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Systematics of binding energies and radii based on realistic two-nucleon plus
phenomenological three-nucleon interactions
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We investigate the influence of phenomenological three-nucleon interactions on the systematics of ground-state
energies and charge radii throughout the whole nuclear mass range from 4He to 208Pb. The three-nucleon
interactions supplement unitarily transformed two-body interactions constructed within the unitary correlation
operator method or the similarity renormalization group approach. To be able to address heavy nuclei as well, we
treat the many-body problem in Hartree-Fock plus many-body perturbation theory, which is sufficient to assess
the systematics of energies and radii, and limit ourselves to regularized three-body contact interactions. We
show that even with such a simplistic three-nucleon interaction a simultaneous reproduction of the experimental
ground-state energies and charge radii can be achieved, which is not possible with unitarily transformed two-body
interactions alone.
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I. INTRODUCTION

Nuclear structure theory is approaching an era of systematic
many-body calculations using nuclear Hamiltonians based on
quantum chromodynamics (QCD). An important step along
these lines is the formulation of nuclear interactions within
chiral effective field theory [1–3], leading to a consistent
hierarchy of two-, three-, and many-nucleon interactions
starting from the relevant degrees of freedom and symmetries
for the low-energy nuclear structure regime. The use of
these two-, three-, and many-nucleon interactions in nuclear
structure calculations is a formidable task.

In addition to few-body calculations the most promising
nuclear structure calculations using the chiral two- plus
three-nucleon interaction consistently have been performed
in the no-core shell model (NCSM) for mid p-shell nuclei
[4]. An immense numerical effort is needed to compute
and manage the three-body matrix elements in these cal-
culations, which limits the range of applicability of these
calculations at present. Recently, the use of consistent two-
plus three-nucleon interactions resulting from a similarity
renormalization group (SRG) evolution of the chiral two- plus
three-nucleon interaction was demonstrated also in the context
of the NCSM [5]. This approach, a unitary transformation
of the chiral Hamiltonian aiming at a prediagonalization that
improves the convergence properties of NCSM substantially,
holds great potential also for the use in other many-body
schemes and will play a significant role in the future.
However, the computational effort for including those two-
plus three-nucleon interactions into many-body calculations,
be it exact or approximate, is still the limiting factor for many
applications.

In this article we follow a more pragmatic route to
explore the impact of three-body forces in connection with
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unitarily transformed two-nucleon interactions. We start from
the Argonne V18 high-precision two-nucleon potential [6],
which is still widely used although it does not have the
same systematic link to QCD like the chiral effective field
theory interactions and is considered phenomenological in
this respect. We then use the similarity renormalization group
[7–11] as well as the unitary correlation operator method
(UCOM) [10,12–14] to construct a transformed two-nucleon
interaction, which has a much better convergence behavior
and allows us to use simplified many-body schemes. At this
level neither genuine nor induced three-nucleon interactions
are included. From various applications of these unitarily
transformed two-nucleon interactions we know that there are
characteristic deviations of basic nuclear observables from
the experimental systematics that might be connected to
three-body interactions. For example, unitarily transformed
two-body interactions which yield realistic systematics for
binding energies tend to underestimate the charge radii [10,15].
Here we study to what extent these systematic deviations can
be cured by including a three-body interaction. Note that we
are not aiming at a precision description of individual nuclei
but rather the complete systematics from light nuclei, 4He, to
heavy nuclei, 208Pb.

To facilitate calculations for the full mass range from 4He
to 208Pb we have to simplify the approach compared to a fully
consistent treatment. The first simplification consists in the use
of a phenomenological three-body interaction, which allows
for an efficient computation of matrix elements but violates the
consistency discussed above. The second simplification con-
sists in the use of Hartree-Fock plus many-body perturbation
theory for the approximate solution of the many-body problem.
Despite of these simplifications, we will obtain valuable
information on the interplay between realistic two-body and
phenomenological three-body interactions and on how well the
experimental systematics of ground-state energies and charge
radii can be reproduced. Furthermore, these studies prepare
the ground for calculations with consistently transformed two-
plus three-nucleon interactions.
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After a brief reminder of the basic concepts of the unitary
correlation operator method and the similarity renormaliza-
tion group we introduce the phenomenological three-body
interaction and calculate the matrix elements in the harmonic
oscillator basis in the second section. In the third section,
we discuss the inclusion of the three-body interaction in
Hartree-Fock and many-body perturbation theory and discuss
the systematics of ground-state energies and charge rms radii
across the whole nuclear mass range and its dependence on
the two- and three-nucleon interaction.

II. FORMALISM

A. Unitary correlation operator method and similarity
renormalization group

The unitary correlation operator method and the similarity
renormalization group provide two conceptually different but
physically related approaches for the construction of soft
phase-shift equivalent interactions.

The similarity renormalization group [7–11] aims at the
prediagonalization of the Hamiltonian for a given basis by
means of a unitary transformation implemented through the
renormalization-group flow equation:

dHα

dα
= [ηα,Hα], (1)

where α is the flow parameter and Hα the evolved Hamiltonian,
with H0 = H being the initial or “bare” Hamiltonian. The
anti-Hermitian generator ηα defines the specifics of the flow
evolution, e.g., the representation with respect to which
the Hamiltonian should become diagonal or block-diagonal.
Various choices for this generator have been investigated [11],
and we restrict ourselves to the simple generator [7,9]

ηα = [Tint,Hα] (2)

with Tint = T − Tcm being the intrinsic kinetic energy, which
leads to a prediagonalization of the Hamiltonian with respect
to the eigenbasis of the kinetic energy or momentum operator.
Once the generator is fixed, the Hamiltonian and all operators
of interest can be evolved easily using a matrix representation
of the flow equation (1).

In A-body space the evolution generates up to A-body
operators even if the initial Hamiltonian contains only up to
two- or three-body operators. For reasons of practicability one
has to truncate the evolution at some low particle number—
typically this is done by solving the evolution equation in
a matrix representation in two- or three-body space. For the
moment we restrict ourselves to transformations in two-body
space, i.e., we will discard any induced three-body interactions.

The aim of the unitary correlation operator method
[10,12–14,16] is to explicitly treat short-range correlations
induced by the nuclear interaction via a static unitary trans-
formation. This transformation can either be used to correlate
the many-body states or to similarity transform operators of
interest, e.g., the Hamiltonian

H̃ = C†HC, (3)

using the correlation operator C. The dominant short-range
correlations are induced by the strong short-range repulsion

and the tensor part of the nuclear interaction. Therefore, the
correlation operator is written as a product of two unitary
operators, Cr for the central correlations and C� for the tensor
correlations. We choose an explicit form of the correlation
operators:

C = C�Cr = exp

(
−i

∑
j<k

g�,jk

)
exp

(
−i

∑
j<k

gr,jk

)
(4)

with the following ansatz for the Hermitian generators gr and
g�:

gr = 1
2 [qrs(r) + s(r)qr ],

(5)
g� = 3

2 [(σ 1 · r)(σ 2 · q�) + (σ 1 · q�)(σ 2 · r)],

where qr = 1
2 ( r

r
· q + q · r

r
), q� = q − r

r
· qr , and q =

1
2 [ p1 − p2]. The strengths and radial dependencies of the two
transformations are governed by the correlation functions s(r)
and ϑ(r) for the central and tensor correlations, respectively.
One can obtain these functions via an energy minimization in
the two-body system [16]. Recently, we have also employed
the SRG as a tool for the determination of the UCOM
correlation functions s(r) and ϑ(r) as discussed in Refs. [9,10].
Here, we will use these SRG-optimized UCOM correlation
functions only.

Though the SRG and UCOM transformations have a
different formal background, they address the same physics
of short-range correlations. A first connection becomes clear
at the level of the generators [8]—the SRG generator (2) in
two-body space at α = 0 reveals the same operator structures
that appear in the UCOM generators (5). At the level of matrix
elements, both the SRG and UCOM transformations lead to
a suppression of the off-diagonal momentum-space matrix
elements and an enhancement of the low-momentum matrix
elements as discussed in detail in Ref. [10].

In the following, we employ both transformations to
generate one-parameter families of phase-shift equiva-
lent two-body interactions starting from a specific initial
NN interaction, the Argonne V18 (AV18) in our case. For the
SRG transformation the flow parameter α directly spans this
family of two-body interactions. We will study two versions
of the SRG transformation, one where the flow equations
are solved for all partial waves and one where only the
partial waves containing relative S waves, i.e., the 1S0 and
the coupled 3S1-3D1 partial waves, are transformed. The latter
is motivated by the fact that short-range correlations affect the
S-wave channels most, because for all higher orbital angular
momenta the relative wave functions are suppressed by the
centrifugal barrier at short distances. We use the label “SRG”
for the fully transformed interactions and “S-SRG” for the
S-wave-only transformations. For the UCOM transformation
we use correlation functions determined from SRG-evolved
two-body wave functions as discussed in Refs. [9,10], thus
the flow parameter α also spans a family of different UCOM-
transformed interactions. Note that the standard formulation
of UCOM only uses different transformations for the different
(S, T ) channels. We thus use the SRG-evolved wave functions
for the lowest partial waves for each (S, T ) channel to
define the correlation functions, leading to a transformed
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interaction labeled “UCOM(SRG).” Analogously to the
S-SRG transformation, we can also use an S-wave-only
UCOM transformation, denoted “S-UCOM(SRG),” which
acts only in the 1S0 and the coupled 3S1-3D1 partial waves.

So far, we have assumed that both transformations are eval-
uated in two-body space, leading to a transformed interaction
containing two-body terms only. A consistent first-principles
treatment requires the transformation to be performed in
A-body space, leading to a hierarchy of induced interactions up
to the A-body level, as mentioned earlier. The most advanced
attempts along these lines use the full SRG evolution at the
three-body level to construct a consistently transformed two-
plus three-nucleon interaction [5]. The use of those two-
plus three-body interactions in many-body calculations is very
demanding and presently limited to rather small model spaces.

Therefore, we follow a more pragmatic path in this work.
We evaluate the unitary transformations at the two-body level
and mimic the three-body contributions (genuine plus induced)
through a simple phenomenological three-body interaction.
By using a simplified three-nucleon (3N) interaction, e.g., a
regularized contact or a Gaussian interaction, the calculation
of the three-body matrix elements becomes formally and
computationally much less demanding. This allows us to study
the impact of 3N interactions on various nuclear structure
observables for nuclei and model spaces beyond the domain
accessible with realistic 3N interactions. Furthermore, we can
develop and benchmark approximate treatments of the three-
body contributions and establish the technical framework to
include 3N interaction into different many-body methods.

The parameters of the phenomenological 3N interactions
will be adjusted depending on the flow parameter α of
the transformed two-nucleon (NN) interaction. For a wide
range of α parameters the transformed two-body interaction
alone produces an overbinding compared to the experimental
ground-state energy. This is illustrated in Fig. 1 for the ground-
state energy of 4He as function of α obtained in converged
no-core shell-model calculations for the UCOM(SRG)-, the
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FIG. 1. (Color online) Binding energy of 4He as function of
the flow parameter α obtained from a converged no-core shell-
model calculation using the UCOM(SRG)-transformed (�), the
S-UCOM(SRG)-transformed (�), the SRG-transformed (�), or
the S-SRG-transformed (�) AV18 potential. The horizontal lines
indicate the experimental binding energy (—) and the exact ground-
state energy for the bare AV18 two-body interaction (- - -) [17].

S-UCOM(SRG)-, the SRG-, and the S-SRG-transformed
AV18 interaction. Thus the additional phenomenological
interaction, which mimics the net effect of the genuine and
the induced 3N interaction, has to be repulsive in order to lead
to a 4He binding energy consistent with experiment. Note
that the phenomenological three-body forces that are used
in connection with the bare AV18 interaction are generally
attractive. Thus the induced 3N interaction resulting from the
unitary transformation of the NN interaction alone has to be
repulsive and sufficiently strong to create an overall repulsive
three-body contribution.

B. Three-body contact interaction

The simplest choice for a phenomenological 3N interaction
is a spin-isopin-independent contact interaction

V3N = C3N δ(3)(x1 − x2) δ(3)(x1 − x3) (6)

with variable strength C3N . Despite its simplicity it allows us
to study the impact of a 3N interaction on bulk observables like
ground-state energies or charge radii. Obviously, this simplistic
choice offers substantial computational advantages.

For evaluating the matrix elements of a realistic
3N interaction for the use in configuration-space Hartree-
Fock or no-core shell-model type calculations one typically
adopts a two-step procedure: First the matrix elements are
evaluated in a Jacobi-coordinate basis for the relative mo-
tion in the three-nucleon system. Then, through a sequence
of Talmi-Moshinski transformations and angular-momentum
recouplings, the matrix elements are transformed into the m
scheme to perform the many-body calculation. Both steps are
nontrivial and computationally demanding, thus limiting the
model-space sizes for which those matrix elements can be
handled.

In contrast, the matrix elements of the contact interaction
can be directly evaluated in the m-scheme in a straightforward
manner. We first consider the matrix elements of the 3N contact
interaction with respect to the spatial part of three-particle
product states in the harmonic oscillator basis

〈n1l1ml1 , n2l2ml2 , n3l3ml3 | V3N |n4l4ml4 , n5l5ml5 , n6l6ml6〉.
(7)

The spin and isospin quantum numbers and the antisym-
metrization will be included subsequently. We can insert a unit
operator in position representation using Cartesian coordinates
and directly evaluate the Kronecker deltas. This leaves us with
a single integration over a single-particle coordinate, which can
be rewritten in spherical coordinates. Introducing the position
representation of the harmonic oscillator single-particle states,
φnlml

(x) = Rnl(x)Ylml
(�), with radial wave functions Rnl(x)

and spherical harmonics Ylml
(�), we obtain:

〈n1l1ml1 , n2l2ml2 , n3l3ml3 | V3N |n4l4ml4 , n5l5ml5 , n6l6ml6〉
= C3N

∫
dxx2Rn1l1 (x)Rn2l2 (x)Rn3l3 (x)

×Rn4l4 (x)Rn5l5 (x)Rn6l6 (x)

×
∫

d� Y ∗
l1ml1

(�)Y ∗
l2ml2

(�)Y ∗
l3ml3

(�)

×Yl4ml4
(�)Yl5ml5

(�)Yl6ml6
(�). (8)
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The integral over the six radial wave functions Rnl(x) has to be
calculated numerically while the integral over the six spherical
harmonics Ylml

(�) can be evaluated analytically. The product
of three spherical harmonics can be reduced to one spherical
harmonic and the integral over the remaining two spherical
harmonics can be solved analytically, leading to∫

d�Y ∗
l1ml1

(�)Y ∗
l2ml2

(�)Y ∗
l3ml3

(�)Yl4ml4
(�)Yl5ml5

(�)Yl6ml6
(�)

= 1

16π2
l̂1 l̂2 l̂3 l̂4 l̂5 l̂6

∑
L1L2L3

ML1
ML2

ML3

1

2L2 + 1

× c

(
l1 l2 L1

0 0 0

)
c

(
L1 l3 L2

0 0 0

)

× c

(
l4 l5 L3

0 0 0

)
c

(
L3 l6 L2

0 0 0

)

× c

(
l1 l2 L1

ml1 ml2 ML1

)
c

(
L1 l3 L2

ML1 ml3 ML2

)

× c

(
l4 l5 L3

ml4 ml5 ML3

)
c

(
L3 l6 L2

ML3 ml6 ML2

)
(9)

with l̂ = √
2l + 1 and c( l1 l2

ml1 ml2
| L
ML

) being Clebsch-Gordan

coefficients.
We precompute and store those angular integrals as well as

the radial integrals in (8). The inclusion of the spin and isospin
quantum numbers, the coupling of the single-particle orbital
angular momenta and the spins, and the antisymmetrization
are then done on the fly during the many-body calculation.
This makes calculations in large model spaces feasible.

For applications beyond the mean-field level a regular-
ization of the contact interaction is inevitable. However, the
regularization should preserve the simplicity of the matrix-
element calculation, which rules out momentum-space cutoffs
and such. Hence, we introduce an energy cut-off parameter
e3N , which defines an upper bound for total oscillator energy
of the three-particle state, (2n1 + l1) + (2n2 + l2) + (2n3 +
l3) � e3N . The implementation of this cutoff is trivial and
it preserves all computational advantages of the contact
interaction.

III. MANY-BODY CALCULATIONS

We adopt the 3N contact interaction together with unitarily
transformed NN interactions for the study of the systematics
of nuclear ground-state energies and charge radii throughout
the whole mass range from 4He to 208Pb using Hartree-Fock
and many-body perturbation theory.

A. Hartree-Fock Approximation

We have employed the Hartree-Fock (HF) approximation
as a first indicator for the gross systematics of binding energies
and charge radii obtained with unitarily transformed two-body
interactions in Refs. [10,15] already. In order to assess the
impact of 3N contact interactions we extend our HF framework
in a first step.

All calculations are based on the translationally invariant
Hamiltonian

Hint = Tint + VNN + V3N = H
(2)
int + V3N (10)

with VNN being the UCOM- or SRG-transformed NN inter-
action and Tint = T − Tcm the intrinsic kinetic energy. This
Hamiltonian includes all charge-dependent and electromag-
netic terms of the transformed AV18 potential as well as the
phenomenological three-body force. For the intrinsic kinetic
energy we use the pure two-body form of Ref. [15].

The HF equations are formulated in a harmonic oscil-
lator basis representation, i.e., the single-particle states are
expanded in the harmonic oscillator states:

|νljmmt 〉 =
∑

n

C(νljmt )
n |nl jmmt 〉, (11)

where |nljmmt 〉 denotes the harmonic oscillator eigenstates
with radial quantum number n, orbital angular momentum
l, total angular momentum j with projection m, and isospin
projection quantum number mt . Since we only consider closed-
shell nuclei in the following, the expansion coefficients are
independent of m. The HF equations can now be written as∑

n̄

h
(ljmt )
nn̄ C

(νljmt )
n̄ = ε(νljmt )C(νljmt )

n (12)

with the single-particle energies ε(νljmt ). The matrix elements
of the single-particle HF Hamiltonian

h
(ljmt )
nn̄ =

∑
l′j ′m′

t

∑
n′n̄′

〈nljmt , n
′l′j ′m′

t |

×H
(2)
int |n̄ljmt , n̄

′l′j ′m′
t 〉 


(l′j ′m′
t )

n̄′n′

+ 1

2

∑
l′j ′m′

t
l′′j ′′m′′

t

∑
n′n′′
n̄′ n̄′′

〈nljmt , n
′l′j ′m′

t , n
′′l′′j ′′m′′

t |

×V3N |n̄ljmt , n̄
′l′j ′m′

t , n̄
′′l′′j ′′m′′

t 〉 

(l′j ′m′

t )
n̄′n′ 


(l′′j ′′m′′
t )

n̄′′n′′

(13)

are obtained by contractions of the antisymmetrized matrix
elements of the two-body part of the Hamiltonian H

(2)
int and the

three-body interaction V3N with the one-body density matrix
given by



(ljmt )
n̄n =

∑
ν

O(νljmt )C
(νljmt )∗
n̄ C(νljmt )

n (14)

with O(νljmt ) being the number of occupied magnetic sublevels
which is 2j + 1 for closed-shell nuclei.

In the following the HF approach is applied to selected
closed-shell nuclei from 4He to 208Pb. The HF equations
are solved iteratively until full self-consistency is reached.
The model space is truncated at a given major oscillator
quantum number e = 2n + l � emax, where emax = 10 is
sufficient to obtain converged ground-state energies and radii
at the HF level. The oscillator parameter is chosen for each
nucleus separately such that the experimental charge radius
is reproduced by a shell-model Slater determinant built from
harmonic oscillator single-particle states.
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FIG. 2. (Color online) Ground-state energies per nucleon and
charge radii of selected closed-shell nuclei resulting from HF
calculations based on pure two-body interactions for emax = 10:
UCOM(SRG) with α = 0.16 fm4 (�), S-UCOM(SRG) with α =
0.16 fm4 (�), SRG with α = 0.10 fm4 (�), S-SRG with α = 0.10 fm4

(�). The bars indicate the experimental values [18,19].

As a first illustration of the behavior of unitarily transformed
two-body interactions Fig. 2 summarizes the ground-state
energies per nucleon and the charge radii obtained at the HF
level for nuclei up to 208Pb. We adopt four different two-
body interactions—UCOM(SRG), S-UCOM(SRG), SRG, and
S-SRG—with flow parameters relevant for the later calcula-
tions including the 3N contact interaction. We observe that the
general trend of the binding energies and charge radii is similar
for the UCOM(SRG), the S-UCOM(SRG), and the S-SRG in-
teractions. All three interactions produce binding energies that
are within 2 MeV per nucleon of the experimental values for
the whole mass range. By including correlations beyond HF,
e.g., through many-body perturbation theory, all interactions
would lead to an overbinding compared to experiment. At the
same time the charge radii are underestimated for all but the
lightest isotopes. Those systematic deviations can be remedied
by a repulsive 3N interaction, as it will be included in the next
step.

The SRG-transformed interaction exhibits a vastly different
behavior. The binding energies per nucleon increase rapidly
with mass number, leading to an completely unphysical
overbinding already at the HF level for intermediate and heavy
nuclei. At the same time the charge radii are even smaller than
the ones obtained with the other transformed interactions. The
origin of this difference in systematics as compared to the
UCOM- and the S-SRG-transformed interactions seems to lie
in the treatment of higher partial waves. Only the standard
SRG transformations rigorously prediagonalize the higher
partial waves, all other transformations do not affect those
channels at all (S-SRG and S-UCOM) or transform them
in a way not specifically optimized for them (UCOM). The
overbinding produced by the SRG interaction as compared to
the corresponding S-SRG interaction has to be compensated
by stronger induced three- and many-body interactions, which
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FIG. 3. (Color online) Ground-state energies per nucleon and
charge radii of selected closed-shell nuclei resulting from HF
calculations for the pure two-body interaction S-UCOM(SRG) for
emax = 10 and different flow parameters: α = 0.04 fm4 (�), α =
0.12 fm4 (�), α = 0.16 fm4 (�). The bars indicate the experimental
values [18,19].

seem to be influenced sizably by contributions from higher-
partial waves.

For the construction of phenomenological 3N interactions
the UCOM, S-UCOM, and S-SRG interactions provide a better
starting point, because the corrections to the binding energy
and radius systematics are much smaller. Therefore, we will
focus on those interactions in the following.

Before including the 3N contact interaction explicitly, we
analyze the dependence of the HF results obtained with the
transformed two-body interactions on the flow parameter
α. In Fig. 3 the binding energies and charge radii for the
S-UCOM(SRG) interactions with α = 0.04 fm4, 0.12 fm4, and
0.16 fm4 are shown. For the smallest flow parameter α =
0.04 fm4 the ground-state energies reproduce the systematics
of the experimental values up to a constant shift. The missing
binding energy can be explained by beyond-HF correlations
that can be recovered, e.g., by perturbation theory. This
flow parameter would be used for calculations based on
the pure NN interaction, as they are discussed in detail in
Refs. [9,10,15].

When increasing the flow parameter entering into the con-
struction of the S-UCOM(SRG) interaction to α = 0.12 fm4

or 0.16 fm4 the ground-state energy at the HF level decreases
substantially. For most nuclei the binding energy per nucleon
more than doubles when going from α = 0.04 fm4 to 0.16 fm4.
For heavier nuclei the increase is larger, thus leading to a
tilt of the ground-state energy systematics with respect to the
experimental behavior. Unlike the energies, the charge radii
exhibit a very weak α dependence as shown in the lower panel
of Fig. 3. For all flow parameters considered here, the radii are
somewhat underestimated. The situation is very similar for the
UCOM(SRG) and the S-SRG interactions.

This general phenomenology of ground-state energies and
charge radii obtained from unitarily transformed interactions
at larger flow parameters illustrates that the purely repulsive
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FIG. 4. (Color online) Binding energies per nucleon and charge
radii of selected closed-shell nuclei resulting from HF calcula-
tions based on the S-UCOM(SRG) interaction for α = 0.16 fm4,
emax = 10, e3N = 20 and different strengths of the three-body
interaction: C3N = 1600 MeV fm6 (�), C3N = 2200 MeV fm6 (�),
C3N = 2800 MeV fm6 (�). The bars indicate the experimental values
[18,19].

phenomenological 3N interaction can be used to improve
energies and radii. Since the radii are insensitive to the flow
parameter in a certain regime, we can fix the strength of the
3N interaction such that the systematics of the charge radii
is in good agreement with experiment. The flow parameter
can then be chosen to provide an optimal description of the
ground-state energies in a beyond-HF calculation.

The impact of 3N contact interactions with different
strength parameters C3N is illustrated in Fig. 4 using the
S-UCOM(SRG) interaction for α = 0.16 fm4. As compared
to the HF calculation with the pure two-body interaction, the
binding energies are reduced significantly and the charge radii
are increased as a result of the purely repulsive 3N interaction.
It is remarkable that the charge radii are in excellent agreement
with experiment for the whole mass range from 4He to 208Pb
when using a 3N interaction with strength parameters in the
range C3N = 2200 to 2800 MeV fm6. For the same values
C3N the ground-state energy systematics at the HF does again
resemble the experimental systematics up to a constant shift,
i.e., the tilt of the energy curve toward an overbinding for
heavier nuclei is cured as well. The missing binding energy of
3 to 4 MeV per nucleon at the HF level can be recovered by
including correlations beyond HF, as will be discussed in the
next section.

In addition to ground-state energies and radii the HF
approximation provides us with an estimate for the single-
particle energies that can be used to diagnose the various
NN + 3N interactions. Examples for the single particle spectra
obtained with the various unitarily transformed interactions
for 40Ca and 90Zr are shown in Figs. 5 and 6, respectively. We
use the UCOM(SRG) and the S-UCOM(SRG) interactions for
α = 0.16 fm4 and the S-SRG interaction for α = 0.10 fm4

each supplemented with a 3N contact interaction with strength
parameter adjusted to provide a good overall description of
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FIG. 5. (Color online) Single-particle spectra of 40Ca for
different interactions: (1) UCOM(SRG) with α = 0.16 fm4,
C3N = 1600 MeV fm6, (2) S-UCOM(SRG) with α = 0.16 fm4,
C3N = 2200 MeV fm6, (3) S-SRG with α = 0.10 fm4, C3N =
2000 MeV fm6. Three-body cut-off set to e3N = 20 for all calcula-
tions. Occupied states are indicated by solid lines, unoccupied states
by dashed lines. Experimental data taken from Ref. [20].

the charge radii at the HF level, i.e., C3N = 1600 MeV fm6

for UCOM(SRG), C3N = 2200 MeV fm6 for S-UCOM(SRG),
and C3N = 2000 MeV fm6 for S-SRG. We note that the
standard SRG interaction for α = 0.10 fm4 would require
3N strengths C3N in the range of 4000 to 5000 MeV fm6 to
generate realistic radii.

The gross structure of the single-particle spectra obtained
with the S-UCOM(SRG) + 3N and the S-SRG + 3N inter-
actions agrees rather well with the single-particle energies
extracted from experiment. The quality of the agreement is
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FIG. 6. (Color online) Single-particle spectra of 90Zr for the
same interactions used in Fig. 5. Experimental data taken from
Refs. [21,22].
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comparable with other mean-field type calculations and some
of the characteristic deviations, e.g., the overestimation of
the gaps at the Fermi energy, are expected to be remedied
by the inclusion of beyond HF corrections. Other important
quantities, e.g., the splittings between spin-orbit partner states,
are reproduced rather well at the HF level already.

The picture is different for the UCOM(SRG) + 3N inter-
action. In particular for the single-particle spectrum of 90Zr
shown in Fig. 6 and for all heavier nuclei we observe a
collapse of the spin-orbit splittings. Since this problem does
not appear in the corresponding S-UCOM(SRG) calculation,
it has to be caused by the UCOM transformation of the higher
partial waves. The problem is also absent in UCOM(SRG)
interactions for smaller flow parameters α, e.g., for the
UCOM(SRG) interaction at α = 0.04 fm4 that was used in
Fig. 3. Thus the long-range character of the tensor correlation
functions as they appear for larger α (cf. Refs. [9,10]) acting on
the higher partial wave leads to this unphysical behavior. We
will, therefore, restrict ourselves for the following discussion
to the S-UCOM(SRG) and S-SRG interactions.

B. Many-body perturbation theory

A simple means to estimate the impact of correlations
beyond the HF approximation is many-body perturbation
theory (MBPT). In particular low-order MBPT corrections
to the energy [23–26] can be computed quite efficiently for the
whole mass range up to 208Pb. We have used second- and third-
order MBPT to investigate various two-body Hamiltonians
and the importance and systematics of correlations beyond
HF in Refs. [10,15]. One should be aware, however, that
low-order MBPT can only provide an estimate for the exact
ground-state energies and that the order-by-order convergence
is not guaranteed, as we have shown in Ref. [27] using a
harmonic oscillator single-particle basis.

Because of its computational simplicity we adopt second-
order MBPT as a guideline for the effect of beyond-HF corre-
lations on the energy in the presence of a phenomenological
3N interaction. The second-order energy correction to the
HF ground-state energy for the intrinsic Hamiltonian (10)
including the 3N interaction reads

E(2) = 1

4

<εF∑
hh′

>εF∑
pp′

∣∣〈hh′| H (2)
int |pp′〉 + ∑<εF

h̄
〈hh′h̄| V3N |pp′h̄〉∣∣2

εh + εh′ − εp − εp′

+ 1

36

<εF∑
hh′h′′

>εF∑
pp′p′′

|〈hh′h′′| V3N |pp′p′′〉|2
εh + εh′ + εh′′ − εp − εp′ − εp′′

,

(15)

where h, h′, . . . , denote the HF single-particle states (11)
below the Fermi energy εF (hole states) and p, p′, . . . ,
the corresponding HF single-particle states above the Fermi
energy (particle states). All two- and three-body matrix
elements appearing here are understood to be antisymmetrized
matrix elements.

Already the structure of the second-order energy correction
(15) is interesting. Obviously, if we set all matrix elements
of the 3N interaction to zero we recover the well-known

form of the second-order correction for a pure two-body
Hamiltonian. The inclusion of the 3N interaction affects
this expression in two ways: (i) The matrix elements of
the two-body Hamiltonian are modified by an effective or
in-medium two-body term that results from the three-body
matrix elements by a contraction of the third single-particle
index. (ii) An additional pure three-body term involving three
particle and three hole indices appears.

To separate the effect of these two contributions we
study three variants of the second-order energy correction:
MBPT(2B) includes only the contribution of the two-body
Hamiltonian, i.e., the first matrix element in Eq. (15).
MBPT(2B + 3Bpphh) includes the in-medium two-body con-
tribution generated by the 3N interaction, i.e., the complete
first term in Eq. (15). Finally, MBPT(2B + 3B) includes all
terms of Eq. (15).

The ground-state energies of 4He, 16O, and 40Ca obtained
with MBPT(2B), MBPT(2B + 3Bpphh), and MBPT(2B + 3B)
on top of the HF result for the S-UCOM(SRG) interaction
are shown in Fig. 7 as function of the cut-off parameter e3N .
Note that the calculations are done in a model space with
emax = 10 and, therefore, all energies will become independent
of the three-body cutoff once e3N � 3emax = 30. For the
HF calculations presented so far we had fixed this cutoff to
e3N = 20, which was sufficiently large to guarantee that the
HF energies were practically independent of this cutoff for all
nuclei. As soon as we include the second-order perturbative
correction we cannot expect the results to be independent of
e3N , because the sums over particle states above the Fermi
energy directly probe high-lying matrix elements. Eventually
we will have to fix e3N to a certain value as part of the definition
of the phenomenological 3N interaction. For the study of the
different contributions a cutoff variation nevertheless provides
a useful diagnostic tool. As seen in Fig. 7, the HF energies
are practically independent of e3N as mentioned earlier. When
including the second-order correction due to the two-body
Hamiltonian, MBPT(2B), the ground-state energies are low-
ered by about 1 MeV per nucleon for 4He and by about 2.5 MeV
per nucleon for 16O and 40Ca. The MBPT(2B) energies are
sensitive to e3N only indirectly via high-lying HF single-
particle states; therefore, the dependence is marginal. For
MBPT(2B + 3Bpphh) and MBPT(2B + 3B) the cutoff directly

8 12 16 20 24
e3N

8 12 16 20 24
e3N

8 12 16 20 24
e3N
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FIG. 7. (Color online) Contributions to the ground-state energy
resulting from MBPT based on the S-UCOM(SRG) interaction
for α = 0.16 fm4, emax = 10, C3N = 2200 MeV fm6 as function
of the cut-off parameter e3N for HF (�), HF + MBPT(2B) (�),
HF + MBPT(2B + 3Bpphh) (�), and HF + MBPT(2B + 3B) (�).
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affects the perturbative correction via the three-body matrix
elements and the e3N dependence becomes more pronounced.
Generally, the step from MBPT(2B) to MBPT(2B + 3Bpphh)
can modify the ground-state energy in either direction, whereas
the change from MBPT(2B + 3Bpphh) to MBPT(2B + 3B)
always results in a lowering of the ground-state energy, as
evident from Eq. (15).

For 4He we obtain a significantly lower ground-state energy
when fully including the three-body terms. For the heavier
nuclei the ground-state energy is increased at small e3N

and remains almost unchanged for larger e3N . Generally, the
change in the ground-state energy per nucleon when going
from MBPT(2B) to MBPT(2B + 3B) for fixed and sufficiently
large e3N decreases with increasing particle number. Beyond
40Ca the impact of the three-body terms to the second-order
energy correction is smaller than other uncertainties of the
calculation, e.g., the degree of convergence with respect to
the model space. Therefore, we will limit ourselves to the
MBPT(2B) corrections and will continue using e3N = 20 in the
following. One should keep in mind, however, that for nuclei
below 40Ca and in particular for 4He the full second-order
correction MBPT(2B + 3B) leads to a lower ground-state
energy than MBPT(2B) and thus to a much better agreement
with experiment.

As discussed earlier, we can fix the strength of the three-
body interaction based on the systematics of the charge
radii and use the flow parameter entering into the two-body
interaction to control the binding-energy systematics. In Fig. 8
we illustrate the influence of α on the energies obtained
in MBPT(2B) using the S-UCOM(SRG) interaction with
α = 0.12 fm4 and 0.16 fm4 and a 3N contact interaction
with C3N = 2200 MeV fm6. Whereas the charge radii are
practically identical for both values of α, the HF and the
MBPT(2B) ground-state energies are systematically lower
for the larger flow parameters. The difference is smaller for
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FIG. 8. (Color online) Binding energies per nucleon and charge
radii of selected closed-shell nuclei resulting from HF calcula-
tions (filled symbols) and MBPT (open symbols) based on the
S-UCOM(SRG) interaction for emax = 10, C3N = 2200 MeV fm6,
e3N = 20 and different flow parameters: α = 0.12 fm4 (�), α =
0.16 fm4 (�). The bars indicate the experimental values [18,19].

-8

-6

-4

E
/A

[M
eV

]

2

3

4

5

r c
h

[f
m

]

4He
16O

24O
34Si

40Ca
48Ca

48Ni
56Ni

60Ni
78Ni

88Sr
90Zr

100Sn
114Sn

132Sn
146Gd

208Pb

FIG. 9. (Color online) Binding energies per nucleon and charge
radii of selected closed-shell nuclei resulting from HF calcula-
tions (filled symbols) and MBPT (open symbols) based on the
S-UCOM(SRG) interaction for α = 0.16 fm4, C3N = 2200 MeV fm6,
e3N = 20 and different basis sizes: emax = 10 (�); emax = 12, lmax =
10 (�); emax = 14, lmax = 10 (�). The bars indicate the experimental
values [18,19].

the MBPT(2B) energies than for the HF energies, as to be
expected. The unitary transformation for larger α accounts for
more of the correlations explicitly, thus the ground-state energy
at the HF level is lower and the gain due to the inclusion of
residual correlations through MBPT(2B) is smaller. Thus we
can still use the α dependence to control the binding-energy
systematics.

So far we have used a model space with emax = 10
for all calculations. This is absolutely sufficient to obtain
converged HF results, but it is not enough to obtain con-
verged HF + MBPT energies. The convergence behavior of
the HF + MBPT(2B) energies is illustrated in Fig. 9 for the
S-UCOM(SRG) interaction with α = 0.16 fm4 and in Fig. 10
for the S-SRG interaction with α = 0.10 fm4 using emax =
10, 12, and 14. The HF energies and charge radii are fully
converged in all cases but not the HF + MBPT(2B) energies.
Although the largest model space includes 15 major oscillator
shells, this is still not sufficient to obtain convergence of
the MBPT(2B) contribution for heavier nuclei. The change
of energy per nucleon between successive model-space sizes
increases with increasing nucleon number.

The slow convergence is partly due to the use of S-wave
only UCOM and SRG transformations for the construction
of the two-nucleon interactions. For all higher-partial waves
the transformed interactions are thus identical to the initial
interaction. Since those partial waves become increasingly im-
portant for heavier nuclei, the deterioration of the convergence
is unsurprising. The use of a softer all-channel transformed
interactions, e.g., the standard SRG interaction discussed in
Fig. 2, would help with the convergence. However, for those
interactions a simple contact force is not sufficient to provide
reasonable energy and radius systematics.

Despite the nonoptimal convergence, the results presented
in Figs. 9 and 10 show that after inclusion of beyond-HF
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FIG. 10. (Color online) Binding energies per nucleon and charge
radii of selected closed-shell nuclei resulting from HF calculations
(filled symbols) and MBPT (open symbols) based on the S-SRG inter-
action for α = 0.10 fm4, C3N = 2000 MeV fm6, e3N = 20 and differ-
ent basis sizes: emax = 10 (�); emax = 12, lmax = 10 (�); emax = 14,

lmax = 10 (�). The bars indicate the experimental values [18,19].

correlations also the systematics of the ground-state energy is
reproduced quite well. Given the additional gain in binding
energy that is expected until convergence with respect to
model-space size and the additional binding resulting from
the three-body contributions to the second-order correction for
light isotopes the energies are in good systematic agreement
with experiment. For the results presented in Fig. 10 an
exponential extrapolation emax → ∞ typically leads to binding
energies per nucleon that are within a few tenths on an MeV of
the experimental data. The charge radii follow the experimental
results very closely already at the HF level. Perturbative
corrections to the radii, as studied in Ref. [16], are very small
and will not affect the general agreement.

IV. CONCLUSIONS AND OUTLOOK

We have investigated the systematics of binding energies
and charge radii for closed-shell nuclei from 4He to 208Pb
starting from unitarily transformed realistic NN interactions
supplemented by phenomenological 3N forces. We have
shown that already a simplistic 3N contact interaction is

sufficient to cure the systematic deviations from experiment
that the UCOM- and SRG-transformed two-body interac-
tions exhibit. By supplementing an S-UCOM or S-SRG-
transformed interaction for sufficiently large flow parameters
α with a repulsive 3N contact interaction we were able to
reproduce the experimental charge radius and ground-state
energy systematics simultaneously. Only for cases where the
two-body interaction exhibits a pathological energy system-
atics a contact force is clearly not sufficient to arrive at a
reasonable behavior.

In a next step, we can apply these interactions in a variety
of many-body schemes and study the elementary effects of
3N interactions on nuclear observables. We will employ the
phenomenological 3N interactions in exact no-core shell-
model calculations for the spectroscopy of light nuclei and in
approximate many-body approaches such as RPA for the study
of the collective response of heavier nuclei. The fundamental
advantage of 3N contact interactions is that the computation of
three-body matrix elements itself is not a limiting factor and
thus a larger range of nuclei and observables can be explored.

A major goal, however, it to go beyond phenomenological
3N interactions for supplementing a unitarily transformed
NN interaction toward a consistent two- plus three-body
interaction resulting from a combined unitary transformation
of an initial two- plus three-body interaction. This can be
done, e.g., using an SRG evolution of the chiral NN plus
3N interaction. A study of the ground-state energy and radius
systematics for those interactions, even in a simple framework
like HF + MBPT, will provide crucial information on the
quality of the presently available chiral interactions for nuclear
structure studies beyond the light isotopes and it will serve as a
test-case for the SRG evolution in the NN plus 3N sector. Based
on our developments for phenomenological 3N interactions
discussed here, we will perform a similar analysis with fully
realistic NN plus 3N interactions next.
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