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Relationship between X(5) models and the interacting boson model
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The connections between the X(5) models [the original X(5) using an infinite square well, X(5)-β8, X(5)-β6,
X(5)-β4, and X(5)-β2], based on particular solutions of the geometrical Bohr Hamiltonian with harmonic potential
in the γ degree of freedom, and the interacting boson model (IBM) are explored. This work is the natural extension
of the work presented in Garcı́a-Ramos and Arias, Phys. Rev. C 77, 054307 (2008) for the E(5) models. For
that purpose, a quite general one- and two-body IBM Hamiltonian is used and a numerical fit to the different
X(5) model energies is performed; then the obtained wave functions are used to calculate B(E2) transition rates.
It is shown that within the IBM one can reproduce well the results for energies and B(E2) transition rates
obtained with all these X(5) models, although the agreement is not so impressive as for the E(5) models. From
the fitted IBM parameters the corresponding energy surface can be extracted and, surprisingly, only the X(5)
case corresponds in the moderately large N limit to an energy surface very close to the one expected for a critical
point, whereas the rest of models are situated a little further away.
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I. INTRODUCTION

In recent years the connection between the Bohr-Mottelson
(BM) collective model [1–3] and the interacting boson model
(IBM) [4–7] has been the subject of many studies [8–20].
The BM collective model is built on the assumption that the
nucleus is composed of a set of strongly interacting fermions
that can be treated as a quantum liquid. The surface of
such a liquid is characterized in terms of the Hill-Wheeler
shape variables (β, γ ) [21] and the Euler angles. Under
this approximation, nuclear excitations are small-amplitude
vibrations and rotations, corrected by the coupling between
them [22]. The IBM was designed to describe the collective
quadrupole degrees of freedom in medium-mass and heavy
nuclei. The IBM Hamiltonian was written from the beginning
in second quantization form in terms of the generators of
the U(6) algebra, subtended by s and d bosons, which
carry angular momenta 0 and 2, respectively [7]. Therefore,
the connection between the two models is not evident. An
approximated connection comes from considering the IBM
as the second quantization of the shape variables (β, γ ) [23].
During the 1980s many studies on the connection between the
two models were done. The intrinsic state formalism [8–13]
was used, but also the complete set of eigenstates [24] was
analyzed through a Holstein-Primakoff transformation [25,26]
or by an isometric transformation [27]. More recently, the
problem of mapping between the two models has been
addressed by Rowe and collaborators [14]. Both models
present three special limits that can be solved easily and
for which the connection between the models is known.
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These three cases are (i) the BM anharmonic vibrator and the
dynamical symmetry U(5) IBM limit, (ii) the BM γ -unstable
deformed rotor and the dynamical O(6) IBM limit, and
(iii) the BM axial rotor and the dynamical symmetry O(6)
IBM limit including Q · Q · Q interactions [14,20,28]. Note
that, although traditionally accepted, the correspondence of
the dynamical symmetry SU(3) IBM limit to a submodel
of the BM model has never been explicitly probed [14].
Each of these limits is assigned to a particular shape using
the Hill-Wheeler variables (β, γ ) [21]: spherical, deformed
with γ -instability, and axially deformed, respectively. For
transitional situations the correspondence between the two
models is difficult and a possible way to establish a mapping
between the BM model and the IBM is through numerical
studies.

Among the transitional Hamiltonians, an especially inter-
esting case occurs when it describes a critical point in the
transition from a given shape to another. In general, for such a
situation where the structure of the system can change abruptly
by applying a small perturbation, both the BM model and the
IBM have to be solved numerically. However, a few years
ago Iachello proposed schematic Bohr Hamiltonians with the
intent of describing different critical points and these can be
solved exactly in terms of the zeros of Bessel functions. The
first of these models is known as E(5) [29]. E(5) is designed
to describe the critical point at the transition from spherical
to deformed γ -unstable shapes. The potential to be used in
the differential Bohr equation is assumed to be γ independent
and, for the β degree of freedom, an infinite square well is
taken. Similar models were proposed later by Iachello, called
X(5) and Y(5) [30,31], to describe the critical points between
spherical and axially deformed shapes and between axial
and triaxial deformed shapes, respectively. All these models
give rise to spectra and electromagnetic transition rates that
depend on a couple of free parameters (including a scale). In
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spite of their simplicity, some experimental examples were
found [32,33], just after the appearance of these models.

In this work, we concentrate on X(5) and related models.
(The connection between E(5) and related models and the
IBM was already deeply studied in [34].) The formulation of
X(5) attracted immediate attention both experimentally and
theoretically. Soon after the introduction of the X(5) model,
the nucleus 152Sm was proposed by Casten and Zamfir [33]
as a realization of it. Other experimental examples proposed
are 150Nd, 152–154Gd, 130Ce, 162Yb, 166Hf, 178Os, 226Ra, and
226Th [35,36], although the last two candidates could be better
described by combining quadrupole and octupole degrees of
freedom [37–39]. Concerning theoretical extensions of X(5),
Bonatsos and collaborators studied a sequence of potentials of
the type β2n, which allows one to go from the vibrational limit,
n = 1, to X(5), n → ∞ [40]. In particular, in Ref. [40] spectra
and transition rates for the potentials of the type β2n, with
n � 1, β2, β4, β6, and β8 are given explicitly and compared
with the original X(5) (infinite square well potential) case.
Another extension of X(5) is X(3), which is a rigid version
of X(5) [41]. In Ref. [42] the connection between X(5) and a
two-parameter free IBM calculation was studied. In Ref. [43]
the authors compared X(5)-β2, X(5)-β4, and X(3) also with
a restricted two-parameter IBM calculation with a number of
bosons N = 10. In Refs. [44,45] the authors treated exactly
separable versions of the Davidson potential and of the X(5)
potential, respectively. Finally, in Ref. [46] the author studied
the effect that the β-γ coupling has in solving the BM equation
for the X(5) potential. As already mentioned, all these models
are produced in the BM scheme and a natural question is to ask
for the correspondence of them with the IBM. Is the IBM able
to produce the same spectra and transition rates? If yes, does
the obtained IBM Hamiltonian correspond to a critical point?
This work is intended to answer these questions for the X(5)
and related models (−β8, −β6, −β4, and −β2 potentials)
and to analyze the convergence as a function of the boson
number, N .

For that purpose, a large set of X(5) and related models
results for excitation energies and transition rates are taken as
reference for numerical fits of the general IBM Hamiltonian.
This procedure will allow us to establish the IBM Hamiltonians
that best fit the different X(5)-β2n models and their relation
with the critical points.

The paper is organized as follows: In Sec. II the fitting
procedure is described and the obtained results are commented
upon. Section III is devoted to study of the energy surfaces
of the fitted IBM Hamiltonians and to analyzing them in
relation to the critical point. Finally, in Sec. IV a summary
and conclusions of this work are presented.

II. THE IBM FIT TO X(5) MODELS

A. The model

The most general, including up to two-body terms, IBM
Hamiltonian can be written in multipolar form as

Ĥ = εd n̂d + κ0P̂
†P̂ + κ1L̂ · L̂ + κ2Q̂ · Q̂

+ κ3T̂3 · T̂3 + κ4T̂4 · T̂4, (1)

where n̂d is the d boson number operator, and

P̂ † = 1
2 (d† · d† − s† · s†), (2)

L̂ =
√

10(d† × d̃)(1), (3)

Q̂ = (s† × d̃ + d† × s̃)(2) −
√

7

2
(d† × d̃)(2), (4)

T̂3 = (d† × d̃)(3), (5)

T̂4 = (d† × d̃)(4). (6)

The symbol · stands for the scalar product, defined as T̂L · T̂L =∑
M (−1)MT̂LMT̂L−M , where T̂LM is the M component of the

operator T̂L. The operator γ̃�m = (−1)mγ�−m (where γ refers
to s and d bosons) is introduced to ensure the correct tensorial
character under spatial rotations.

The electromagnetic transitions can also be analyzed in the
framework of the IBM. In particular, in this work we will focus
on the E2 transitions. The most general E2 transition operator
including up to one-body terms is written as

T̂ E2
M = eeff

[
(s† × d̃ + d† × s̃)(2)

M + χ (d† × d̃)(2)
M

]
, (7)

where eeff is the boson effective charge and χ is a structure
parameter. In this work χ will be kept fixed to the SU(3) value
of −√

7/2.
Although one could use the most general IBM Hamilto-

nian (1) to describe the X(5) models a natural question is
whether it is possible or not to reduce the number of free
parameters. A priori, it is not obvious which terms of the
Hamiltonian can be taken out. To answer this question one
can rewrite the Hamiltonian (1) in terms of Casimir operators
(with the definitions for the Casimir operators having been
taken from [47]):

Ĥ = κ0

4
N (N + 4) +

(
εd + 18

35
κ4

)
Ĉ1[U(5)] + 18

35
κ4Ĉ2[U(5)]

+
(

κ1 − 3

8
κ2 − κ3

10
− κ4

14

)
Ĉ2[O(3)] + κ2

2
Ĉ2[SU(3)]

+
(

κ3

2
− 3

14
κ4

)
Ĉ2[O(5)] − κ0

4
Ĉ2[O(6)]. (8)

It is expected that for the description of the X(5) models
one will need the contribution of the three IBM dynam-
ical symmetry chains. In the Hamiltonian (8) two contri-
butions come from the U(5) algebra, the linear and the
quadratic Casimir operators. Therefore, it becomes a reason-
able “antsatz” to remove the U(5) quadratic Casimir operator.
That implies fixing κ4 = 0. Note that its contribution to the
rest of the Casimir operators is absorbed by the rest of the
parameters.

B. The fitting procedure

In this section we describe the procedure for getting the
IBM Hamiltonian parameters that best fit the different X(5)
models.
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The χ2 test is used to perform the fitting. The χ2 function
is defined in the standard way,

χ2 = 1

Ndata − Npar

Ndata∑
i=1

[Xi(data) − Xi(IBM)]2

σ 2
i

, (9)

where Ndata is the number of data, from a specific X(5) model,
to be fitted, Npar is the number of parameters used in the
IBM fit, Xi(data) is an energy level [or a B(E2) value] taken
from a particular X(5) model, Xi(IBM) is the corresponding
calculated IBM value, and σi is an arbitrary error assigned to
each Xi(data).

At this point it is necessary to explain how we treat the γ

bandhead in the X(5) model. The position of this band is not
determined by the model; therefore an extra parameter should
be introduced for determining the γ bandhead, specifically the
location of the bandhead 2+

γ state. Consequently, besides the
IBM Hamiltonian parameters, there is this extra free parameter,
�γ , in the fit. This parameter gives the optimum position of
the γ band in a given X(5) model for which the best IBM fit
is obtained.

To perform the fit, we minimize the χ2 function for the
energies, using εd , κ0, κ1, κ2, and κ3 as free parameters of the
IBM Hamiltonian and �γ as a free parameter for the position
of the γ bandhead. Note that besides the qualitative argument
presented in Sec. II A to justify the election of κ4 = 0, we
have extensively explored other possibilities, as for example
κ4 �= 0 [48]. For this election a little improvement in χ2 is
obtained and for some particular cases it even has a negative
impact. In addition, in this case the χ2 function is very flat
and the correlation that exists between the free parameters
generates nonphysical oscillations in the value of the fitted
parameters. We have also explored the case κ3 = 0 and κ4 = 0,
which produces a important increase in the χ2 value. The
κ4 = 0 selection produces a smooth and consistent behavior
of the fitted parameters, as can be observed in Figs. 2–6.

For doing the fit and the minimization of the χ2 function
the MINUIT [49] code has been used. It allows us to minimize
any multivariable function.

The labels for the energy levels follow the usual notation
introduced for the X(5) model [29]: s enumerates the zeros
of the β part of the wave function, and nγ enumerates the
number of γ phonons. The set of levels included in the fit for
the different X(5) models are as follows:

(i) For the ground-state band, s = 1, nγ = 0, the set
includes all the states with angular momentum smaller
than 10. An arbitrary σ = 0.001 is used for these states
except for the 2+

1 state for which σ = 0.0001 is used.
This latter value allows us to normalize all the IBM
energies to E(2+

1 ) = 1. Note that the energy of the state
2+

1 is fixed arbitrarily to 1 (where we recall that the
spectrum is calculated up to a global scale factor).

(ii) For the β band, s = 2, nγ = 0, the set includes all the
states with angular momentum smaller than 10. An
arbitrary σ = 0.01 is used for these states.

(iii) For the s = 3, nγ = 0 band, which can be identified
with the ββ band, the set includes all the states with
angular momentum smaller than 10. An arbitrary σ =
0.01 is used for these states.

TABLE I. States included in the energy fit. In the states labeled
with two subindexes, the first one corresponds to X(5), whereas the
second corresponds to the rest of models.

Band Error States

s = 1, nγ = 0 σ = 0.0001 2+
1

σ = 0.001 0+
1 , 4+

1 , 6+
1 , 8+

1

s = 2, nγ = 0 σ = 0.01 0+
2 , 2+

2 , 4+
2 , 6+

2 , 8+
2

s = 3, nγ = 0 σ = 0.01 0+
3 , 2+

3,4, 4+
4 , 6+

4 , 8+
4

s = 1, nγ = 1 σ = 0.01 2+
4,3, 3+

1 , 4+
3 , 5+

1 , 6+
3 , 7+

1 , 8+
3

(iv) For the γ band, s = 1, nγ = 1, the set includes all the
states with angular momentum smaller than 10. An
arbitrary σ = 0.01 is used for these states.

With this selection, the number of energy levels included
into the fit, Ndata, is equal to 21. Note that the state 0+

1 is not an
actual data point to be reproduced because we are interested
just in excitation energies and therefore the ground state is
naturally fixed to zero in both the X(5) models and the IBM.
In Table I the states included in the fit are explicitly given.

The ordering index for the even L states in the γ , β, and
ββ bands is unknown a priori, because of the undetermined
position of the X(5) γ bands. However, our best fit always
provides a γ band above the β band, but below the ββ band,
that generates the same ordering independently of the partic-
ular X(5) model and number of bosons. The only exception
happens for X(5), where the 2+ of the γ band is above the
2+ state in the ββ band (i.e., they correspond to 2+

4 and 2+
3 ,

respectively).
Once the IBM Hamiltonian is fixed for each X(5) model

by fitting the energy levels, the χ2 function for the B(E2)
values is calculated without any additional fitting. The two
parameters in the E2 operator (7) are eeff , which is fixed to
give B(E2; 2+

1 → 0+
1 ) = 100, and χ , which is fixed to the

SU(3) value of −√
7/2. The computed transitions are listed in

Table II. Note that only transitions between states with nγ = 0
states are considered.

C. The results

We have performed fits of the IBM Hamiltonian (1)
parameters plus �γ for different values of the number of

TABLE II. B(E2) transitions to be calculated. nγ = 0 in all the
cases.

si sf si sf

B(E2 : 2+
1 → 0+

1 ) 1 1 B(E2 : 2+
2 → 0+

1 ) 2 1

B(E2 : 4+
1 → 2+

1 ) 1 1 B(E2 : 2+
2 → 0+

2 ) 2 2

B(E2 : 6+
1 → 4+

1 ) 1 1 B(E2 : 4+
2 → 2+

1 ) 2 1

B(E2 : 8+
1 → 6+

1 ) 1 1 B(E2 : 4+
2 → 4+

1 ) 2 1

B(E2 : 0+
2 → 2+

1 ) 2 1 B(E2 : 4+
2 → 2+

2 ) 2 2

B(E2 : 2+
2 → 2+

1 ) 2 1
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FIG. 1. (Color online) χ 2 for the IBM fit to the energy levels of
the different X(5) models, as a function of N .

bosons, N , so as to reproduce as well as possible the energies
of the states given in Table I. These states are generated by the
different X(5) models: X(5), X(5)-β8, X(5)-β6, X(5)-β4, and
X(5)-β2.

As mentioned before, εd , κ0, κ1, κ2, κ3, and �γ are free
parameters in a χ2 fit to the energy levels produced by the

different X(5) models (where κ4 was fixed to zero as discussed
in the preceding section). In Fig. 1 the value of the χ2 for the
best fit to the different X(5) models as a function of N is shown.
The different lines in Fig. 1 correspond to the fit to different
X(5) models as stated in the legend. It is clearly observed that
for any N the best agreement is obtained for the X(5)-β6 and
X(5)-β8 cases, which present a χ2 function almost identical
for any value of N . The χ2 function increases for X(5)-β4 and
X(5)-β2, up to reach X(5), which has the higher χ2 value and
therefore the worst degree of agreement. Anyway, the differ-
ences among the different X(5) models are smaller than a factor
2 in χ2. It is worth noting that these results change slowly with
the boson number and in all cases the χ2 function saturates to
a given value in the large-N limit. The situation presented here
is somehow different from the analysis of the E(5) models [34]
where there is a monotonic behavior in the χ2 values in passing
from E(5)-β4, which presents the lowest value, to E(5)-β6,
E(5)-β8, and E(5), where the maximum appears.

In Figs. 2–6 the Hamiltonian parameters and the excitation
energies for the ground, β and γ bands are plotted for the cases
of X(5), X(5)-β8, X(5)-β6, X(5)-β4, and X(5)-β2, respectively.
The Hamiltonian parameters present clear analogies in their
behavior in all the X(5) models. εd increases continuously on
the whole range of N for all the X(5) models. κ1, in contrast,
exhibits a relatively small and modest value. κ0 and κ2 show
a very smooth variation until reaching a value of saturation,
with a tendency to increase in all cases, except in the case of
κ0 for X(5)-β2, which tends to decrease. κ3 in almost all the
cases tends to increase all the way. In the X(5) case (Fig. 2),
κ3 exhibits a decreasing behavior for small values of N but, as
already mentioned, exhibits an increasing behavior for larger
N values. A similar behavior is also observed for �γ . For the
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FIG. 2. (Color online) Parameters [(a), (b), and (c)] and excitation energies of the ground (d), β (e), and γ (f) bands for the X(5) case, as a
function of N . In the right panels, the continuous red lines are the X(5) results, and the dashed black lines are the fitted results.
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FIG. 3. (Color online) Same as Fig. 2 but for the X(5)-β8 case.

energy levels, it is remarkable that the plotted energies have
almost constant values regardless the value of N , except for
the γ band in the low-N region where the energies smoothly
move to a saturation value. The agreement for the ground-state
band is very good but for the β and γ bands the agreement
is poorer. In the X(5)-β8 case (Fig. 3), κ3 also exhibits a
decreasing behavior for very low values of N , but from there
on it monotonically increases. �γ exhibits an almost constant

value, except for the largest values of N , where a increase
(note the small energy scale) is shown. The energies remain
almost constant in the full range of N , except for the γ band,
where the increase of the �γ value generates, for large values
on N , a corresponding increase. The agreement of the energies
in the ground-state band is perfect and reasonable in the β and
γ bands. The X(5)-β6 case (Fig. 4) is very similar to that of
X(5)-β8, although here �γ exhibits a rather flat behavior with
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FIG. 4. (Color online) Same as Fig. 2 but for the X(5)-β6 case.
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FIG. 5. (Color online) Same as Fig. 2 but for the X(5)-β4 case.

a minimum around N = 40. Once more, the agreement of the
energies in the ground-state band is perfect and reasonable
in the β and γ bands. The X(5)-β4 case shown in Fig. 5
shows a monotonic increase of κ3 and a behavior for �γ

almost identical to that for X(5)-β6. Here also the agreement

of the energies in the ground-state band is good whereas the
description of the β and γ bands is poorer. Finally, X(5)-β2

(Fig. 6) also exhibits a monotonic increase of κ3 whereas κ0

has a smooth decreasing behavior till a saturation value. In �γ

the behavior of X(5) is recovered, with a smooth decrease up to
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TABLE III. Parameters (in arbitrary units) of the IBM Hamilto-
nian plus the excitation energy for the γ bandheads, �γ , that best fit
the different X(5) models for N = 50.

εd κ0 κ1 κ2 κ3 �γ

X(5) 15420 −31.7 7.5 −77.1 −454.8 17.5
X(5)-β8 11426 53.6 17.8 −43.3 −369.2 10.4
X(5)-β6 10661 58.5 19.9 −38.5 −372.7 9.2
X(5)-β4 8942 72.9 19.6 −27.8 −301.4 7.4
X(5)-β2 6595 65.9 18.2 −17.6 −216.6 5.4

N = 15 and a smooth increase from there on. The agreement
of the energies in the ground-state band is very good and
reasonable for the β and γ bands.

In panels (e) of Figs. 2–6 one can see that the moment of
inertia of the β band increases from X(5), where it reaches the
smallest value, till X(5)-β2, where it is maximum. In panels (d)
and (f) of these figures one can also observe how the moment
of inertia of ground and γ bands is roughly stable for all the
models. This tendency is correctly reproduced by the IBM fits.

It is worth remarking that the agreement of the energies
in the β and the γ bands does not clearly deteriorate when
ascending up in the band. In particular, in the γ band the best
agreement is obtained for angular momenta values 4, 5, and
6. Similar conclusions are obtained for the ββ band. This fact
has a important consequence for the value of χ2: Contrary
to what might be expected, the higher states included in the
fitting procedure for the β, γ , and ββ bands produce smaller
contributions to χ2 than the low-lying states of these bands.

To have a clearer idea of the values of the Hamiltonian
parameters obtained in the fits we present in Table III the
parameters of the IBM Hamiltonians that best fit the different
X(5) models for N = 50. Two facts are apparent: 1. The
parameters for X(5)-β8 and X(5)-β6 are amazingly similar and
2. The parameters change almost monotonically when going
from X(5) to X(5)-β2.

As a test for the produced wave functions with the
fitted IBM Hamiltonian, they are used for calculating E2
transition probabilities, B(E2). The effective charge in the
E2 operator (7) is fixed so as to give B(E2; 2+

1 → 0+
1 ) = 100,

10 20 30 40 50 60 70

N
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40

50
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70
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90

χ2

X(5)

X(5)-β8

X(5)-β6

X(5)-β4

X(5)-β2

FIG. 7. (Color online) χ 2 values for the E2 transition rates for
the different X(5) models, as a function of N , calculated using the
IBM electromagnetic transition operator T̂ E2

M = eeff [(s†d̃ + d†s̃) −√
7/2(d† × d̃)(2)

M ].

and thus no free parameters are left in this calculation. For
the B(E2) values calculated (not a fit) a χ2 value has been
obtained for each X(5) model with an arbitrary σ = 10. In
Fig. 7 the corresponding χ2 value is plotted as a function of N

for all the X(5) models considered. Figure 7 shows a smooth
dependence of χ2 on N . The χ2 value decreases monotonically
as N increases for all the X(5) models. The best agreement is
obtained for X(5) while the worst is for X(5)-β2.

For a quantitative comparison, the B(E2) values for
selected transitions with N = 50 are shown in Table IV. In this
table, the remarkable agreement between the IBM calculations

TABLE IV. B(E2) values (in arbitrary units) obtained, for N = 50, for the fitted IBM Hamiltonians (see text)
compared with those provided by the different X(5) models.

X(5) IBM X(5)-β8 IBM X(5)-β6 IBM X(5)-β4 IBM X(5)-β2 IBM

B(E2 : 2+
1 → 0+

1 ) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
B(E2 : 4+

1 → 2+
1 ) 159.9 155.4 163.4 159.1 165.3 145.7 169.0 164.9 177.9 174.6

B(E2 : 6+
1 → 4+

1 ) 198.2 181.6 208.8 189.2 214.6 160.8 226.2 199.9 255.2 217.7
B(E2 : 8+

1 → 6+
1 ) 227.6 199.1 247.3 210.3 258.1 166.2 279.9 224.9 337.1 249.2

B(E2 : 0+
2 → 2+

1 ) 62.4 43.4 74.7 55.7 81.0 11.2 93.2 74.6 121.9 106.7
B(E2 : 2+

2 → 2+
1 ) 8.2 4.4 9.7 7.3 10.3 0.9 11.3 15.4 13.4 33.4

B(E2 : 2+
2 → 0+

1 ) 2.1 0.2 2.2 0.0 2.2 3.5 2.0 0.6 1.6 4.4
B(E2 : 2+

2 → 0+
2 ) 79.5 56.1 97.2 67.5 106.0 68.3 122.0 69.3 155.7 49.2

B(E2 : 4+
2 → 2+

1 ) 0.9 0.2 0.8 0.0 0.7 5.2 0.5 0.7 0.1 2.1
B(E2 : 4+

2 → 4+
1 ) 6.1 3.4 7.7 6.8 8.4 0.7 9.6 16.6 12.4 27.7

B(E2 : 4+
2 → 2+

2 ) 120.0 111.9 149.1 121.7 162.9 108.1 187.7 110.9 240.3 99.3
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and those from the X(5) model become clear. However,
as soon as we move to the rest of models the agreement
starts getting worse. Some comments on these results are
in order. First, one observes that the B(E2) values within
the ground-state band are calculated qualitatively correct in
all models. This agreement is quantitatively good for the
X(5) case and gets worse for the other models. The X(5)-β2

case is the worst, showing differences of a factor of 2 for
some transitions. The IBM seems to saturate to too small
a value as the angular momentum increases; therefore the
deviation increases with the angular momentum. The intraband
transitions in the β band exhibit the same kind of agreement,
where the larger discrepancy is for B(E2 : 4+

2 → 2+
2 ). The

interband transitions once more agree well qualitatively. In
summary, one can say that the structure of the wave functions
is correctly captured by the IBM fit, especially for X(5), and
the calculations are able to reproduce the sequence of large and
small values (with few exceptions), confirming the appropriate
structure of the wave functions.

III. THE CRITICAL HAMILTONIAN

One of the most attractive features of the X(5) models
treated in this work is that they are supposed to describe,
at different approximation levels, the critical point in the
transition from spherical to rigid axially deformed shapes.
Since they are connected to a given IBM Hamiltonian, as
shown in the preceding section, this should correspond to
the critical point in the transition from spherical to axially
deformed shapes, that is, this Hamiltonian should produce
an energy surface with degenerated spherical and deformed
minima. Is this the case for the fitted IBM Hamiltonians
obtained in the preceding section? Before starting with the
discussion it is necessary to establish a measure of how close
is a given IBM Hamiltonian to the critical point.

An energy surface can be associated with a given IBM
Hamiltonian by using the intrinsic state formalism [8,9,11],
which introduces the shape variables (β, γ ) in the IBM. To
define the intrinsic state one has to consider that the dynamical
behavior of the system can be approximately described in
terms of independent bosons moving in an average field [50].
The ground state of the system is written as a condensate, |c〉,
of bosons that occupy the lowest energy phonon state, 	

†
c :

|c〉 = 1√
N !

(	†
c)N |0〉, (10)

where

	†
c = 1√

1 + β2

(
s† + β cos γ d

†
0 + 1√

2
β sin γ (d†

2 + d
†
−2)

)
.

(11)

Here β and γ are variational parameters related with the
shape variables in the geometrical collective model [11].
The expectation value of the Hamiltonian (1) in the intrin-
sic state (10) provides the energy surface of the system,
E(N, β, γ ) = 〈c|Ĥ |c〉. This energy surface in terms of the
parameters of the Hamiltonian (1) and the shape variables can
be readily obtained [51] (where we keep the κ4 variable for

completeness) as

〈c|Ĥ |c〉 = Nβ2

(1 + β2)

(
εd + 6κ1 − 9

4
κ2 + 7

5
κ3 + 9

5
κ4

)

+ N (N − 1)

(1 + β2)2

[
κ0

4
+ β2

(
−κ0

2
+ 4κ2

)

+ 2
√

2β3κ2 cos(3γ ) + β4

(
κ0

4
+ κ2

2
+ 18

35
κ4

) ]
.

(12)

The shape of the nucleus is defined through the equilibrium
value of the deformation parameters, β and γ , which are
obtained by minimizing the ground-state energy, 〈c|Ĥ |c〉.
A spherical nucleus has a global minimum on the energy
surface at β = 0, whereas a deformed one has the absolute
minimum at a finite value of β. The parameter γ represents
the departure from axial symmetry; that is, γ = 0 and γ = π/3
stand for a prolate and oblate, respectively, axially deformed
nucleus, while any other value corresponds to a triaxial shape.
An additional situation arises when the energy surface is
independent of γ but shows a minimum at a finite value of
β; in this case the nucleus is γ -unstable. It has to be noted
that for a general IBM Hamiltonian including up to two-body
terms, such as the one considered in this work, triaxiality is
forbidden.

With the tools just described one can study phase tran-
sitions in the IBM [8]. First, the parameters that define the
Hamiltonian are the control parameters and these are usually
chosen in such a way that only one of them is a variable,
while the rest remain constant. The deformation parameters
β and γ become the order parameters, although in our case
the order parameter is just β. Roughly speaking, a phase
transition appears when there exists an abrupt change in the
shape of the system when changing smoothly the control
parameter. The phase transitions can be classified according to
the Ehrenfest classification [52]. First-order phase transitions
appear when there exists a discontinuity in the first derivative
of the energy with respect to the control parameter. This
discontinuity appears when two degenerate minima exist in
the energy surface for two values of the order parameter
β. Second-order phase transitions appear when the second
derivative of the energy with respect to the control parameter
displays a discontinuity. This happens when the energy surface
presents a single minimum for β = 0 and the surface satisfies
the condition ( d2E

dβ2 )β=0 = 0. In a modern classification, second-
order phase transitions belongs to the high-order or continuous
phase transitions [52]. The X(5) situation was designed to
describe first-order phase transitions.

To determine whether a given Hamiltonian corresponds
to a critical point or not, the flatness or the existence of
two degenerate minima in the energy surface should be
investigated. For the case of a one-parameter IBM Hamiltonian
(e.g., consistent Q (CQF) Hamiltonians [53]), it is simple to
find an analytical expression for the critical control parameter
in the Hamiltonian. However, for a general IBM Hamiltonian,
such as the one used in this work, it is necessary to rewrite
the energy surface in a special way, as proposed first by
López-Moreno and Castaños [15]. There, the authors manage
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to write the energy surface of a general IBM Hamiltonian in
terms of two parameters. They made use of some concepts
from catastrophe theory [54] to define the two essential
parameters, (r1, r2) of the problem. In terms of these two
essential parameters they found expressions for the locus, in
the essential parameter space, that gives a critical point at the
origin in β, called the bifurcation set, and for the locus that
gives rise to two degenerate minima, called the Maxwell set.
The essential parameters r1 and r2 can be written as

r1 = a3 − u0 + ε̃/(N − 1)

2a1 + ε̃/(N − 1) − a3
, (13)

r2 = − 2a2

2a1 + ε̃/(N − 1) − a3
, (14)

where

ε̃ = εd + 6κ1 − 9

4
κ2 + 7

5
κ3 + 9

5
κ4,

a1 = 1

4
κ0 + 1

2
κ2 + 18

35
κ4,

a2 = 2
√

2κ2, (15)

a3 = −1

2
κ0 + 4κ2,

u0 = κ0

2
.

By using the essential parameters, the energy surface can
be written as

E∗(β, γ ) = 〈c|Ĥ |c〉 − N (N − 1)u0/2

N (N − 1)(2a1 + ε̃/(N − 1) − a3)

= 1

1 + β2
[β4 + r1β

2(β2 + 2) − r2β
3cos3γ ]. (16)

Note that E∗(β, γ ) does not depend on the number of bosons,
allowing us to compare fairly energy surfaces corresponding
to different boson numbers.

In Fig. 8 we display the plane of the essential parameters
where the fitted Hamiltonians to the different X(5) models
are plotted with different symbols. In this plane a critical
first-order Hamiltonian corresponds to a point over the dashed
line (Maxwell set, i.e., two degenerated minima). The r1 = 0
line corresponds to ( d2E

dβ2 )β=0 = 0 (i.e., to the appearance of the
spherical minimum called antispinodal point). The curved full
line above the Maxwell set corresponds to ( d2E

dβ2 )β0 = 0, with
β0 �= 0 (i.e., it corresponds to the appearance of a deformed
minimum called spinodal point). The area below the curved
full line and above r1 = 0 is the coexistence region. In this
region two minima, one spherical and one deformed, coexist.
We also represent in the plane the second-order critical point
(r1 = r2 = 0). Note that all the points above the dashed line
correspond to spherical shapes, whereas those below that
line represent deformed shapes. We only plot the r2 > 0
semiplane because our IBM Hamiltonian always corresponds
to prolate shapes and therefore to r2 > 0. The semiplane r2 < 0
is identical to the one presented in Fig. 8, but for oblate shapes.
The different symbols in the figure correspond to the IBM
Hamiltonians fitted to one of the X(5) models (see legend)
for N ranging from 10 to 70. The idea is to see whether

0 0.5 1 1.5
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2
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r 1
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1
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FIG. 8. (Color online) Position in the plane r1-r2 of the energy
surfaces extracted from the fitted IBM Hamiltonians to the different
X(5) models as a function of N (10, 20, 30, 40, 50, 60, and 70). The
largest value of N is placed on the left-hand side whereas the smallest
one is on the right part of the figure.

in the large-N limit the obtained IBM Hamiltonians go to the
Maxwell set (dashed line), which is the line of first-order phase
transitions. For all the models, the N value of the different
points increases from the right to the left.

Several important features can be extracted from this figure.
The main one is that the X(5) case, for the whole range of N ,
is always very close to the Maxwell set (i.e., to the first-order
phase transition line), being closer as the value of N increases.
This is not exactly the case for the rest of fits. X(5)-β8, X(5)-β6,
and X(5)-β4 are situated on the coexistence region for small or
moderate N values, but they go toward the prolate deformation
region as N increases, although they are always very close
to the antispinodal line. Finally, the case X(5)-β2 lies in the
deformed region but it approaches the coexistence area as
N increases. In general, one observes that the mapped IBM
energy surfaces move further away from the coexistence region
as one changes from X(5) through X(5)-β8, X(5)-β6, X(5)-β4,
and X(5)-β2. In general, the higher the value of n is [X(5)-βn],
the closer to the coexistence region is the IBM energy surface.
In all the cases one observes that the different models always
move in the direction of the second-order phase transition point
as N increases.

To illustrate graphically the shapes of the energy surfaces
obtained with the different IBM Hamiltonians, we plot in Fig. 9
the axial IBM energy surfaces E∗(β, 0) [Eq. (16)], along the
prolate leg, extracted from the fit to the five analyzed X(5)
models as a function of the deformation β for three values of
N : 10, 40, and 70. All the panels show a rather similar aspect:
For N = 10 there exists a more pronounced minimum, while
passing from N = 40 to N = 70 the energy surface flattens,
moving into a shape with two approximately degenerated
minima. As was studied in Fig. 8, in Fig. 9(a), which is for
X(5), the three curves present two minima, in Figs. 9(b), 9(c),
and 9(d), corresponding to X(5)-β8, X(5)-β6, and X(5)-β4,
respectively, only the line for N = 10 has two minima, whereas
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FIG. 9. (Color online) IBM axial
energy surfaces, for prolate shapes [see
Eq. (16)] as a function of β, for selected
values of N (see text for definition).
(a) X(5), (b) X(5)-β8, (c) X(5)-β6,
(d) X(5)-β4, and (e) X(5)-β2. The insets
show closer views of the region around
β = 0.

N = 40 and N = 70 show only a deformed minimum (see
insets of Fig. 9). Finally, Fig. 9(e) is for X(5)-β2, and the
three curves present only a deformed minimum, although it
clearly flattens as N increases. This analysis confirms that X(5)
models map into IBM Hamiltonians that are very close to the
first-order phase transition line, but the closest Hamiltonian to
the transition area is the one mapped from the original X(5)
model.

A somewhat similar analysis to the one presented in
this section was performed in [42,43]. There, the authors
studied the connection between X(5) and X(5)-β2 using a
two-parameter IBM Hamiltonian [and they also analyzed
X(3)] for N = 10. Their conclusion was that the X(5) case is
close to, although not exactly at, the first-order phase transition
region for a finite number of bosons. This conclusion is very
similar to the one extracted from our results. For the case
of X(5)-β2 their results are similar to the X(5) case; that
is, the corresponding IBM Hamiltonian is even closer to the
first-order phase transition line that in the X(5) case. These
latter results are also in agreement with the conclusions raised
in the present work, although we have found that X(5)-β2 is
further from the coexistence region than X(5). The origin of
the discrepancy should be based on the more restricted set
of data used in [42,43] in their fits and the smaller number
of parameters used in the IBM Hamiltonian.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have studied the connection between
the X(5) models and the IBM on the basis of a numerical
mapping between these models. To establish the mapping we
have performed a best fit of the general IBM Hamiltonian
to a selected set of energy levels produced by several X(5)
models; as an additional parameter we have used the energy

of the γ bandhead, which is not fixed by the X(5) models.
Later, a free parameter check of the wave functions, obtained
with the best-fit parameters, was done by calculating relevant
B(E2) transition rates. All calculations have been done as
a function of the number of bosons. Once the best-fit IBM
Hamiltonians to the different X(5) models are obtained, their
energy surfaces are constructed and analyzed with the help of
catastrophe theory so as to learn how close they are to a critical
point.

We have shown that it is possible, in all cases, to obtain
a mapping between the X(5) models and the IBM with a
reasonable agreement for both energies and B(E2) transition
rates. In general, the goodness of the fit to the energies and
B(E2) transition rates is independent on the number of bosons.
Globally, the agreement is similar for all the models: for
the energies the best agreement is for X(5)-β8 and X(5)-β6

whereas the worst is for X(5). In any case, the χ2 values
obtained that give the goodness of the fits are comparable for
all the models. Additional tests have been done to the produced
wave functions by calculating B(E2) transition rates. No free
parameters are included in these calculations. In this case,
the best agreement (smallest χ2 value) is obtained for X(5)
whereas the worst is for X(5)-β2. A consequence of this good
general agreement is that it would be almost impossible, from
an experimental point of view, to discriminate between a X(5)
model and its corresponding IBM Hamiltonian when only a
few low-lying states are considered (usually the four lowest
states in the ground, β, and γ bands.)

We have also proved that the X(5) model corresponds to
an IBM Hamiltonian that is very close to the first-order phase
transition region, getting closer for larger values of N . X(5)-β8,
X(5)-β6, and X(5)-β4 models lie within the coexistence region
for small and moderate values of N , but they move slightly into
the deformed region for larger values of N . Finally, X(5)-β2

lies all the way into the deformed region, although very close
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to the coexistence region. In all the cases the system evolves
toward the second-order critical point as N increases.

It is worth mentioning that the conclusions raised in this
work are somewhat dependent on the constraints imposed in
the fitting procedure. On one hand we have checked that the
inclusion, or not, of high-lying states in the bands considered
in the fit does not strongly affect to the results. On the other
hand we have extensively checked the case with κ4 �= 0 [48].
This later case generates values of χ2 similar to the ones
presented in this work, but the global picture of the mapped
IBM Hamiltonians to the X(5) models is not so consistent as the
one shown here. In particular, the change of the Hamiltonian
parameters as a function of N or as a function of the considered
X(5) model is not smooth enough. There are instabilities
in the fitting procedure because the produced χ2 surface is
very flat.

Finally, it is worth mentioning the differences between the
X(5) model–IBM and the E(5) model–IBM mappings [34]. For
the E(5) models the agreement for both the energies and the
B(E2) transition rates is really remarkable and much better
than for the X(5) models. Globally, the best agreement is
obtained for the E(5)-β4 Hamiltonian and the worst for the
E(5) case. For the case of very large number of bosons the
only E(5) model that can be reproduced exactly by the IBM
is E(5)-β4, corresponding such an IBM Hamiltonian with the

critical point of the model (r1 = 0) (as shown in Refs. [55,56]).
All the E(5) models correspond to IBM Hamiltonians very
close to the critical area, |r1| < 0.05 with r2 = 0. Therefore,
one can say that the E(5) models are appropriate to describe
transitional γ -unstable regions close to the critical point.
However, not all the X(5) models are suitable for describing the
critical area between the axially deformed and the spherical
shapes; only X(5) is really appropriate to this end. Finally,
for the E(5) models the existence of something similar to a
quasidynamical symmetry [57] is observed, a phenomenon
we call quasi-critical point symmetry. In the case of the X(5)
models we cannot talk about quasi-critical point symmetry
because the agreement between the IBM and the X(5) models
is not good enough; only in the case of the ground-state band
for X(5) do we have the appropriate agreement to say that a
quasi-critical point symmetry is present.
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