthal asymmetry
of secondary particles.

Some signals associated with the ACZ events have already
been discussed in Refs. [18,26]. Unfortunately, however, no
unique signal suggested so far can alone be sufficient to
identify the nuclear compression unambiguously. Therefore,
we believe that the combination of different signals, for
example, emission of a fast proton plus large collective flow
energy of the nuclear fragments, would be a more promising
strategy to search for the ACZ events. Certainly, further
theoretical studies are needed to find the experimentally
realizable ways of observing nuclear compression in p̄-nucleus
collisions, in particular at FAIR energies.
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