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5Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
(Received 27 May 2010; published 13 August 2010)

We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the
Hartree-Fock-Bogoliubov theory. The particle-hole and particle-particle channels are optimized simultaneously,
and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free
optimization algorithm used in this work has been found to be significantly better than standard optimization
methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDF0 results in good
agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An
estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We
discuss new physics insights offered by the advanced covariance analysis.
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I. INTRODUCTION

The goal of low-energy nuclear physics is to understand
nuclei and how they react. This fascinating science problem is
relevant to other fields and to a gamut of societal applications.
New vistas have been opened by experimental advances
in the production of rare isotopes [1] and new theoretical
approaches [2] backed by unprecedented computing power [3].
The rapid experimental developments have resulted in a wealth
of unique data from previously unexplored regions of the
nuclear landscape. This situation poses a serious challenge
to models of nuclear structure and calls for their improved
reliability and better-controlled extrapolability.

Theorists seek to formulate a coherent framework for
nuclear structure and reactions based on a well-founded
microscopic theory that would deliver maximum predictive
power with well-quantified uncertainties. To this end, the
steady increase in computing power, currently crossing the
petaflop barrier, has been beneficial. A paradigm for the new
mode of nuclear theory is the US Department of Energy’s
Scientific Discovery Through Advanced Computing Universal
Nuclear Energy Density Functional (UNEDF) project [4], an
example of the close alignment of the physics research with the
necessary applied mathematics and computer science research.

This study is the fruit of such a partnership, under UNEDF,
in which physicists collaborate with mathematicians and
computer scientists on a specific science challenge. Our
long-term goal in UNEDF is to develop a spectroscopic-quality
theoretical framework rooted in the nuclear density functional
theory (DFT) [5]. In the first phase of the project, we
have developed efficient DFT solvers for the self-consistent
Hartree-Fock-Bogoliubov (HFB) problem. Various improve-
ments that we have implemented to carry out large-scale
DFT calculations have been recently presented in Refs. [6,7].
These improvements enable comprehensive mass-table cal-
culations, including all even-even nuclei and many different
configurations in odd-even and odd-odd nuclei, in less than a
day [8,9].

The second phase of the project concerns the development
and optimization of the nuclear energy density functional
(EDF). Because standard functionals are clearly too restrictive
when one is aiming at a quantitative description [10,11], the
form of EDF needs to be improved. Novel functionals can
be constructed from two- and three-nucleon interactions by
using effective field theory and the density matrix expansion
technique [12–15] and by using constraints from ab initio
calculations for very light nuclei and nuclear matter. They can
also be obtained by enriching density dependence and adding
higher gradient terms in a systematic way [15–17].

Having determined the form of the EDF, one must still
optimize the coupling constants of the underlying energy
density (ED). Indeed, all energy functionals, irrespective of
their theoretical foundations, rely on parameters that must be
directly fitted to experimental data. It has been realized recently
that high-performance computing can positively impact the
optimization strategy. Historically, most nuclear ED parame-
terizations, such as Skyrme or Gogny, were obtained by a direct
fit to selected experimental data from finite nuclei and various
nuclear-matter properties (NMPs). Observables commonly
included in the fit are binding energies, proton radii, surface
thickness, and/or single-particle (s.p.) energies of doubly
closed-shell nuclei, as well as NMPs (pseudo-observables)
such as energy per particle of infinite and semi-infinite nuclear
matter, saturation density, or incompressibility. This is the case,
for example, for the SLy4 parameterization of the Skyrme
functional of Ref. [18], which we take (somewhat arbitrarily)
as a reference point in our study. The D1, D1S, and D1N
parameterizations of the Gogny interaction have also been
obtained in such a framework [19–21], as well as some
parameterizations of relativistic functionals [22,23]. We refer
to Refs. [5,24,25] for a more thorough discussion of various
fitting strategies and protocols.

In fact, very few examples of EDs are fitted to other
types of data. For Skyrme EDFs only, we mention the
early attempt of the SkM* parameterization [26], which was
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adjusted semiclassically to account for the fission barrier
of 240Pu. The Brussels-Montreal set of EDFs has been
optimized to data on deformed nuclei, although the actual fit is
always performed with a spherical code by using a multistep
procedure. For example, in the early versions MSk1–MSk6,
the deformation energy of the ground-state configuration was
used to renormalize nuclear masses so that the optimization
could proceed in spherical symmetry [27]. Similarly, while in
the later version HFB14, data on fission barriers were used, the
core part of the fitting procedure was carried out in spherical
geometry [28]. For SLy4 itself, several parameters were fixed
at values empirically expected to yield a correct description
of giant resonance energy centroids in random phase ap-
proximation (RPA) calculations, although no such calculation
was included in the fit nor any quantitative check performed
a posteriori.

The choice to restrict the data set of observables to those
pertaining to nuclear matter and spherical nuclei has almost
always been dictated by practical considerations: The cost
of performing huge numbers of deformed HFB calculations
was deemed too high. It was also rightly argued that the
driving terms of the EDF could be pinned down by considering
spherical nuclei only. With the need for more precision,
however, the limitation to spherical nuclei and NMP is clearly
not sufficient. The advent of supercomputers makes it possible
to free ourselves from this restriction.

Specifically, the availability of supercomputers has two
consequences. First, one can now include in the set of fit
observables data corresponding to deformed nuclei, odd-mass
systems, excited states, and so forth. More comprehensive data
sets should better constrain the various channels of the energy
functionals, for example, its deformation or spin-polarization
properties. It might soon become possible to directly optimize
symmetry-restored EDFs [29], in either a single-reference
[30–33] or a multireference [34–36] framework.

In addition, in our quest for improved EDFs, a key step
is to understand various constraints imposed by experimental
data on ED parameters and the resulting uncertainty margins.
Early attempts to use statistical methods of linear-regression
and error analysis [37] have been revived recently and applied
to determine the correlations among ED parameters, param-
eter uncertainties, and the errors of calculated observables
[10,11,24,25,38]. This approach is essential for providing
predictive capability and extrapolability and for estimating
the theoretical uncertainties.

The purpose of this work is to revisit the problem of
Skyrme ED optimization by (i) removing some of the
previous limitations with the help of modern computational
resources and (ii) applying regression diagnostics methods
on the resulting parameterization. To these ends, we perform
functional optimization with a model-based method that is
particularly adapted to costly function evaluations, such as
when the objective function contains the result of hundreds of
symmetry-unrestricted HFB calculations. In our model study,
we focus on nuclear masses and radii, with a bias toward heavy
nuclei. The final ED parameterization is subjected to a fully
fledged correlation and sensitivity analysis. While we do not
claim to have found an end-all parameterization of the Skyrme
EDF, we believe that the set of techniques we have applied

in this study can pave the way to a universal nuclear EDF of
spectroscopic quality.

The article is organized as follows. In Sec. II we briefly
present the DFT framework used, in particular various param-
eterizations of the Skyrme EDF and their relations to NMP. We
also discuss the choice of experimental observables. Section III
presents the specific model-based algorithm used in this work
and contains all the technical information related to large-scale
HFB calculations. Results are discussed in Sec. IV. Section V
contains the conclusions of this work.

II. THEORETICAL FRAMEWORK

This section recalls the features of the Skyrme-DFT theory
that are relevant to the optimization problem. A detailed
presentation of the theory itself can be found in, for example,
Refs. [5,39,40] and references therein. The main focus of the
following discussion is on various parameterizations of the
Skyrme EDF and the selection of experimental observables
chosen to constrain ED parameters.

A. Time-even Skyrme energy density functional

In nuclear DFT, the total energy of the nucleus is given by

E =
∫

H(r)d3r, (1)

where H is the local ED that is supposed to be a real, scalar,
time-even, and isoscalar function of local densities and their
derivatives. The Skyrme ED can be decomposed into the
kinetic term, interaction ED χ , pairing ED, Coulomb term, and
additional corrections, such as the center-of-mass term. For
the kinetic energy term, we set h̄2/2m = 20.73553 MeV fm2.
The Coulomb Hartree term is calculated exactly, while the
exchange term is computed by the Slater approximation. The
contribution from the center-of-mass correction has the same
structure as the kinetic term and leads to a renormalization
of the nucleon mass 1/m → (1/m)[1 − 1/A]. All these
prescriptions follow the SLy4 parameterization.

The interaction ED can be further decomposed into χ =
χ0 + χ1, with

χt (r) = C
ρρ
t ρ2

t + C
ρτ
t ρt τt + CJ 2

t J2
t

+C
ρ�ρ
t ρt�ρt + C

ρ∇J
t ρt∇ · J t , (2)

where the isospin index t labels isoscalar (t = 0) and isovector
(t = 1) densities. Because in this work we limit the discussion
to even-even nuclei, the terms involving spin, spin-kinetic, and
current densities [5,40,41] are absent. The coupling constants
C

ρρ
t contain an additional dependence on the isoscalar density

of the form

C
ρρ
t = C

ρρ

t0 + C
ρρ

tD ρ
γ

0 . (3)

The standard Skyrme interaction ED therefore contains 13
independent parameters:{

C
ρρ

t0 , C
ρρ

tD , C
ρ�ρ
t , C

ρτ
t , CJ 2

t , C
ρ∇J
t

}
t=0,1 and γ. (4)

When dealing with the Skyrme interaction EDF (i.e., the
functional that originates from the Skyrme interaction), the
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coupling constants (4) are uniquely related to the well-known
(t,x) parameterization of the Skyrme interaction,

{t0, t1, t2, t3, x0, x1, x2, x3, to, te, b4, b
′
4, γ }. (5)

The equations connecting the C and (t,x) parameterization
can be found, for example, in Ref. [40].

In this study, nucleonic superconductivity is described by
the pairing ED:

χ̆(r) =
∑

q=n,p

V
q

0

2

[
1 − 1

2

ρ(r)

ρ0

]
ρ̆2(r), (6)

where ρ̆ is the local pairing density and ρ0 = 0.16 fm−3

(mixed-pairing prescription [42]).

B. Nuclear-matter properties and Skyrme energy
density parameterizations

The (t,x) and C representations are natural parameter-
izations of the Skyrme EDF, the former in terms of an
effective, density-dependent two-body interaction and the
latter as a general functional of the density. However, these
representations do not provide a straightforward connection to
physical observables; hence, it is not immediately obvious
what the search range for these parameters should be. It
is therefore advantageous to relate them to fundamental
properties of symmetric and asymmetric homogeneous nuclear
matter, which have a clear physical interpretation and the range
of which is known [25,43,44].

The starting point in the discussion of NMPs is the equation
of state (EOS) of the infinite homogeneous nuclear matter:
E/A = W (ρn, ρp). The Coulomb energy is disregarded, all
gradient terms vanish, and the kinetic ED is replaced by its
Thomas-Fermi expression. Assuming an unpolarized system,
one can also ignore terms involving time-odd spin densities
and currents.

The expansion of W (ρn, ρp) around the equilibrium density
ρc and I = 0 can be written as

W (ρn, ρp) = W (ρ0, I ) = W (ρ0) + S2(ρ0)I 2 + O(I 4), (7)

where I = ρ1/ρ0 = (ρn − ρp)/ρ0 is the relative neutron ex-
cess, ρ0 = ρn + ρp, ρ1 = ρn − ρp,

W (ρ0) = ENM

A
+ P NM

ρ2
c

(ρ0 − ρc) + KNM

18ρ2
c

(ρ0 − ρc)2, (8)

and

S2(ρ0) = aNM
sym + LNM

sym

3ρc
(ρ0 − ρc) + �KNM

18ρ2
c

(ρ0 − ρc)2. (9)

In these equations, ENM/A stands for the total energy per
nucleon at equilibrium, P NM represents the nucleonic pressure,
KNM is the nuclear-matter incompressibility, aNM

sym is the
symmetry energy coefficient, LNM

sym represents the density
dependence of the symmetry energy, and �KNM is a correction
to the incompressibility.

1. Symmetric nuclear matter

In the regime of symmetric nuclear matter (SNM), ρn =
ρp = ρ0/2 and I = 0, which eliminates all isovector terms.
The isoscalar kinetic ED per particle is

τ0 = Ckρ
2/3
0 , Ck = 3

5

(
3π2

2

)2/3

. (10)

The nuclear-matter saturation curve W (ρ0) is expected to have
the following properties:

ρc ≈ 0.16 fm−3, (11)

P NM = ρ2 dW (ρ0)

dρ0

∣∣∣∣
ρ0=ρc

= 0, (12)

ENM

A
= W (ρc) ≈ −16 MeV. (13)

The value of the incompressibility modulus is related to the
centroid energies of giant isoscalar monopole resonances in
isospin-symmetric nuclei [45] and is expected to be [46,47]

KNM = 9ρ2
0
d2W (ρ0)

dρ2
0

∣∣∣∣
ρ0=ρc

≈ 220 ± 10 MeV, (14)

with a strong preference for 230 MeV [48]. Another important
NMP, entering the SNM EOS indirectly, is the isoscalar
effective mass

M∗−1
s = 2m

h̄2

dE

dτ0

∣∣∣∣
ρ0=ρc

, (15)

which quantifies the momentum-dependence of the mean field
and drives the density of the s.p. spectrum. An appropriate
value for a fit to experimental s.p. energies is M∗

s = 1 [49],
while ab initio calculations performed at the Brueckner-
Hartree-Fock level in infinite nuclear matter suggest a slightly
lower value for the Landau (Fermi-level) effective mass
extracted from the on-shell s.p. spectrum [50–53]. Mass fits
also seem to favor a value close to unity, although significant
freedom exists [54].

The SNM EOS expressed in terms of the coupling constants
of the Skyrme EDF is

W (ρ0) =
(

h̄2

2m
+ C

ρτ

0 ρ0

)
Ckρ

2/3
0 + (

C
ρρ

00 + C
ρρ

0Dρ
γ

0

)
ρ0.

(16)

Computing the quantities (13)–(15) using Eq. (16) allows
us to express the coupling constants C

ρρ

00 , C
ρρ

0D , and C
ρτ

0 and
the power γ in terms of ENM/A, P NM = 0, KNM, and M∗−1

s .
The resulting expressions are [43] as follows:

C
ρρ

00 = 1

3γρc

{
h̄2

2m

[
(2 − 3γ )M∗−1

s − 3
]
τc + 3 (1 + γ )

ENM

A

}
,

(17)

C
ρρ

0D = 1

3γρ
1+γ
c

[
h̄2

2m

(
3 − 2M∗−1

s

)
τc − 3

ENM

A

]
, (18)

C
ρτ

0 = h̄2

2m

(
M∗−1

s − 1
) 1

ρc
, (19)
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γ =
h̄2

2m

(
4M∗−1

s − 3
)
τc − KNM − 9ENM

A

h̄2

2m

(
6M∗−1

s − 9
)
τc + 9ENM

A

, (20)

where τc = Ckρ
2/3
c .

2. Asymmetric nuclear matter

In asymmetric nuclear matter (ANM), neutron and proton
densities are different, and isovector terms are nonzero. The
local and kinetic energy densities are

ρ1 = Iρ0, (21)

τ0 = Ckρ
2/3
0 F+(I ), (22)

τ1 = Ckρ
2/3
0 F−(I ), (23)

F±(I ) = 1
2 [(1 + I )5/3 ± (1 − I )5/3]. (24)

The nuclear-matter EOS W (I, ρ) now depends on the relative
neutron excess I . The most important parameter characterizing
the isospin dependence of the ANM EOS is the symmetry
energy at saturation density,

S2(ρc) = aNM
sym = 1

2

d2W (ρ0, I )

dI 2

∣∣∣∣ ρ0 = ρc
I = 0

. (25)

The value of S2(ρc) varies from 28 to 36 MeV among EDFs
extrapolated to nuclear matter [44,55]. It is understood [56,57]
that nuclear masses constrain a combination of the symmetry
and surface-symmetry energy parameters in a given EDF, and
this fact explains the large spread of values.

The variation of the density-dependent symmetry energy
S2 with ρ0 is usually parameterized through

LNM
sym = 3ρc

dS2(ρ0)

dρ0

∣∣∣∣
ρ0=ρc

, (26)

the value of which appears correlated with the thickness of
neutron skins in asymmetric nuclei (see Ref. [38] and refer-
ences therein). An empirical determination of this parameter
yields LNM

sym = 80 ± 30 MeV [58,59]. One now introduces

�KNM = 9ρ2
c

d2S2(ρ0)

d2ρ0

∣∣∣∣
ρ0=ρc

, (27)

which affects the incompressibility of the ANM and thus the
isoscalar monopole resonance energies in neutron-rich nuclei
[45]. For the SLy4 EDF, the values of the last two parameters
were determined by the fit to the neutron-matter EOS. We let
these quantities be constrained by our experimental data set.
We see whether these data leave enough freedom to apply
additional constraints in the regression analysis.

The momentum dependence of the mean field is also
affected by isospin: Neutron and proton effective masses are
different in asymmetric matter [60], an effect quantified by the
isovector effective mass

M∗−1
v = M∗−1

s − 2m

h̄2

dE

dτ1

∣∣∣∣ ρ0 = ρc
I = 0

. (28)

The EOS of homogeneous ANM can be written as

W (I, ρ0) =
(

h̄2

2m
+ C

ρτ

0 ρ

)
Ckρ

2/3
0 F+(I ) + C

ρτ

1 Ckρ
5/3
0 IF−(I )

+ [
C

ρρ

00 + C
ρρ

0Dρ
γ

0 + I 2
(
C

ρρ

10 + C
ρρ

1Dρ
γ

0

)]
ρ0. (29)

Just as for SNM, we compute the quantities (25)–(28) from
Eq. (29) and obtain an expression for C

ρτ

1 , Cρρ

10 , and C
ρρ

1D [43]:

C
ρτ

1 = C
ρτ

0 − h̄2

2m

(
M∗−1

v − 1
) 1

ρc
, (30)

C
ρρ

10 = 1

27γρc

[
27(1 + γ )aNM

sym − 9LNM
sym + 5τc(2 − 3γ )

× (
C

ρτ

0 + 3C
ρτ

1

)
ρc −5τc(1 + 3γ )

h̄2

2m

]
, (31)

C
ρρ

1D = 1

27γρ
γ+1
c

[
−27aNM

sym + 9LNM
sym

+ 5

(
h̄2

2m
− 2ρc

(
C

ρτ

0 + 3C
ρτ

1

))
τc

]
. (32)

Using relations (20)–(32), we express 7 of the original 13
parameters (4) of the Skyrme EDF as functions of NMPs.
The remaining 6 are not known exactly and should therefore
not be used as rigid constraints [25]. However, the expected
values of all these NMPs are sufficient to provide well-defined
intervals of variation during the optimization process. The 6
remaining coupling constants are the isoscalar and isovector
C

ρ�ρ
t , spin-orbit C

ρ∇J
t , and tensor CJ 2

t terms. Consequently,
the Skyrme EDF depends on the following 13 parameters:{

ρc, E
NM/A,M∗

s , KNM, aNM
sym, LNM

sym,

M∗
v , C

ρ�ρ

0 , C
ρ�ρ

1 , C
ρ∇J

0 , C
ρ∇J

1 , CJ 2

0 , CJ 2

1

}
. (33)

C. Fit observables

To calibrate the EDF, we selected a pool of fit observ-
ables that constitute the UNEDF experimental database [61].
The purpose of the database is to provide a standard and
comprehensive set of experimental data that can be used to
systematically optimize EDFs. Because we wish to provide,
together with the optimized set of parameters, a measure of
its intrinsic quality via the error and sensitivity analysis, for
every observable an error bar should also be defined. We
organized our database into three major categories—spherical,
deformed, and symmetry-unrestricted—which reflect the level
of symmetry breaking of the underlying EDF and thereby the
complexity of its numerical implementation. More details can
be found in Ref. [61].

The focus of this work is on a well-controlled optimization
methodology, and the emphasis is on global nuclear properties
such as masses and proton radii. Our functional is therefore
restricted to time-even densities, and only spherical or axially
deformed nuclei are considered. The chosen observables
embrace data for 72 nuclei, which are proven to allow a
reasonable DFT description. The selected experimental data
set is presented in Fig. 1. As can be seen, the emphasis is on
the heavy nuclei. Indeed, there are only 11 nuclei with A < 66
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11 nuclei

61 nuclei

BE known

SPH: BE, rch

DEF: BE

DEF: BE, n

DEF: BE, p

FIG. 1. (Color online) Experimental set of fit observables used in
this work. The set contains data for 11 nuclei with A < 66 and 61
nuclei with A > 106.

in our data set. In what follows, we give a detailed description
of the set of fit observables used in this work.

1. Deformed nuclei

In our optimization, we considered binding energies of 44
well-deformed even-even nuclei shown in Table I. Candidates
were selected from an HFB mass-table calculation with
the SLy4 parameterization requiring that their ground-state

TABLE I. Nuclear binding energies (in MeV; the electronic
energy correction has been subtracted) [62] for the 44 deformed nuclei
selected in this work. The columns marked “No.” are the data-point
numbers.

No. Z N E No. Z N E

1 108 156 −1925.697 23 94 144 −1800.523
2 106 154 −1908.038 24 92 144 −1789.701
3 104 152 −1889.709 25 92 142 −1777.858
4 102 154 −1897.729 26 90 142 −1766.015
5 102 152 −1884.685 27 72 104 −1418.407
6 102 150 −1870.386 28 70 108 −1431.260
7 100 156 −1901.673 29 70 100 −1377.760
8 100 154 −1890.112 30 68 104 −1391.213
9 100 152 −1878.056 31 68 102 −1378.695

10 100 150 −1864.657 32 66 102 −1362.591
11 100 148 −1850.682 33 66 100 −1350.474
12 100 146 −1836.305 34 66 98 −1337.714
13 98 156 −1891.281 35 66 96 −1323.785
14 98 154 −1880.445 36 66 94 −1309.134
15 98 152 −1869.165 37 66 92 −1293.725
16 98 150 −1856.954 38 66 90 −1277.701
17 98 148 −1843.959 39 64 98 −1321.473
18 98 146 −1830.429 40 64 96 −1308.992
19 98 144 −1816.428 41 64 94 −1295.597
20 96 150 −1847.037 42 64 92 −1281.300
21 96 148 −1835.059 43 64 90 −1266.329
22 96 144 −1809.502 44 64 88 −1251.187

TABLE II. Nuclear binding energies (in MeV; the electronic
energy correction has been subtracted) [65] for 28 spherical nuclei
selected in this work. The columns marked “No.” are the data-point
numbers.

No. Z N E No. Z N E

45 82 132 −1662.762 59 50 64 −971.406
46 82 130 −1653.988 60 50 62 −953.335
47 82 128 −1645.030 61 50 58 −914.424
48 82 126 −1635.909 62 28 36 −561.714
49 82 124 −1621.803 63 28 34 −545.217
50 82 122 −1606.984 64 28 32 −526.801
51 82 120 −1591.666 65 28 30 −506.459
52 82 118 −1575.833 66 28 28 −483.949
53 82 116 −1559.483 67 20 30 −427.473
54 50 74 −1049.835 68 20 28 −415.972
55 50 72 −1035.365 69 20 26 −398.751
56 50 70 −1020.375 70 20 24 −380.942
57 50 68 −1004.785 71 20 22 −361.877
58 50 66 −988.535 72 20 20 −342.033

equilibrium deformation be greater than |β| = 0.25. Because
the majority of atomic nuclei are deformed in their ground
states, by including binding energies of deformed systems in
the database, one hopes to better probe the surface properties
of the EDF.

2. Spherical nuclei

Table II lists the nuclear masses of a selected set of
28 spherical nuclei considered in the fit. In these nuclei,
correlations beyond mean field are expected to be relatively
constant [25]. Because the list includes doubly magic nuclei,
it should provide strong constraints, as these nuclei tend to
deviate from global mass trends [10]. Moreover, the masses
of 40Ca, 48Ca, and 56Ni help constrain the spin-orbit term
[60,63,64]. All the masses of spherical and deformed nuclei
given in Tables I and II have been corrected for the electronic
binding energy. The nuclear binding energy Enuc(Z,N ) is
given by

Enuc(Z,N) = Eato(Z,N) − Eel, (34)

where Eato(Z,N) is the atomic binding energy and Eel =
−1.433 × 10−5Z2.39MeV.

For the same 28 spherical nuclei, we also consider the
proton rms point radius 〈R2

p〉, which we extract from the charge
radius 〈R2

ch〉 of Ref. [66] using the standard relation

〈
R2

ch

〉 = 〈
R2

p

〉 + 〈
r2

p

〉 + N

Z

〈
r2

n

〉
, (35)

where the proton charge radius,
√〈r2

p 〉 = 0.877 fm, and the
neutron charge radius, 〈r2

n 〉 = −0.1161 fm2, were taken from
Ref. [67]. The values of proton radii used in this work are
listed in Table III.
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TABLE III. Proton rms radii (in fm) [66] for the 28 spherical
nuclei selected in this work. The columns marked “No.” are the
data-point numbers.

No. Z N rp No. Z N rp

73 82 132 5.506 87 50 64 4.542
74 82 130 5.488 88 50 62 4.527
75 82 128 5.469 89 50 58 4.492
76 82 126 5.450 90 28 36 3.787
77 82 124 5.439 91 28 34 3.765
78 82 122 5.428 92 28 32 3.733
79 82 120 5.418 93 28 30 3.689
80 82 118 5.403 94 28 28 3.661
81 82 116 5.394 95 20 30 3.437
82 50 74 4.609 96 20 28 3.390
83 50 72 4.598 97 20 26 3.412
84 50 70 4.586 98 20 24 3.432
85 50 68 4.573 99 20 22 3.420
86 50 66 4.558 100 20 20 3.382

3. Pairing

Because the particle-hole and particle-particle channels
cannot easily be disentangled, we must also include ob-
servables that will help us pin down the magnitude of
pairing correlations. Usually, the pairing part of the EDF is
constrained by considering the odd-even staggering (OES) of
binding energy (see Ref. [68] for a recent survey). Additional
constraints on the pairing ED may be imposed by taking
calculated pairing gaps in SNM and neutron matter [69]. This
strategy has been adopted by the Brussels-Montreal group in
their most recent model HFB-17 [70].

In this work, we constrain pairing EDF by means of the OES
defined by a three-point formula �(3) [68,71]. As customary,
the theoretical result for even particle number N is compared
with the experimental �(3) for N + 1 [72]. We took four values
of �(3) for neutrons and four for protons(see Table IV). All
these nuclei belong to the deformed set of Table I. Our choice
has been motivated by the observation that fitting pairing
properties in spherical systems, where the level density is much
greater, may lead to an underestimation of the overall pairing
strength [68].

With the fairly simple pairing ED (6) that we use, it is
not essential to require very high precision for the OES. For
that reason, to be free from local fluctuations, we chose in
each even-even nucleus the average over the two even-odd

TABLE IV. Values of the neutron and proton average odd-even
mass staggering (in MeV) considered in this work. The columns
marked “No.” are the data-point numbers.

Neutrons Protons

No. Z N �̃(3)
n No. Z N �̃(3)

p

101 100 152 0.515 105 96 148 0.566
102 92 144 0.569 106 92 142 0.606
103 72 104 0.675 107 68 102 0.504
104 66 98 0.679 108 66 94 0.728

or odd-even isotopes: �̃(3)
n (N ) = [�(3)(N − 1) + �(3)(N +

1)]/2. Including average values of �̃(3) in our data set ensures
that the magnitude of pairing correlations is correct and
remains such throughout the fitting procedure. Theoretical
OES values have been computed from the average HFB pairing
gap [73,74].

III. OPTIMIZATION ALGORITHM

This section briefly presents the new algorithm used in
our optimization. We refer to it by the acronym POUNDerS,
standing for Practical Optimization Using No Derivatives (for
Squares). We also provide the numerical parameters used in
the HFB calculations, and we give the characteristics of the
objective function used in the optimization.

A. Derivative-free optimization method

To outline our algorithm, we adopt the following notation.
We denote the set of parameters and coupling constants of the
Skyrme EDF to be fitted by x ∈ Rnx , where nx is the number
of coupling constants of components xk to fit. We define a
composite fit function made of DT different types of data:
nuclear masses, proton radii, and so on. The number ni of data
points for a given type i may vary; for example, we have more
masses than rms radii. The output of the calculation for type
i is denoted by si,j (x) for nucleus j and obviously depends
on the parameterization of the functional, that is, the vector
x ∈ Rnx . For type i and nucleus j , the experimental value of a
given observable is denoted di,j .

While many objectives are possible, we minimize the
weighted sum of squared errors

χ2(x) = 1

nd − nx

DT∑
i=1

ni∑
j=1

(
si,j (x) − di,j

wi

)2

, (36)

where nd = ∑DT

i=1 ni denotes the total number of data points
being fit. The weights wi > 0 render the type i difference
dimensionless and are chosen to balance the goals of fitting
different observable types simultaneously.

The objective Eq. (36) is a special case of the nonlinear
least-squares function,

f (x) = 1

2

nd∑
i=1

Fi(x)2 = 1

2
‖F(x)‖2, (37)

where the function F : Rnx → Rnd yields the vector of reduced
errors. Most optimization approaches to minimizing Eq. (37)
are based on Newton’s method, whereby f is replaced by its
second-order expansion,

f (x + δ) ≈ f (x) + δT J (x)T F(x) + 1

2
δT

×
(

J (x)T J (x) +
nd∑
i=1

Fi(x)∇2Fi(x)

)
δ, (38)

where δ ∈ Rnx and J (x) is the Jacobian matrix J (x) =
[∇F1(x), . . . ,∇Fnd

(x)]T .
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In the problem at hand (and many others), the derivatives
of Fi(x) with respect to x, ∇Fi(x) and ∇2Fi(x), exist for
virtually all x, but their calculation for use in the optimization
is impractical. Indeed, although derivatives of binding energies
can be obtained through the Feynman-Hellman theorem,
other observables such as radii would require the use of
perturbation theory or a cumbersome and potentially imprecise
calculation of numerical differences. In such a case, the
optimization algorithm must be derivative-free, relying only
on the function value outputs F(x). Popular algorithms in
this setting include the Nelder-Mead (N-M) method and other
direct search algorithms [75] and genetic algorithms and other
heuristics [76]. However, a recent benchmarking study [77]
found that methods that form a smooth approximation model
of the objective to exploit the smoothness and structure of
the objective may be able to obtain better solutions in fewer
evaluations.

In the case of nonlinear least squares, we follow the
approach of forming a quadratic model for each component,

qi(x + δ) = Fi(x) + δT gi + 1
2δT Hiδ, (39)

with gi and Hi = HT
i playing the role of the unknown

derivatives ∇Fi(x) and ∇2Fi(x), respectively. We obtain the
model parameters gi and Hi by requiring that the model qi

agree with the true function Fi on a set X of x values at which
Fi is known. Mathematically, these parameters are solutions
to the convex quadratic program

min
gi ,Hi

{‖Hi‖F : qi(xk) = Fi(xk) ∀xk ∈ X }, (40)

where ‖‖F is the Frobenius norm and the interpolation set
X contains between nx + 1 and (nx + 1)(nx + 2)/2 points
satisfying geometric conditions detailed in Refs. [78,79].

The quadratic model qi cannot be expected to approximate
Fi at x values far from the points in X . Hence, we use a
trust region framework, whereby the model qi is trusted only
close to a base-point x̂. Given a radius � > 0, we let B =
{x ∈ Rnx : ‖x − x̂‖ � �} denote the spherical neighborhood
within which we trust qi . Correspondingly, the interpolation
points in X should not be too far away from B.

Provided that we know the entire vector of observables
F(xk) at each xk ∈ X , we can obtain a set of model parameters
{(gi , Hi)}nd

i=1, which we trust inside a common region B
centered about x̂. We can thus form a derivative-free model
of the quadratic Eq. (38),

m(x̂ + δ) = f (x̂) + δT

nd∑
i=1

Fi(x̂)gi

+ 1

2
δT

nd∑
i=1

[
gigT

i + Fi(x̂)Hi

]
δ. (41)

Because we trust this model within B, we expect that a
better x can be obtained by solving the trust region subprob-
lem minδ{m(x̂ + δ) : x̂ + δ ∈ B}. This problem minimizes a
quadratic with known derivatives over a compact, convex
region and is hence decidedly easier than the original problem.
The observables are then evaluated at the solution to this
subproblem so that we obtain F(x̂ + δ).

An iterative Newton-like procedure is thus obtained. We
note that the trust region radius � grows and shrinks from
one iteration to the next depending on the ratio of the
actual decrease obtained at the new point versus the decrease
predicted by the model in Eq. (41). Similarly, our current
estimate of the solution, x̂, is changed only if an adequate
decrease of the function was obtained or if we achieved a
simple decrease in the function value and the geometry of
the interpolation set X gives us confidence. If we did not
adequately decrease f , we must evaluate at an additional x
value to improve the geometry of the set X in subsequent
iterations.

B. Numerical parameters

The evaluation of the function (36) at point x requires
72 HFB calculations to generate the si,j (x) points for the 72
nuclei j taken in the data set. All HFB calculations were
performed with the code HFBTHO [80]. This code solves
the Skyrme-HFB equations in the harmonic oscillator basis
assuming axial and reflection symmetry. In our optimization,
we used a spherical basis of Nshell = 20. The oscillator
frequency was determined for a given nucleus of mass number
A according to the formula h̄ωoscil = 1.2 × 41

A1/3 MeV [81].
These two choices guarantee good convergence of the HFB
energy with respect to the basis size, within about 150 keV of
the exact value [82].

Pairing correlations were described by the pairing ED (6)
with different pairing strengths for protons and neutrons, V n

0 �=
V

p

0 . As customary for zero-range pairing forces, a cutoff of
Ecut = 60 MeV is used to truncate the quasiparticle space [73].
To avoid pairing collapse, the Lipkin-Nogami prescription was
systematically applied according to Ref. [83].

Taking into account the 13 parameters of the Skyrme
EDF and the 2 additional parameters in the pairing channel
requires a 15-parameter search. We have made two additional
simplifications. First, the tensor coupling constants CJ 2

0 and
CJ 2

1 were set to 0. This choice was motivated by our
requirement to take as a reference point the original SLy4
parameterization of Ref. [18] where these terms were not
included. Second, preliminary tests indicated that the isovector
effective mass was poorly constrained by our data set. As a
result, the obtained values of M∗

v were clearly nonphysical
with regard to the discussion in Ref. [84]. In the final run we
therefore discarded M∗

v from the list of free parameters and
kept the original SLy4 value.

The final optimization was therefore carried on a set of 12
parameters (10 for the Skyrme ED plus 2 pairing strengths):{

ρc, E
NM/A,KNM, aNM

sym, LNM
sym,M∗−1

s ,

C
ρ�ρ

0 , C
ρ�ρ

1 , V n
0 , V

p

0 , C
ρ∇J

0 , C
ρ∇J

1

}
, (42)

with CJ 2

0 = CJ 2

1 = 0 and M∗−1
v = 1.249.

For scaling purposes, the optimization algorithms tested
here require the domain of variation of the various parameters
x to be specified. Because, in practice, a large subset of x
represents symmetric and asymmetric NMPs, the range of
variation can be easily set up, even if the exact values are
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not known. Table V in Sec. IV A1 lists the scaling intervals
adopted in our optimization.

Following the discussion in Sec. II C, our objective function
(36) contains DT = 3 data types: nuclear masses (i = 1),
proton rms radii (i = 2), and OES differences (i = 3). The
total number of data points is nd = 108 and breaks down
into n1 = 72 nuclear masses (28 spherical and 44 deformed),
n2 = 28 rms proton radii, and n3 = 8 OES differences (4 for
neutrons and 4 for protons). The values di,j of the experimental
data points are given in Sec. II C.

The weights wi in the objective function are used to render
all quantities dimensionless and to allow for a composite χ2

function. The weights must be chosen so that all reduced
errors are of the same order of magnitude: They reflect the
expected theoretical uncertainty that one can assign to a given
observable, which is generally larger than the corresponding
experimental uncertainty for our data set. In the optimization
described here, we chose wmass = 2.0 MeV, wradii = 0.02 fm,
and wOES = 50 keV.

IV. RESULTS

This section contains the optimization results. In Sec. IV A,
various properties of the resulting ED parameterizations
are explored. Section IV B illustrates the versatility of our
approach by providing a detailed correlation and sensitivity
analysis.

A. Optimized functionals UNEDFnb and UNEDF0: Properties
and stability

We give in this section the final parameterization of the
Skyrme functionals UNEDFnb and UNEDF0 that minimizes the
χ2 objective function (36), and we perform a number of checks
to probe the quality of the resulting functionals. In particular,
we test their stability with the RPA response function, check
that both the spherical and deformed shell structure are on
par with other parameterizations, and discuss various global
performance indicators.

1. Solution to the optimization problem

The optimization of a nuclear energy functional is a
complex problem. The objective function is the compound
result of many different full HFB calculations, each the result
of a self-consistent iterative procedure. In principle, such
a function lends itself naturally to parallelization, although
the different times of calculation of spherical and deformed
configurations requires fine load balancing. Overall, the cost
of one function evaluation can typically amount to 10 min
on a standard computer cluster. With such costly evaluations,
the number of evaluations required to minimize Eq. (36) can
rapidly become an issue.

In addition, we have no prior knowledge of the multidimen-
sional surface of the objective function in the parameter space.
There is no guarantee that the parameters are all independent,
and, as we show later, there are correlations between them,
which make the topography of the surface complex.
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FIG. 2. (Color online) Convergence of the minimization of
Eq. (36) with the standard N-M algorithm (dashed line) and the
model-based POUNDerS (solid line).

These observations suggest that two important features
of a good optimization algorithm should be the speed of
convergence and the ability to converge to a true minimum,
if only a local one, without being misled by narrow valleys
and saddle points. Figure 2 shows the performance of the
standard N-M algorithm, as implemented in the TAO code [85],
on our objective function, compared with the new model-based
algorithm presented in Sec. III A. We note that the POUNDerS

method attains a value of χ2 close to the final one after only
25–30 iterations, whereas after more than 300 iterations the
N-M algorithm yields a solution that is still a factor of 2 away.
Moreover, there seems to be a stagnation of the N-M method
at around 15–65 iterations, which may prematurely suggest
that the minimum has been found. Yet, in this plateau the χ2

is still about 5 times larger than at the final solution.
Table V shows the values of the optimization parameters

(42) at the solution (dubbed UNEDFnb in the following). The
starting values were given by the SLy4 parameterization. The
most notable change affects the effective mass: Starting from
M∗

s ≈ 0.7, the final value is close to 1, which ensures a level
density more compatible with the empirical one (even though
there is no obvious reason for this to happen, given the data
set employed). As will be discussed in Sec. IV A6, without
being steered, the optimization gives the correct hierarchy of
pairing strengths, namely, |V p

0 | > |V n
0 |, to reflect the missing

momentum dependence and Coulomb contribution, as pointed
out in Refs. [68,86,87].

A standard measure of the quality of the optimization is the
rms deviation (RMSD) of data type i at the solution x̂:

RMSD(i) =
√√√√ 1

ni

ni∑
j=1

[si,j (x̂) − di,j ]2. (43)

For our set of fit observables, the RMSDs for various
types of data are RMSD(mass) = 0.966 MeV, RMSD(radii) =
0.014 fm, and RMSD(OES) = 57 keV. For comparison,
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TABLE V. Values x̂ of the optimization parameters x of Eq. (42) at
the solution with no bounds imposed (Skyrme functional UNEDFnb).
ρc is in fm−3; ENM/A, KNM, aNM

sym, and LNM
sym are in MeV; 1/M∗

s is

dimensionless; C
ρ�ρ
t and C

ρ∇J
t are in MeV fm5; and V n

0 and V
p

0 are
in MeV fm3. The range of variation provided to the optimization is
shown in the column “Scaling interval,” the initial values in column
x̂(init.), and the final values in x̂(fin.).

k x Scaling interval x̂(init.) x̂(fin.)

1 ρc [+0.14, +0.18] +0.160 0.151046
2 ENM/A [−17.00, −15.00] −15.972 −16.0632
3 KNM [+170.00, +270.00] +229.901 337.878
4 aNM

sym [+27.00, +37.00] +32.004 32.455
5 LNM

sym [+30.00, +70.00] +45.962 70.2185
6 1/M∗

s [+0.80, +2.00] +1.439 0.95728
7 C

ρ�ρ

0 [−100.00, −40.00] −76.996 −49.5135
8 C

ρ�ρ

1 [−100.00, +100.00] +15.657 33.5289
9 V n

0 [−350.00, −150.00] −258.200 −176.796
10 V

p

0 [−350.00, −150.00] −258.200 −203.255
11 C

ρ∇J

0 [−120.00, −50.00] −92.250 −78.4564
12 C

ρ∇J

1 [−100.00, +50.00] −30.750 63.9931

the value of RMSD(mass) for SLy4 on the same data set
is 9.95 MeV.

A close examination of Table V shows that, while most
of the parameters of UNEDFnb have values in the normally
accepted range, the incompressibility KNM = 338 MeV is far
too large. This would seriously limit the usability of UNEDFnb
in nuclear structure calculations, in particular in studies of
collective modes such as monopole vibrations.

We therefore performed another minimization, using the
same scaling intervals, but imposing hard bounds on the NMPs.
A similar strategy was adopted in Ref. [88], where hard bounds
on KNM were imposed during optimization of BSk13 EDF.

Table VI displays the parameter values of the Skyrme
functional UNEDF0 optimized in such a way. At convergence,
the nuclear incompressibility and scalar effective mass appear
at their respective bounds of 230 MeV and 1.11 (1/M∗

s =
0.9); that is, these NMPs are actively constrained. The rms
deviations obtained for UNEDF0 on our set of fit observables are

TABLE VI. Same as Table V but for the case with bounds (Skyrme
functional UNEDF0).

k x Bounds x̂(init.) x̂(fin.)

1 ρc [+0.15,+0.17] +0.160 0.160526
2 ENM/A [−16.2,−15.8] −15.972 −16.0559
3 KNM [+190, +230] +229.901 230
4 aNM

sym [+28, +36] +32.004 30.5429
5 LNM

sym [+40, +100] +45.962 45.0804
6 1/M∗

s [+0.9, +1.5] +1.439 0.9
7 C

ρ�ρ

0 [−∞, +∞] −76.996 −55.2606
8 C

ρ�ρ

1 [−∞, +∞] +15.657 −55.6226
9 V n

0 [−∞, +∞] −258.200 −170.374
10 V

p

0 [−∞, +∞] −258.200 −199.202
11 C

ρ∇J

0 [−∞, +∞] −92.250 −79.5308
12 C

ρ∇J

1 [−∞, +∞] −30.750 45.6302

still respectable: RMSD(mass) = 1.455 MeV, RMSD(radii) =
0.016 fm, and RMSD(OES) = 59 keV.

2. Stability check of UNEDFnb and UNEDF0

It is known that some Skyrme ED parameterizations are
prone to finite-size instabilities [84,89–91]. For instance, in the
time-even channel, the term C

�ρ

1 ρ1�ρ1 can lead to divergences
of the HFB iterative procedure. When searching for new
functionals, it is therefore crucial to test comprehensively the
stability of the functional parameterization. Here, the RPA
linear response theory [92] is the tool of choice. The full
RPA response in infinite matter has been derived for Skyrme
EDFs [93–95], and applications pertaining to the stability of
Skyrme functionals have been reported in Refs. [7,84].

Without entering into detail, a general expression for the
RPA response function 	(ω, q) in SNM can be written as [92]

	(ω, q) = 4	0(ω, q)

D(ω, q)
, (44)

where ω is the excitation energy, q is the transferred momen-
tum (or wave number of the density fluctuation), 	0(ω, q)
is the noninteracting response (or Lindhard function), and
D(ω, q) is the dielectric function, equal to unity in nonin-
teracting SNM.

The value 	(ω = 0, q) corresponds to the static suscep-
tibility of the system to finite-size perturbations. With the
preceding sign convention, 	(ω = 0, q) should be positive
for all values of q and the density ρ0. A change of sign
with either variable corresponds to D(ω, q) = 0; hence, the
occurrence of a pole indicating the existence of a zero-energy
collective mode. In the isospin channel, the short-wavelength
(high-q) behavior is driven essentially by the combination
of coefficients C

ρρ

1 − C
ρ�ρ

1 q2 [60,93]. The magnitude of the
latter correlates well with the occurrence of instabilities in
calculations of finite nuclei.

Figure 3 shows the dielectric function D(ω = 0, q) as a
function of q, in the scalar-isovector perturbation channel, at
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FIG. 3. (Color online) Dielectric function D(ω = 0, q) for the
scalar-isovector channel in SLy4, UNEDF0, and UNEDFnb as a function
of the transferred momentum q for kF = 1.33 fm−1.
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FIG. 4. (Color online) Neutron single-particle energies in 48Ca
obtained from a HF calculation with the functional UNEDF0. Experi-
mental s.p. levels [96] and SLy4 results are shown for comparison.

saturation density in SNM. When D(ω = 0, q) = 0, finite-size
instabilities could potentially develop and hinder the usability
of the functional. This situation does not occur for UNEDFnb
and UNEDF0, which yield a dielectric function even more
“stable” than SLy4. Varying the density, we found that the
poles of the response function at ω = 0 occur only for
ρ0 � 0.22 fm−3. This result does not guarantee that other types
of instabilities could not develop [91]; however, we can rule
out the most common ones.

3. Spherical shell structure

The essence of the nuclear DFT is to be a global
theory, whereby one unique functional (or family thereof)
should be used to compute with reasonable accuracy various
properties of atomic nuclei from the lightest to the heaviest.
Many of these properties depend on the single-particle shell
structure. Figures 4 and 5 show, respectively, the neutron s.p.
energies in 48Ca and proton s.p. energies in 208Pb obtained
with UNEDF0. They are compared with levels extracted from
experiment [96] and those calculated with SLy4. In 208Pb,
the overall agreement of the proton spectrum is very good.
Furthermore, the neutron s.p. levels in 208Pb and proton and
neutron levels in 132Sn (not shown) agree well with experiment.
As seen in Table V, the optimization produces a functional with
an effective mass close to 1, which is probably the reason the
level density in 208Pb and 132Sn is well reproduced. Although
the overall agreement for s.p. energies is good, the systematic
effect of high-j states being slightly too high in energy is
seen [60].

The neutron single-particle spectrum in 48Ca is, however,
poorly reproduced. One of the most alarming features is the
absence of the magic gap at N = 28 resulting from a large s.p.
level density and a reduced spin-orbit splitting. The s.p. proton
spectrum of 48Ca is only marginally better with the magic gap
at Z = 20 being too low, and the situation is similar in 40Ca.
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FIG. 5. (Color online) Similar as in Fig. 4 but for proton single-
particle energies in 208Pb.

The lack of observables directly probing s.p. properties
(such as spin-orbit splittings or shell-gap sizes) in our objective
function and the bias on heavy nuclei in the set of fit
observables are undoubtedly the main reasons for the poor
performance of UNEDF0 regarding the shell structure of light
nuclei. Nevertheless, one must bear in mind that even when the
optimization is exclusively focused on s.p. properties, standard
Skyrme functionals perform poorly [11].

4. Deformation properties

The spherical shell structure determines many features of
deformed nuclei. Indeed, the appearance of deformed states
and shape coexistence effects can be related to s.p. levels and
their couplings through symmetry-violating moments [97,98].
Because the shell structure of light nuclei with UNEDF0

shows large deviations from experiment, it is interesting
to test whether the new parameterization can nonetheless
produce sensible deformation properties for medium-mass
nuclei. To this end, we performed a series of constrained HFB
calculations for the sequence of Zr isotopes known to exhibit
dramatic shape variations as a function of N . While nuclei near
magic 90Zr are known to be spherical, neutron-rich Zr isotopes
with A � 100 possess large prolate ground-state deformations,
and 96−98Zr exhibit a complex coexistence pattern [98,99]. On
the proton-rich side, there is strong experimental evidence
for large prolate deformation in N = Z = 40 system 80Zr
[98].

Figure 6 shows the evolution of HFB + LN deformation
energy in the selected even-even Zr isotopes as a function of
the quadrupole deformation β2. Each point was computed by
imposing a constraint on the quadrupole moment 〈Q̂2〉 ∝ β2.
Overall, the energy balance between spherical and deformed
configurations is consistent with experiment. In particular, Zr
isotopes with N > 58 are correctly predicted to have prolate
ground states coexisting with a secondary oblate minimum.
Also, it is encouraging to see that the ground state of 80Zr is
predicted to be prolate, a feature that is not present in many
Skyrme parameterizations [98].
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FIG. 6. (Color online) Deformation energy curves as functions of
the quadrupole deformation β2 for selected even-even Zr isotopes cal-
culated in the HFB + LN approach with UNEDF0 Skyrme functional.

5. Global mass table

A good test of any EDF parameterization is its ability to
reproduce masses across the nuclear chart. Since our objective
function contains the binding energies of a large set of nuclei,
we expect good agreement with experimental data, especially
for heavy deformed systems.

All even-even nuclei with N,Z > 8 have been calculated
with our two parameterizations according to the method
presented in Ref. [9]. Results have been posted for visu-
alization and comparison with other EDF parameterizations
at [http://massexplorer.org]. The difference between experi-
mental and theoretical binding energies for the 520 even-even
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FIG. 7. (Color online) Binding energy residuals between theory
and experiment for 520 even-even nuclei. The HFB + LN results with
SLy4 (top) are compared with those of UNEDF0 (middle) and UNEDFnb
(bottom).

UNEDFnb

UNEDF0

SLy4

Neutron number

S 2
n,

th
-S

2n
,e

xp
 (M

eV
)

FIG. 8. (Color online) Two-neutron separation energy residuals
between theory and experiment for 520 even-even nuclei. The
HFB + LN results with SLy4 (top) are compared with those of
UNEDF0 (middle) and UNEDFnb (bottom).

nuclei is shown in Fig. 7. An arclike trend [100] is seen for
the SLy4 EDF; it has been attributed to an overemphasis on
doubly magic nuclei during optimization. By contrast, both
UNEDF0 and UNEDFnb show a much flatter behavior, while
simultaneously reducing the mass residuals: RMSD(mass) =
4.80 MeV for SLy4, and 1.45 MeV and 1.61 MeV for UNEDF0

and UNEDFnb, respectively.
To put things in perspective, we note that the best overall

agreement with experimental masses obtained with the Skyrme
EDF (on a larger data set that includes light and odd nuclei) is
currently 0.582 MeV [70]. However, this excellent result was
obtained at a price of several corrections on top of the EDF
itself. In fact, a linear least-squares refit of the standard Skyrme
EDF (also using SLy4 as a starting point) to all even-even
nuclear masses achieves a RMSD of around 1.7 MeV [10].
Note also that the RMSD for the masses of the UNEDFnb is
higher by a 0.16 MeV than for the UNEDF0 despite the larger
domain available for parameter variation, which is attributable
to the restricted set of masses used in this work. These figures
suggest that UNEDF0 is probably within a few hundreds of
keV of a globally optimal mass fit within the parameter space
employed here.

Close examination of Fig. 7 reveals that, while the global
trend of binding energy errors has been improved, significant
variations around that global trend still remain. To quantify
this, we plot in Fig. 8 two-neutron separation energy residuals
as a function of neutron number N for the 520 nuclei of
the previous set. The values of RMSD(S2n) for SLy4 and
UNEDF0 are, respectively, 0.99 and 0.76 MeV, which indicate
a significant improvement. If the set of 520 nuclei considered
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is divided into light (A < 80) and heavy (A � 80) subsets, the
respective RMSD(S2n) values for SLy4 and UNEDF0 are 1.41
and 1.45 MeV for light nuclei and 0.85 and 0.45 MeV for
heavy nuclei. This result stems from the bias toward heavy
nuclei in our data set.

6. Constraints on pairing strength from optimization

Adjusting pairing interaction strengths represents a situa-
tion in which, by sequentially releasing a constraint on the
EDF, one can dramatically improve the agreement with a sub-
set of fit observables. The case in point is the interplay between
pairing and shell structure. Because the shell correction to the
binding energy favors low s.p. level density around the Fermi
level, and the opposite is true for pairing contributions, an
anticorrelation between these two effects exists that results in
a cancellation between shell and pairing energies [101]. If only
total binding energies are subject to optimization, a reasonable
fit can be obtained by, for example, an unphysical increase in
pairing and a simultaneous unphysical variation of s.p. shell
structure. Indeed, because no data in our experimental data set
directly probe s.p. energies, the lack of constraints on shell
structure can dramatically impact pairing properties.

Figure 9 displays the OES residuals for three variants
of calculations. In the first variant, the proton and neutron
pairing strengths were kept equal and fixed at the standard
value for SLy4 that yields an average neutron pairing gap in
120Sn equal to the experimental value of 1.245 MeV [73,74].
In this case, the optimization procedure yields shell structure
that resulted in overestimated pairing correlations, and the
calculated RMSD for the OEM is 172 keV.

In the next step, we assumed proton and neutron pairing
strengths to be identical V n

0 = V
p

0 = V0, and the constant V0

(UNEDF0)

Data point

(UNEDFnb)

101 107106105104103102 108

FIG. 9. (Color online) Neutron (left) and proton (right) OES
residuals �th − �(3)

exp for the nuclei listed in Table IV. The results with
fixed (nonoptimized) values of V n

0 = V
p

0 are marked with upside-
down triangles. The optimized results are marked with triangles
(V n

0 = V
p

0 ), dots (V n
0 �= V

p

0 ; UNEDFnb), and squares (V n
0 �= V

p

0 ;
UNEDF0).

was included in the optimization set. The improvement on
pairing energy was immediate, with the rms error on OES
dropping down to 67 keV. However, Fig. 9 clearly shows
that OES for protons is almost systematically underestimated.
This observation calls for using different pairing strengths for
neutrons and protons, as was suggested by a recent large-scale
survey [68].

Our final optimization run was therefore carried out by
considering independent strengths V n

0 and V
p

0 in the fit. The
rms error on OES has been further reduced to 57 keV in
UNEDFnb and 59 keV in UNEDF0, and the two pairing strengths
turn out to be significantly different (see Tables V and VI).
Apart from possible global physics arguments, this result
indicates that this optimization problem benefits from proton
and neutron pairing strength being independent parameters.

We conclude this discussion with a word of warning:
Strictly speaking, the calculation of the OES requires com-
putation of differences of binding energies. In odd nuclei,
time-reversal symmetry is broken, time-odd fields are nonzero,
and the ground-state should be computed as the lowest
quasiparticle excitation of a fully paired vacuum (blocking).
Because the correct blocked state is not known beforehand,
such calculations are much more involved than in even-even
nuclei [7]. For this work, where the focus is on the optimization
of the Skyrme functional itself and the pairing functional is
limited, the extra cost of the proper treatment of odd nuclei
was not deemed worth pursuing.

B. Statistical analysis of optimization results

From a statistical viewpoint, our optimization problem
is also a nonlinear regression problem. For the true (but
unknown) parameter value x∗ we define the errors between
the theoretical value for the observable of type i in the nucleus
j and its experimental counterpart as

εi,j = si,j (x∗) − di,j

wi

. (45)

We assume every error εi,j is a random variable with
expectation 0 and that all εi,j are independent and follow the
same distribution. The optimization presented in Sec. III A
estimates x∗ by the least-squares estimator

x̂ = arg min
x

{
f (x) = 1

2‖F(x)‖2
}
. (46)

In the statistical setting, however, the random errors ε = {εi,j }
prevent the random variable x̂ from always equaling x∗.

1. Confidence intervals

To characterize how the parameters change in a neigh-
borhood of x∗ and x̂, we consider approximate confidence
intervals. A 1 − α confidence interval �k ⊂ R is one in which
we expect the true value xk,∗ to lie 100(1 − α)% of the time,
that is, with probability P (xk,∗ ∈ �k) = 1 − α.

We note that the assumption of normally distributed resid-
uals, ε ∼ N (0, σ 2

∗ Ind
), made in what follows, is the strongest

one of this regression analysis. As pointed out in Ref. [24],
theoretical (systematic) errors coming from an imperfect
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model are neither random nor generally independent, and their
distribution is not rigorously normal. We carry out a standard
analysis nonetheless to investigate constraints applied on our
model. Therefore, the confidence intervals given here are to
be understood as ranges of acceptable values for building
parameterizations of this particular model.

Given normally distributed residuals and appropriate reg-
ularity conditions (as in Ref. [102], pages 23–25), a 1 − α

confidence interval (CI) centered about x̂k is

{xk ∈ R : |xk − x̂k| �
√

Cov(x̂)k,ktnd−nx,1− α
2
}, (47)

where tnd−nx,1− α
2

is the 1 − α
2 quantile of the t distribution

[103] with nd − nx degrees of freedom, and the covariance
matrix Cov(x̂) = E[(x̂ − Ex̂)(x̂ − Ex̂)T ].

Using the same notation as in Eq. (41), we use a first-order
approximation of the covariance matrix,

V̂ ≡ χ2(x̂)

(
nd∑
i=1

gigT
i

)−1

≈ Cov(x̂), (48)

where parameters {gi}i=1,...,nd
are found by calculating central

differences on the 2nx points {x̂ ± ηkek}k=1,...,nx
, where ηk > 0

is chosen to be small. Although other approximations to the
covariance matrix are possible, the authors of Ref. [104] state
that V̂ is their preferred approximation because it is “simpler,
less expensive, and more numerically stable” than alternative
choices.

Tables VII and VIII show the 95% CIs, and standard
deviations obtained when ηk is chosen to be 10−5 times the size
of the scaling interval of parameter xk . Standard deviations σ

are square roots of the diagonal components of the covariance
matrix Cov(x̂) and are often also referred to as errors of
parameters.

Confidence intervals can therefore be valuable for testing
the completeness of a given data set. In our case no data on giant
resonances were included, which may explain why aNM

sym and
LNM

sym remain imprecise. Similarly, our data set does not contain
sufficiently many neutron-rich nuclei and/or entire isotopic
sequences to pin down the isovector coupling constants. We

TABLE VII. Optimal parameter values of UNEDFnb (no bounds),
95% confidence intervals, percentage of the initial guess for the
scaling interval, and standard deviation σ .

k Par. x̂ 95% CI % of Int. σ

1 ρc 0.151046 [0.149,0.153] 10 0.001
2 ENM/A −16.0632 [−16.114,−16.013] 5 0.039
3 KNM 337.878 [302.692,373.064] 70 26.842
4 aNM

sym 32.455 [28.839,36.071] 72 2.759
5 LNM

sym 70.2185 [11.108,129.329] 296 45.093
6 1/M∗

s 0.95728 [0.832,1.083] 21 0.096
7 C

ρ�ρ

0 −49.5135 [−55.786,−43.241] 21 4.785
8 C

ρ�ρ

1 33.5289 [−2.246,69.304] 36 27.292
9 V n

0 −176.796 [−194.686,−158.906] 18 13.648
10 V

p

0 −203.255 [−217.477,−189.033] 14 10.850
11 C

ρ∇J

0 −78.4564 [−85.137,−71.775] 19 5.097
12 C

ρ∇J

1 63.9931 [23.460,104.526] 54 30.921

TABLE VIII. The same as Table VII, except for the UNEDF0.

k Par. x̂ 95% CI % of Int. σ

1 ρc 0.160526 [0.160,0.161] 10 0.001
2 ENM/A −16.0559 [−16.146,−15.965] 45 0.055
3 KNM 230 – – –
4 aNM

sym 30.5429 [25.513,35.573] 126 3.058
5 LNM

sym 45.0804 [−20.766,110.927] 219 40.037
6 1/M∗

s 0.9 – – –
7 C

ρ�ρ

0 −55.2606 [−58.051,−52.470] 9 1.697
8 C

ρ�ρ

1 −55.6226 [−149.309,38.064] 94 56.965
9 V n

0 −170.374 [−173.836,−166.913] 3 2.105
10 V

p

0 −199.202 [−204.713,−193.692] 6 3.351
11 C

ρ∇J

0 −79.5308 [−85.160,−73.901] 16 3.423
12 C

ρ∇J

1 45.6302 [−2.821,94.081] 65 29.460

also remark that the analysis based on CIs is straightforward
to perform once the (computationally intensive) covariance
matrix is known.

2. Sensitivity analysis

The covariance matrix depends on the scaling of the
parameters; hence, we work with the standard correlation
coefficient,

Rk,l = Cov(xk, xl)√
Var(xk)Var(xl)

, (49)

which captures the (positive or negative) correlation between
parameters xk and xl . Tables IX and X provide the approximate
nx × nx correlation matrix R calculated when ηk is chosen to
be 10−5 the size of the interval of interest of parameter xk , for
the solutions UNEDF0 and UNEDFnb, respectively.

Overall, Tables IX and X show that most parameters are
interdependent, although the number of significant correlations
with |Rkk| � 0.8 is small. For UNEDFnb, where all parameters
are free, we note that two pairs of NM parameters are well
correlated: KNM is 87% correlated with ρc [59,105], while
aNM

sym is 97% correlated with LNM
sym [56,57,106]. The value of

the (inverse of the) effective mass appears well correlated
with both pairing strengths. We also notice strong correlation
between the pairing strengths and the isoscalar spin-orbit
coupling constants. Both observations reflect the interplay
between single-particle level density and pairing discussed
in Sec. IV A6. We also notice that the proton pairing strength
is significantly correlated with the neutron pairing strength.

In the case of the UNEDF0 parameterization, KNM and 1/M∗
s

are removed from the sensitivity analysis. Nevertheless, we
note that the various correlations between parameters overall
remain, even if they are attenuated compared to the no-bound
case.

Next, we illustrate how sensitive the parameters xk are to
the different data types entering χ2: masses, proton radii, and
OES. Here we focus only on the UNEDF0 parameterization,
as it is more realistic. We define the nx × nd Jacobian matrix
J (x) of the residuals as J = (g1, . . . , gnd

), that is, the matrix
formed as the juxtaposition of the nd column vectors gi (nd
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TABLE IX. Correlation matrix (49) for the UNEDFnb parameter set (no bounds).

ρc ENM/A KNM aNM
sym LNM

sym 1/M∗
s C

ρ�ρ

0 C
ρ�ρ

1 V n
0 V

p

0 C
ρ∇J

0 C
ρ∇J

1

ρc 1.00
ENM/A −0.04 1.00
KNM −0.87 0.16 1.00
aNM

sym −0.05 −0.72 −0.29 1.00
LNM

sym −0.09 −0.62 −0.23 0.97 1.00
1/M∗

s −0.05 0.05 0.09 −0.10 −0.10 1.00
C

ρ�ρ

0 −0.23 0.24 0.34 −0.25 −0.20 −0.86 1.00
C

ρ�ρ

1 −0.22 0.29 0.34 −0.65 −0.76 −0.08 0.28 1.00
V n

0 0.02 −0.02 −0.06 0.06 0.06 −0.99 0.87 0.12 1.00
V

p

0 0.01 −0.14 −0.10 0.26 0.27 −0.95 0.78 −0.07 0.93 1.00
C

ρ∇J

0 0.07 −0.03 0.04 −0.14 −0.17 −0.72 0.78 0.32 0.73 0.65 1.00
C

ρ∇J

1 −0.07 −0.35 −0.12 0.58 0.66 0.06 −0.26 −0.64 −0.08 0.05 −0.38 1.00

being the number of data, nx the number of parameters). The
nx × nd sensitivity matrix S is

S(x) = [J (x)J T (x)]−1J (x). (50)

For each line in the sensitivity matrix (each parameter), we
can compute the partial sums over each of the three types of
data. This computation gives us a measure of the change of the
parameter under a global change of all the data of a given type.
Figure 10 shows the relative change of parameter xk when such
an average datum of an observable is changed. For example,
for i = 1 (masses), it shows the change in xk under a variation
of all experimental masses.

All of the bars in Fig. 10 have been renormalized to unity,
and only relative strengths between mass, radii, and OES
data are shown. A large percentage contribution from data
type i means that xk is very sensitive to changes in i, and
other data types have little impact on it at the convergence
point. As expected, pairing strengths (parameters 9 and 10)
are primarily affected by OES data. It is worth noting the
very similar sensitivity of the spin-orbit coupling constants
(parameters 11 and 12) on all three types of data. Also,
nuclear-matter parameters appear to be significantly more
dependent on the proton radius than other coupling constants.

This is not surprising, considering the relation between the
saturation density and the WignerSeitz radius.

The integrated information contained in Fig. 10 cannot as-
sess the impact of a particular data piece on model parameters;
hence, a more detailed analysis is needed. To this end, for
each experimental observable di,j (masses, radii, OES), we
compute the global change in x̂ as individual data di,j change
(one by one) by 0.1wi , namely, 200 keV for masses, 0.002 fm
for proton radii, and 50 keV for OES. In this way we can,
for instance, evaluate the possible importance of some new
experimental observable on a given model [38]. Figure 11
shows the quantity

‖δx/σ‖ =
√√√√ nx∑

k=1

(
δxk

σk

)2

, (51)

with δxk being the change in the value of the parameter
xk under a change of the data di,j , for all nd = 108 data
points. This is nothing but the norm of the total change in
units of the standard deviation σk , defined as before by σk =√

Cov(xk, xk). Large changes in x̂ mean that the parameter
values are highly sensitive to the particular value of di,j .

TABLE X. Correlation matrix (49) for the UNEDF0 parameter set.

ρc ENM/A KNM aNM
sym LNM

sym 1/M∗
s C

ρ�ρ

0 C
ρ�ρ

1 V n
0 V

p

0 C
ρ∇J

0 C
ρ∇J

1

ρc 1.00
ENM/A −0.28 1.00
KNM – – –
aNM

sym −0.10 −0.88 – 1.00
LNM

sym −0.17 −0.80 – 0.97 1.00
1/M∗

s – – – – – –
C

ρ�ρ

0 0.09 0.80 – −0.81 −0.74 – 1.00
C

ρ�ρ

1 0.20 0.35 – −0.47 −0.66 – 0.23 1.00
V n

0 0.02 0.21 – −0.23 −0.25 – 0.23 0.23 1.00
V

p

0 −0.13 −0.42 – 0.52 0.56 – −0.29 −0.45 −0.14 1.00
C

ρ∇J

0 0.37 −0.14 – 0.02 −0.00 – 0.44 −0.02 0.09 0.16 1.00
C

ρ∇J

1 −0.06 −0.18 – 0.27 0.33 – −0.38 −0.20 −0.01 0.00 −0.37 1.00
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FIG. 10. (Color online) Sensitivity of the parameters of UNEDF0

to different data types entering χ 2. The EDF parameters are labeled
as in Table VII.

In principle, the sensitivity analysis can be performed at
any point x of the nx-dimensional parameter space: For a
given scalar function f (x) of the type (36), the sensitivity at
point x is only based on the local gradient. In particular, it is
totally independent of the procedure that leads to the specific
selection of x. It only depends on the degrees of freedom, that
is, free parameters, retained in f (x).

The question of degrees of freedom is highly relevant in the
context of the UNEDF0 parameter set, where two parameters
are actively constrained at the solution. These constraints have
been directly implemented by restricting the domain where the
χ2 function is evaluated, and not by modifying the function
by adding a penalty.

The net result of imposing the bound constraints is that
only 10 parameters out of 12 are allowed to change near
the end of the optimization process. One has, therefore,
two options as far as the sensitivity analysis is concerned:
(i) Remove these two parameters from the set of active param-
eters and calculate the Jacobian J (x) and the sensitivity matrix

Data point
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FIG. 11. (Color online) Overall change in x̂ (51) for the UNEDFnb
and UNEDF0 parameter sets when data di,j change by 0.1wi one
by one. The labeling of data points is consistent with that in
Tables I–IV.

S(x) with only nx − 2 = 10 parameters; (ii) keep all nx = 12
parameters in the calculation of the Jacobian and doing a
tangent plan approximation to obtain the relevant covariance
and sensitivity matrices. In this way, the uncertainties of the
other 10 parameters are affected by the local fluctuations
of the surface induced by these two actively constrained
parameters.

Alternative (i) boils down to computing the gradient at point
x̂ in a 10-parameter subspace of the original 12-parameter
space. In this subspace, x̂ is the stable point of the χ2 function.
The curve labeled UNEDF010 in Fig. 11 corresponds to this
approach. This sensitivity response is compared with that
performed at the free minimum x̂(nb) of χ2 in the full 12-
parameter space of UNEDFnb. Because both sets correspond to
(unconstrained) minima in their respective spaces, the overall
changes in x̂ are of the same order of magnitude and they
are very small, ‖δx/σ‖ ≈ 0.01. This indicates that the set of
fit observables has been chosen very consistently. Indeed, the
mass of deformed 254Fm is the single observable that yields the
noticeable parameter variations around the UNEDFnb minimum
while in the case of UNEDF010 no sensitivity to a single piece
of data can be noticed.

By contrast, within alternative (ii), x̂ is not an unconstrained
minimizer in the full 12-parameter space. In such an approach,
we find the overall sensitivity to be about 2 orders of magnitude
larger than what is depicted in Fig. 11. This reflects the fact
that x3 and x6 are far away from the unconstrained minimum
in that space, at the same time being strongly correlated with
other parameters. In this case, the sensitivities depend strongly
on the actual value of x̂ and the way the domain is constrained.
For this reason, option (ii) is of no practical interest in the
comparison with the no-bounds results.

V. CONCLUSIONS

One of the major challenges for the low-energy nuclear
theory is to construct the global nuclear EDF of spectroscopic
quality, rooted in microscopic theory. An important element
of this program is to optimize the parameters of the functional
on a set of experimental observables and selected theoretical
pseudodata. This work shows how such an optimization can be
done by using modern optimization algorithms and nonlinear
regression analysis.

The purpose of this study was to optimize the standard
Skyrme functional based on a set of experimental data (masses,
charge radii, and odd-even mass differences) pertaining to
72 spherical and deformed nuclei amenable to a mean-field
description. The new model-based optimization algorithm
POUNDerS was compared with other standard derivative-free
optimization methods such as Nelder-Mead and was found
to be significantly better in terms of speed, accuracy, and
precision.

The optimization was carried out at the fully self-consistent,
deformed HFB level. Here, we took advantage of the efficient
DFT solver HFBTHO optimized in the first phase of the project.
We have implemented various improvements that enable us
to quickly compute global self-consistent mass tables. This
capability is essential for optimization.
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As a result of the 12-parameter optimization of Skyrme
EDF, we arrived at two solutions. The first one corresponds to a
minimum (stable point) in the considered parameter space. The
corresponding functional UNEDFnb describes well the assumed
set of fit observables, but its incompressibility parameter is
too large, as this property has not been well constrained
by our data set. The second optimization was carried out
assuming hard bounds on the nuclear-matter parameters. For
the bound-constrained solution, the nuclear incompressibility
and scalar effective mass appear at their respective bounds.
The resulting parameter set UNEDF0 gives good agreement with
experimental masses, radii, and deformations and seems to be
free of finite-size instabilities. In particular, for two-neutron
separation energies and masses of even-even heavy nuclei with
A > 80, UNEDF0 yields the rms deviation of 0.45 and 1.2 MeV,
respectively, which is a satisfying result. We emphasize that
the original Skyrme EDFs seem to be inherently limited in
this respect, as demonstrated in Ref. [10], unless specific
corrections are introduced. Our result is therefore in line
with the best expectations one could have for such EDFs.
Nevertheless, the lack of specific constraints on the shell
structure in our data set implies that single-particle levels of
light nuclei are not well reproduced. For that reason, UNEDF0

may not yet be recommended for truly global applications
across the chart of the nuclides. However, this functional
is expected to work well for heavy nuclei and should be
considered as a reference against which more advanced EDFs
will be benchmarked.

We have also applied full-fledged regression diagnostics
on UNEDFnb and UNEDF0, focusing on statistical correlations
between ED parameters and the sensitivity of parameters to
variations in fit observables. To this end, we computed and
analyzed the correlation and sensitivity matrices at the optimal
parameter set. This kind of nonlinear regression analysis is
expected to be helpful when designing next-generation EDFs.
Moreover, the statistical tools presented in this study can be
used to pinpoint specific nuclear observables that are expected
to strongly affect the developments of the nuclear universal
density functional.
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