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Half-lives and cluster preformation factors for various cluster emissions in trans-lead nuclei
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The generalized density-dependent cluster model (GDDCM) is extended to study cluster radioactivity in
even-even and odd-A nuclei decaying to the doubly magic nucleus 208Pb or its neighboring nuclei. The microscopic
cluster-daughter potential is numerically constructed in the double-folding model with M3Y nucleon-nucleon
interactions plus proton-proton Coulomb interactions. Instead of the WKB barrier penetration probability, the
exact solution of the Schrödinger equation with outgoing Coulomb wave boundary conditions is presented. The
cluster preformation factor is well taken into account based on some available experimental cases. The calculated
half-lives are found to be in good agreement with the experimental data. This indicates that a unified description
of α decay and cluster radioactivity has been achieved by the GDDCM. Predictions of cluster emission half-lives
are made for promising emitters, which may guide future experiments.
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I. INTRODUCTION

The spontaneous emission of a charged particle heavier
than an α particle but lighter than the lightest fission fragment
is known as cluster radioactivity. This new radioactivity
decay mode was first predicted in 1980 by Sǎndulescu,
Poenaru, and Greiner [1]. Subsequently in 1984 Rose and
Jones experimentally observed this new kind of radioactivity,
14C emission from 223Ra [2]. The whole family of such a
disintegration mode consists of carbon radioactivity, oxygen
radioactivity, neon radioactivity, magnesium radioactivity,
silicon radioactivity, and so on. The parent nuclei range from
221Fr to 242Cm, decaying to the doubly magic nucleus 208Pb or
its neighboring nuclei. It is evident that this new radioactivity
is closely related to the extra stability of the daughter nuclei.
In order to understand this new radioactivity which occupies
an intermediate position between α decay and nuclear fission,
many explicit quantitative studies have been carried out from
two standpoints. One is the adiabatic treatment based on the
fissionlike theory [1,3–8], where the decay process is described
by a continuous change of geometrical shapes and the cluster
is considered to be formed gradually during the adiabatic
rearrangements of parent nuclei. The superasymmetric fission
model (SAFM) [3,4], which has contributed significantly to
the knowledge of nuclear hadronic decays, belongs to this
category. The other is the nonadiabatic treatment based on
the traditional α-decay approach [9–16], where the cluster is
treated to be preformed in the decaying nucleus with a certain
preformation probability.

The renewed interest in cluster radioactivity has recently
been stimulated partly by the unified description of various
hadronic decays, and partly by the very recent experiments
on the cluster radioactivity of 238U by 34Si emission and
the one of 223Ac by 14C and 15N emissions [17,18]. The
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density-dependent cluster model (DDCM), combined with the
simple assumption of the cluster preformation factor, has been
employed to calculate half-lives of cluster radioactivity for
various clusters, and the results show good agreement with
the available experimental data [13]. Within the generalized
liquid-drop model (GLDM), the cluster preformation factor Pc

is extracted by dividing the experimental decay width by the
product of the Wentzel-Kramers-Brillouin (WKB) penetration
probability and the assault frequency, and the extracted
Pc values agree well with the previous studies [16]. The
preformed cluster model (PCM) has recently been improved
by taking into account the deformations and orientations of
nuclei [12]. Within the Coulomb and proximity potential
model (CPPM), the cluster formation probability is calculated
as the penetrability probability through the internal part of the
potential barrier, and it is concluded that the emission of α-like
clusters is preferred for trans-tin nuclei while the emission
of non-α-like clusters is preferred for trans-lead nuclei [8].
We also notice that there are several investigations focused
on a unified analytical formula of half-lives for α decay and
cluster radioactivity [19–22]. All of these studies should be
considered as effective methods to give precise descriptions of
cluster radioactivity, since they are based on different models
or different variations of Gamow’s theory. In addition, we
would like to point out that in recent studies Poenaru et al.
have performed a detailed study of the singly ionized trimer
emission from charged metallic atomic clusters by extending
the fission and α-decay theory to nanophysics [23,24]. This is
of great interest and worth further investigation.

Very recently we have proposed the generalized density-
dependent cluster model (GDDCM) for α decay [25–27].
Within this model, α-decay half-lives are evaluated from the
quasibound solution of the Schrödinger equation, and the good
agreement between experiment and theory is achieved for a
wide range of nuclei, including exotic α emitters around the
significant N = 126 shell gap and α-decaying isomers [25,26].
In view of the fact that α decay and cluster radioactivity are
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physically similar processes, both being quantum tunneling
through the potential barrier [28–30], we hope to achieve a
unified description of them. As a further extension of the
GDDCM toward cluster radioactivity, the present study reports
on a detailed study of cluster radioactivity within the GDDCM
framework.

This article is organized in the following way. In Sec. II
we present the theoretical framework of the GDDCM and the
phenomenological analysis of the cluster preformation factor.
In Sec. III the cluster-daughter potential and quasi-bound-state
wave function are discussed in detail, together with the model
parameters used in the calculations. The theoretical results of
our calculations are compared with the experimental data, and
some predictions of cluster emission half-lives are made for
possible candidates. A summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK OF THE
GENERALIZED DENSITY-DEPENDENT

CLUSTER MODEL

The absolute calculation of cluster radioactivity consists
of two aspects. The nuclear structure part of the problem is
associated with the extent to which the cluster is preformed
in the decaying nucleus. This can be taken into account by
introducing the cluster preformation factor Pc. The nuclear
reaction part of the problem concerns the penetration of the
preformed cluster through the potential barrier. This has been
widely investigated in terms of the quantum tunneling effect. In
the cluster representation of the decaying nucleus, we proceed
by constructing microscopic Coulomb and nuclear potentials,
and solving the stationary Schrödinger equation that describes
the relative motion of the cluster with respect to the core
nucleus, (

− h̄2

2µ

d2

dr2
− V (r)

)
un�j (r) = Qun�j (r). (1)

The interaction potential V (r) includes the repulsive Coulomb
part, the attractive nuclear part, and the additional centrifugal
part,

V (r) = VC(r) + VN (r) + �(� + 1)h̄2

2µr2
, (2)

where µ is the reduced mass of the system, and � is
the angular momentum carried by the cluster. The nuclear
potential is obtained using the double-folding method with
effective nucleon-nucleon (NN) interactions. The Coulomb
potential is also obtained in the double-folding model where
the matter-density distributions of nuclei are replaced by their
charge density distributions. They are written in the following
form [31–33]:

VN or C(r) = λ

∫
dr1dr2ρ1(r1)υ(s)ρ2(r2), (3)

where the factor λ is employed to renormalize the nuclear
potential to reproduce an equivalent local potential (λ = 1 for
the Coulomb potential), and υ(s = |r + r2 − r1|) is the effec-
tive NN interaction or the standard proton-proton Coulomb
interaction. The density distributions of the cluster and the

residual core nucleus have the well-known two-parameter
Woods-Saxon form,

ρ1,2(r) = ρ0

1 + exp [(r − R)/a]
, (4)

where ρ0 is determined by integrating the density distribution
equivalent to the mass number A (or atomic number Z) of
corresponding nuclei. The radius parameter R is taken to
be R = 1.07A1/3, and the diffuseness a is fixed at a = 0.54
[34,35]. It should be noted that if the cluster is an α particle,
its density distribution is described by the standard Gaussian
form [27,33]. For the effective NN interaction, we use
the popular Michigan three-range Yukawa (M3Y)–Reid-type
interaction, which is one of the most widely used interactions.
Its parametrized form, introduced by Satchler and Love [36],
is written as

υ(s) = 7999
exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s
+ J00(Ec)δ(s),

(5)

and the zero-range pseudopotential J00(Ec) representing the
single-nucleon exchange effect is given by

J00(Ec) = −276[1 − (0.005Ec/Ac)], (6)

where Ec and Ac are the kinetic energy and mass number of
the cluster, respectively.

With this microscopic cluster-daughter potential, the
Schrödinger equation (1) is numerically solved for the quasi-
bound-state wave function un�j (r). Since the decay energy
Q cannot be predicted with sufficient accuracy, following
the procedure of α-decay calculations [25–27], we adjust the
renormalized factor λ of the nuclear potential to reproduce
the decay Q value. Then, we consider the Pauli exclusion
principle for the nucleons in the preformed cluster with respect
to those in the core nucleus, which would result in a nonlocal
cluster-core interaction. On the one hand, the single-nucleon
exchange term has been included in the effective M3Y–Reid-
type interaction, as shown by Eq. (5). On the other hand,
the quantum number n (i.e., the number of internal nodes in
the radial wave function) is chosen to satisfy the Wildermuth
rule [37], which relates the quantum numbers of the cluster to
the shell-model quantum numbers of the nucleons forming the
cluster in the following way:

G = 2n + � =
Ac∑
i=1

(
g

(Ad+Ac)
i − g

(Ac)
i

)
. (7)

In this expression, g(Ad+Ac)
i are the oscillator quantum numbers

of the nucleons forming the cluster, whose values are required
to ensure the cluster completely outside the shell occupied by
the core nucleus, and g

(Ac)
i are the internal quantum numbers

of the Ac nucleons in the shell model of the cluster. Here,
we take gi = 4 for nucleons in the 50 � Z,N � 82 shell,
gi = 5 for nucleons in the 82 < Z,N � 126 shell, and gi = 6
for nucleons outside the N = 126 neutron shell closure. This
rule is sufficient to account for the main effects of the Pauli
principle, and the remaining effects are mostly absorbed into
the effective cluster-daughter potential based on the popular
M3Y–Reid-type interaction.
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Next, for the Coulomb-nuclear problem, the quasibound
solution un�j (r) of Eq. (1) is obtained by matching it to a
purely outgoing Coulomb wave in the asymptotic region [27],

un�j (r) → G�(kr) + iF�(kr), (8)

where G�(kr) and F�(kr) are, respectively, the irregular and
regular Coulomb wave functions with k = √

2µQ/h̄. After
this, the overall normalization of un�j (r) is achieved by
requiring that

∫ Rmax

0
|un�j (r)|2dr = 1. (9)

Here the cutoff radius Rmax is fixed at R = 30 fm, but any
radius in the exterior region yields the approximately same
normalization. This is because the wave function un�j (r)
decreases rapidly with a radius outside the nucleus.

The decay width is determined from the decay probability
current through a spherical surface, which is calculated
with the asymptotical behavior of the radial wave function,
un�j (r) � N�j [G�(kr) + iF�(kr)]. Ultimately, one can give an
expression for the width of the form [27]

� = h̄2k

µ
|N�j |2, (10)

where the constant N�j can be expressed as the ratio of
the quasi-bound-state wave function un�j (r) to the outgoing
Coulomb wave at a large distance R. Then, the decay width
representing the tunneling through the potential barrier is given
by [27]

�(R) = h̄2k

µ

|un�j (R)|2
G�(kR)2 + F�(kR)2

. (11)

It is particularly worth noting that the expression of Eq. (11)
is valid only for distances beyond the range of the nuclear
potential and shows rather weak sensitivity to the choices of
R. This property can provide a convenient self-check of the
reliability of the exact formalism presented here.

To calculate absolute cluster emission half-lives, it is
indispensable to include the cluster preformation factor Pc,
which measures the extent to which the cluster is preformed at
the nuclear surface. It is well known that the cluster formation
is one of the basic features in nuclear many-body dynamics,
and cluster structure is very important in light nuclei [38].
For the clustering in heavy nuclei, it is known from available
experimental cases that the factor Pc usually differs widely
from one decay mode to another but varies very slowly for a
given radioactivity. More precisely, the factor Pc decreases
considerably in magnitude with increasing the size of the
cluster [39]. With this in mind, the preformation factor of
a cluster depends practically upon the size of the cluster.
Besides this, in view of the fact that the same cluster is emitted
by different nuclei, the preformation factor should essentially
associate with the size of the parent nucleus or its daughter.
Based on these simple experimental facts, we assume that
the cluster preformation factor Pc has an exponential form as
follows [21]:

Pc = 10−a
√

µ(ZcZd )1/2+b, (12)

where the reduced mass µ is measured in unit of the nucleon
mass, µ = AcAd/(Ac + Ad ), Zc and Zd are, respectively,
the atomic numbers of the cluster and the daughter nucleus,
and a and b are free parameters to be determined. Within
this expression, for a given cluster, taking an α particle,
for example, the quantities

√
µ and (ZcZd )1/2 change very

smoothly with parent nuclei in the heavy and superheavy mass
region so that the preformation factor is almost constant for α

decay. This is quite consistent with the available experimental
results [40]. Moreover, through the physical quantities µ and
Zc, as expected, the factor Pc in Eq. (12) exhibits a strong
decrease in magnitude with an increase in the size of the
cluster. Before ending the analysis of the factor Pc, we would
like to point out that there are other ways to evaluate the cluster
preformation factor Pc. The clear dependence of Pc upon the
mass number of emitted clusters was found for various clusters
with mass number up to Ac = 28 [41], which is given by

Pc = [Pα](Ac−1)/3, (13)

where Pα is the preformation factor of an α particle with
different values for even-even and odd-A parent nuclei. In
Refs. [9,12,14], the cluster preformation factor is defined as
the probability of finding two fragments (the cluster and the
daughter nucleus) at a fixed relative separation R, and its
evaluation is achieved by solving the stationary Schrödinger
equation for the dynamical flow of mass and charge. Within the
fissionlike model [6,8], the cluster preformation probability is
calculated as the penetrability probability through the internal
part of the potential barrier.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Double-folding potential and quasi-bound-state
wave function

In the cluster model of the decaying nucleus, reliable input
of the cluster-nucleus interaction potential is essential for the
quantitative description of α decay or cluster radioactivity. In
contrast to the WKB penetration probability only connected
with the potential barrier, the present GDDCM calculation,
based on the quasi-bound-state wave function, has a clear
dependence upon the entire potential. Hence, the double-
folding potential is strikingly appropriate and rewarding to our
approach owing to its microscopic nature. It is interesting to
gain deep insight into the microscopic potential presented here.
Figure 1(a) shows the microscopic double-folding potential
of the 208Pb + 14C system in three different kinds: nuclear,
Coulomb, and total potentials. For the sake of convenience, we
also give the microscopic potential of the 208Pb + α system in
Fig. 1(b). With respect to the 208Pb + α system, the 208Pb + 14C
system has a significantly deeper nuclear potential well and a
much higher Coulomb potential barrier in the interior region.
Obviously, the heavier the cluster, the larger the finite depth of
total potentials.

It is also interesting to look in detail at the systematic
behavior of the quasi-bound-state wave function un�j (r).
Figure 2 illustrates the interior and exterior properties of the
real part of the wave function un�j (r) for the 208Pb + 14C
system. We would like to point out that the y axis in Fig. 2(b)
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FIG. 1. (Color online) Schematic sketch of the double-folding
nuclear potential VN (r) (the black solid line), the double-folding
Coulomb potential VC(r) (the red dashed line), and the total potential
V (r) = VN (r) + VC(r) (the blue dotted line): (a) for the 208Pb + 14C
system and (b) for the 208Pb + α system. The decay Q value is also
indicated by the dashed-dotted line.

is magnified by 1014, that is, the un�j (r) real part decreases
actually by about 14 orders of magnitude in the barrier region.
Furthermore, this strong amplitude attenuation is more obvious
for heavier clusters. In the exterior region, the real part of
un�j (r) does not seem to vanish completely like a bound-state
wave function. Instead, it is characterized by the oscillatory
behavior of the Coulomb wave, although its amplitude is
vanishingly small. This is the most significant difference
between quasi-bound-state wave functions and bound-state
ones.

FIG. 2. The real part of the quasi-bound-state wave function
un�j (r) for the 208Pb + 14C system: (a) in the interior region and (b)
in the exterior region. It is worthwhile to note that the y axis in (b)
is magnified by 1014. This suggests that the wave function is damped
by about 14 orders of magnitude in the barrier region.

B. Model parameters used in calculations

Within the GDDCM, the microscopic cluster-daughter
potential is numerically constructed in the double-folding
model using the density distributions of the cluster and
the core nucleus, which are defined by the radius R and
diffuseness a. The parametrization of R and a is taken from the
classical nuclear textbooks [34,35]. In the course of solving
the Schrödinger equation, the only adjustable parameter is the
renormalized factor λ in the double-folding nuclear potential.
Its value is determined from the eigencharacteristic of the
cluster quasi-bound-state, such as the decay Q value and the
quantum number n. In the whole calculation of various cluster
emissions, the λ value is found to vary slowly in the range
from 0.437 to 0.543.

As the last step to calculate cluster emission half-lives, the
additional quantity, namely the cluster preformation factor Pc,
is introduced into the calculation. As mentioned, the analysis
of Pc can conveniently be made by the simple expression
Eq. (12). Considering the unpaired nucleon in odd-A nuclei
and the proton-neutron coupling in odd-odd nuclei, there
exist different hindrance in even-even, odd-A, and odd-odd
emitters. And these hindrance have a direct effect on the cluster
preformation factor Pc. As a result, in the systematic study of
all kinds of emitters, the parameter a in Eq. (12) remains
the same for even-even, odd-A, and odd-odd nuclei, while
the parameter b has three different values. In this way, the
difference among various hindrance is taken into account in
a straightforward and consistent manner. In our calculations,
the experimental cluster preformation factor is defined as the
ratio between the experimental and calculated decay widths,

P expt
c = �expt/�calc, (14)

where the experimental decay width �expt is related to the
measured half-life T1/2 by the well-known relationship �expt =
h̄ ln 2/T1/2. Through a fitting procedure to the P

expt
c values, we

find that the experimental Pc factors can be reproduced by the
following parameters:

a = −0.052,

be−e = 0.690,

bo−A = −0.600.

In terms of these parameters, the α-preformation factor
for 212Po has a value of 0.23. This agrees well with both
the microscopic calculation of 212Po [42] and the systematic
calculation of α decay [27].

C. Systematic results of half-lives for α decay
and cluster radioactivity

Using the formalism described above, we have performed
a systematic investigation on cluster radioactivity in the
trans-lead region. For comparison we also present an α-decay
study of the α emitters decaying to the doubly nucleus
208Pb or its neighboring nuclei. For ground-state-to-ground-
state transitions, the decay Q value is calculated from the
relationship

Q(Z,A) = B(Zd,Ad ) + B(Zc,Ac) − B(Z,A), (15)
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FIG. 3. (Color online) Sensitivity of the calculated decay width
to the relative angular momentum � for the 209Pb + 14C and 209Pb + α

systems. Calculations are performed at various assumed � values
within the GDDCM framework.

where the binding energies B(Zd,Ad ),B(Zc,Ac), and B(Z,A)
are all taken from Ref. [43]. For even-even nuclei, the
decay always ends up in even-even products. All ground
states involved are characterized by the spin-parity of 0+,
and thus all the decays are favored transitions (i.e., � = 0).
For odd-A nuclei, the decay proceeds from parent ground
states to daughter ground states by emission of an even-even
cluster or, occasionally, an odd-A cluster. The relative angular
momentum � cannot be unambiguously determined like that of
even-even nuclei. In this case, we adopt the smallest one among
all allowed � values. This is a reasonable procedure because
in most cases the cluster prefers to carry the smallest angular
momentum. On the other hand, the centrifugal barrier plays a
minor role in cluster radioactivity due to the large cluster-
daughter reduced mass µ and also because the Coulomb
potential becomes relatively large. For concreteness, in Fig. 3
we present the calculated decay width �� relative to the � = 0
case as the function of the � value for the 14C radioactivity
of 223Ra and the α decay of 213Po. One can see that the
calculated decay width decreases with increasing the � value in
both the α decay and the 14C radioactivity. More importantly,
as the � value is changed from 0 to 8, the decay width for
the 209Pb + 14C system decreases by almost one order of
magnitude while the decay width for the 209Pb + α system
decreases by about three orders of magnitude. This clearly
shows that there is a much weaker sensitivity of the calculated
decay width to the � value for the 14C radioactivity of 223Ra
than for the α decay of 213Po, especially in the high relative
angular momentum region.

For a clear insight into the correlation between the pre-
formation factors of various clusters, the P

expt
c values are

illustrated in the logarithmic plot of Fig. 4 for both even-even
and odd-A nuclei, together with the Pc values calculated
with the analytical formula Eq. (12). The x axis of Fig. 4
denotes the exponential term

√
µ(ZcZd )−1/2 and the y axis

stands for the quantity (log10 Pc − b), where the well-known

FIG. 4. (Color online) Comparison of the logarithms of the
calculated cluster preformation factors and the experimental values
for various clusters emitted from even-even and odd-A nuclei. The
line represents the calculated values and the points stand for the
experimental ones. The parameter b in the y axis has two different
values for even-even and odd-A emitters, showing the well-known
odd-even effect of mass number.

odd-even effect of the mass number is included by two different
values of the parameter b. One can obviously see that the
experimental points lie approximately in a single straight line
as predicted by the formula Eq. (12). This makes an active
response to our assumption of the cluster preformation factor
and gives us confidence to make precise calculations of cluster
emission half-lives.

Table I displays the detailed numerical results of the emis-
sions of various clusters from even-even and odd-A nuclei,
for which the experimental decay half-lives are available with
reasonable accuracy. For comparison the unified formula of
half-lives for α decay and cluster radioactivity is also applied
to evaluate cluster emission half-lives, which is given by [21]

log10 T1/2 = a
√

µZcZdQ
−1/2 + b

√
µ(ZcZd )1/2 + c, (16)

where the half-life T1/2 is in seconds, and the Q value is in MeV.
In Table I, the first column denotes the spontaneous emission
of a cluster from parent nuclei. The second and third columns
label the decay energy and the calculated cluster preformation
factor, respectively. The experimental cluster emission half-
lives are listed in the fourth column. The last two columns
give the theoretical half-lives calculated with the GDDCM
and with the unified formula, Eq. (16). It is known that the
present data of many emitters have a large measuring error. The
reason for this is that only few decay events of cluster emission
are detected in experiment [17]. Nevertheless, one can see
that the calculated half-lives of various cluster emissions are
in good agreement with the available experimental data. The
standard deviations are σe−e = 0.29 for even-even emitters and
σo−A = 0.42 for odd-A ones, which correspond to the absolute
deviation of half-lives with mean factors of 2.0 and 2.6. As
one would expect, the results of odd-A emitters are generally
less accurate than those of even-even ones. This is due to the
addition complication resulting from unpaired nucleons, such
as the uncertainty of � values and the fine structure in the
cluster energy spectrum. The analytical formula of half-lives
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TABLE I. Comparison of the calculated half-lives with the experimental data for emissions of various clusters. Calculations are performed
in two ways: by working in the framework of the generalized density-dependent cluster model (GDDCM) and by using the unified formula
Eq. (16). The decay Q values and calculated Pc values are presented as well.

Decay Q (MeV) Pc log10 T
expt

1/2 (s) log10 T calc
1/2 (s) log10 T formula

1/2 (s)

210Pb → 206Hg + 4He 3.792 2.40 × 10−1 16.57 16.51 15.28
211Bi → 207Tl + 4He 6.751 1.21 × 10−2 2.18 2.41 1.10
211Po → 207Pb + 4He 7.594 1.19 × 10−2 −0.28 −0.08 −1.30
212Po → 208Pb + 4He 8.954 2.31 × 10−1 −6.52 −6.55 −6.49
214Po → 210Pb + 4He 7.833 2.31 × 10−1 −3.78 −3.55 −3.52
221Fr → 207Tl + 14C 31.29 1.69 × 10−5 14.56 15.00 15.27
221Ra → 207Pb + 14C 32.40 1.59 × 10−5 13.39 13.88 14.09
222Ra → 208Pb + 14C 33.05 3.11 × 10−4 11.22 11.07 11.35
223Ra → 209Pb + 14C 31.83 1.59 × 10−5 15.05 14.88 15.19
224Ra → 210Pb + 14C 30.54 3.10 × 10−4 15.87 15.89 16.31
226Ra → 212Pb + 14C 28.20 3.09 × 10−4 21.20 21.01 21.50
228Th → 208Pb + 20O 44.72 9.40 × 10−6 20.73 21.24 21.80
230Th → 206Hg + 24Ne 57.76 6.88 × 10−7 24.63 24.74 24.66
231Pa → 208Pb + 23F 51.84 8.70 × 10−8 26.02 25.24 26.09
231Pa → 207Tl + 24Ne 60.41 3.18 × 10−8 22.89 23.24 23.34
232U → 208Pb + 24Ne 62.31 5.61 × 10−7 20.39 20.37 20.32
233U → 209Pb + 24Ne 60.49 2.86 × 10−8 24.84 24.43 24.69
233U → 208Pb + 25Ne 60.78 2.14 × 10−8 24.84 24.48 25.02
234U → 210Pb + 24Ne 58.83 5.57 × 10−7 25.93 25.64 25.90
234U → 208Pb + 26Ne 59.47 3.14 × 10−7 25.93 25.66 26.49
234U → 206Hg + 28Mg 74.11 4.48 × 10−8 25.53 25.57 25.10
236Pu → 208Pb + 28Mg 79.67 3.53 × 10−8 21.52 21.01 20.48
238Pu → 210Pb + 28Mg 75.91 3.49 × 10−8 25.70 25.95 25.80
238Pu → 208Pb + 30Mg 76.82 1.98 × 10−8 25.70 25.43 25.85
238Pu → 206Hg + 32Si 91.19 3.07 × 10−9 25.28 25.98 25.19
242Cm → 208Pb + 34Si 96.51 1.32 × 10−9 23.15 23.06 23.00

also gives a precise description of various cluster emissions,
although the agreement between experiment and theory is not
as good as that of the GDDCM. In addition, we compare
the calculated Pc values for even-even emitters with the ones
for odd-A emitters. It is found that for a given radioactivity
the Pc factors in odd-A emitters are smaller by one order
of magnitude than in neighboring even-even emitters. This
can easily be explained if the decays of odd-A emitters are
hindered by some structure effects. Indeed, the ground states
of an odd-A parent nucleus and its daughter generally differ in
their structure, which leads to an additional hindrance to the
transition between these two states. Furthermore, the present
results of Pc agree well with the previous analysis of the odd-A
14C emitters [44], where the 14C radioactivity of two exotic

odd-A emitters 221Fr and 221Ra seems to exhibit a one-order-
of-magnitude hindrance with respect to the one of neighboring
even-even emitters.

Figure 5 shows the deviations of calculated cluster-emission
half-lives from the experimental data as a function of the
parent nucleus. As one can see, the values of log10(Tcalc/Texpt)
are generally within the range of ±0.7, which corresponds to
the deviation of half-lives within a factor of 5.0. This means
that the calculated half-lives are in good agreement with the
experimental data for both even-even and odd-A nuclei. One
can also notice that there is a slightly large derivation in
Fig. 5, which corresponds to the 23F emitter 231Pa. The
emission of 23F from 231Pa is the first example of emissions
of an odd-Z cluster in exotic cluster radioactivity. The large

TABLE II. Special cases of the cluster emission of odd-A nuclei, where the exotic cluster emissions do not seem to exhibit any special
hindrance, behaving as emissions of even-even emitters. The Pc values, extracted from the experimental data, are apparently larger than the
calculated ones for odd-A emitters but comparable with the calculated ones for even-even emitters, clearly showing this rather interesting
phenomenon.

Decay Q (MeV) log10 T
expt

1/2 (s) P expt
c P calc

c,o−A P calc
c,e−e

213Po → 209Pb + 4He 8.536 −5.38 1.71 × 10−1 1.19 × 10−2 2.31 × 10−1

223Ac → 209Bi + 14C 33.06 12.60 8.88 × 10−5 1.50 × 10−5 2.93 × 10−4

225Ac → 211Bi + 14C 30.48 17.28 3.03 × 10−4 1.49 × 10−5 2.92 × 10−4
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TABLE III. Predicted half-lives for possible cluster emissions by the GDDCM and by the unified formula Eq. (16). The calculated cluster
preformation factors are also listed.

Decay Q (MeV) Pc log10 T
expt

1/2 (s) log10 T calc
1/2 (s) log10 T formula

1/2 (s)

219Rn → 205Hg + 14C 28.10 1.80 × 10−5 − 21.06 21.07
220Rn → 206Hg + 14C 28.54 3.51 × 10−4 − 18.44 18.56
221Fr → 206Hg + 15N 34.12 5.97 × 10−6 − 23.10 22.88
223Ra → 205Hg + 18O 40.30 1.05 × 10−6 − 27.28 27.07
225Ra → 211Pb + 14C 29.47 1.58 × 10−5 − 19.70 20.12
225Ra → 205Hg + 20O 40.48 5.71 × 10−7 − 28.55 28.99
226Ra → 206Hg + 20O 40.82 1.11 × 10−5 − 26.37 26.80
223Ac → 208Pb + 15N 39.47 5.21 × 10−6 >14.76 15.06 14.99
227Ac → 207Tl + 20O 43.09 5.23 × 10−7 − 24.43 25.10
229Ac → 206Hg + 23F 48.36 1.05 × 10−7 − 28.73 29.62
226Th → 208Pb + 18O 45.73 1.75 × 10−5 >16.76 18.14 18.04
226Th → 212Po + 14C 30.55 2.75 × 10−4 >15.30 17.92 18.31
227Th → 209Pb + 18O 44.20 8.94 × 10−7 − 22.22 22.23
228Th → 206Hg + 22Ne 55.74 1.26 × 10−6 − 26.94 26.24
229Th → 209Pb + 20O 43.40 4.80 × 10−7 − 25.02 25.81
229Th → 205Hg + 24Ne 57.83 3.54 × 10−8 − 26.21 26.05
231Th → 207Hg + 24Ne 55.99 3.51 × 10−8 − 29.01 29.22
231Th → 206Hg + 25Ne 56.87 2.64 × 10−8 − 28.07 28.54
232Th → 208Hg + 24Ne 54.42 6.83 × 10−7 >29.20 30.34 30.53
232Th → 206Hg + 26Ne 55.96 3.88 × 10−7 >29.20 28.77 29.50
227Pa → 209Bi + 18O 45.87 8.28 × 10−7 − 20.46 20.50
229Pa → 207Tl + 22Ne 58.96 5.86 × 10−8 − 24.37 23.95
230U → 208Pb + 22Ne 61.39 1.04 × 10−6 >18.20 21.04 20.11
230U → 206Pb + 24Ne 61.35 5.66 × 10−7 >18.20 22.14 21.78
232U → 204Hg + 28Mg 74.32 4.53 × 10−8 >22.26 25.64 24.77
233U → 205Hg + 28Mg 74.23 2.31 × 10−9 >27.59 27.00 26.43
235U → 211Pb + 24Ne 57.36 2.84 × 10−8 >27.65 29.22 29.91
235U → 210Pb + 25Ne 57.76 2.12 × 10−8 >27.65 29.22 30.12
235U → 207Hg + 28Mg 72.16 2.28 × 10−9 >28.45 29.56 29.57
235U → 206Hg + 29Mg 72.49 1.72 × 10−9 >28.45 29.57 29.80
236U → 212Pb + 24Ne 55.95 5.52 × 10−7 >26.27 30.41 30.92
236U → 210Pb + 26Ne 56.75 3.11 × 10−7 >26.27 30.21 31.30
236U → 208Hg + 28Mg 70.48 4.44 × 10−8 >26.27 30.83 30.69
236U → 206Hg + 30Mg 72.51 2.54 × 10−8 >26.27 28.91 29.32
238U → 208Hg + 30Mg 69.24 2.51 × 10−8 − 33.63 34.35
231Np → 209Bi + 22Ne 61.91 4.82 × 10−8 − 22.76 22.22
233Np → 209Bi + 24Ne 62.16 2.60 × 10−8 − 23.28 23.49
235Np → 207Tl + 28Mg 77.10 2.04 × 10−9 − 24.19 23.95
237Np → 207Tl + 30Mg 74.82 1.15 × 10−9 >27.57 28.01 28.67
237Pu → 209Pb + 28Mg 77.73 1.80 × 10−9 − 24.73 24.69
237Pu → 208Pb + 29Mg 77.46 1.35 × 10−9 − 25.52 25.74
237Pu → 205Hg + 32Si 91.46 1.58 × 10−10 − 27.14 26.32
239Pu → 209Pb + 30Mg 75.12 1.01 × 10−9 − 29.28 29.94
239Pu → 205Hg + 34Si 91.86 9.03 × 10−11 − 27.07 26.99
237Am → 209Bi + 28Mg 79.90 1.60 × 10−9 − 23.63 23.26
239Am → 207Tl + 32Si 94.51 1.37 × 10−10 − 24.91 24.15
241Am → 207Tl + 34Si 93.93 7.77 × 10−11 >24.41 26.00 26.08
240Cm → 208Pb + 32Si 97.56 2.32 × 10−9 − 21.48 20.56
241Cm → 209Pb + 32Si 95.40 1.18 × 10−10 − 25.42 24.80
243Cm → 209Pb + 34Si 94.75 6.69 × 10−11 − 26.53 26.83
244Cm → 210Pb + 34Si 93.14 1.30 × 10−9 − 27.15 27.51

deviation of its half-lives can be understood as being the
difference between the emissions of an odd-Z cluster and of an
even-Z cluster. It should be noted that another new emission
of an odd-Z cluster, namely the 15N emission from 223Ac [18],

has recently been observed, together with a low limit of its
half-life. Along with the accumulation of data on emissions of
odd-Z clusters, it would be very interesting to investigate the
even-odd effect of the proton number for various clusters.
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FIG. 5. Deviation of cluster emission half-lives calculated within
the GDDCM framework from the experimental data for various
clusters. Different parent nuclei are indicated at the bottom.

Before we finish the discussion of the numerical results,
we would like to point out some special cases of the
cluster emission of odd-A nuclei. As already mentioned, the
radioactivity of odd-A emitters in most cases exhibits strong
hindrance. However, some special cases seem to exhibit no
hindrance just like the decay of even-even emitters. The
representative example is the α decay of 213Po from the
ground state with the 9/2+ spin-parity to the daughter ground
state with the same spin-parity [45]. It involves only the
paired nucleons forming an α cluster, which is strikingly
different from the hindered α decays of 211Bi and 211Po that
involve the unpaired nucleons and the proton- or neutron-shell
crossing. In exotic cluster radioactivity, it is known that the
centrifugal barrier has a rather weak effect on the decay
widths, as shown in Fig. 3. Therefore, without consideration
of the exact � values, one can pick up the unhindered cluster
emissions of odd-A emitters by comparing the experimental
Pc values with the calculated ones. They are listed in Table II,
together with the α decay of 213Po. The fourth column of
Table II denotes the experimental Pc value, which is extracted
from the experimental half-life. The last two columns
denote the calculated Pc values in two groups of odd-A and
even-even emitters. Obviously, the experimental Pc values
are significantly larger than the calculated ones for odd-A
emitters but comparable with the calculated ones for even-even
emitters. This demonstrates that the cluster emissions of
the odd-A emitters shown in Table II indeed belong to the
unhindered decays, behaving as one of the even-even emitters.
For the 14C emission of 225Ac, the tentative interpretation of the
unhindered ground-state-to-ground-state transition was given
in Ref. [46], that is, the deformed 3/2− configuration, assigned
to the 225Ac ground state, originates from the unperturbed
spherical 9/2− state which serves as the ground state of the
daughter nucleus 211Bi. The theoretical calculation of the
225Ac structure also provided the other possible situation that
the unhindered decay could occur for the transition to the first

excited 7/2− state of the daughter nucleus 211Bi. Motivated by
the nuclear structure arguments in 225Ac, the experiment on the
radioactivity of 233Ac was achieved, where the 14C emission
was found to be as unhindered as emissions of even-even
emitters and interpreted as the ground-state-to-ground-state
transition in terms of the 223Ac ground-state configuration.

The good agreement between experiments and calculations
shown in Table I and Fig. 5 confirms the applicability and
validity of the GDDCM for cluster radioactivity and allows
us to make reliable predictions of half-lives for emissions of
known clusters from promising candidates. In Table III, we
present the detailed predictions of cluster emission half-lives
by working in the framework of the GDDCM and by using
the unified formula Eq. (16). The calculated Pc values are also
given. It will be of significant interest to compare the present
theoretical predictions with future experimental observations.

IV. SUMMARY

In summary, we have presented in this paper an extension
of the newly developed GDDCM to study cluster radioactivity.
In the GDDCM, the microscopic cluster-daughter potential is
numerically constructed in the double-folding model for both
Coulomb and nuclear parts. Instead of working in the WKB
framework, the exact solution of the Schrödinger equation with
outgoing Coulomb wave boundary conditions is presented for
the calculation of the decay width. Based on some available
experimental cases, the cluster preformation factor is evaluated
by the simple analytical formula. The results reported in
Table I are in good agreement with the available experimental
data, and some useful predictions of half-lives are made
for emissions of known clusters from possible candidates.
Despite this, the preset analysis is merely the beginning
because many open problems are still unsolvable, such as
the even-odd effect of proton number for various clusters,
the fine structure in the cluster energy spectrum, the possible
cluster emissions in the trans-tin region, the wide variation of
nuclear deformation from a parent nucleus to its daughter, and
the microscopic interpretation of cluster preformation. Efforts
toward the complete understanding of cluster radioactivity are
being made from both experimental and theoretical sides.
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[3] D. N. Poenaru, M. Ivaşcu, A. Sandulescu, and W. Greiner, Phys.
Rev. C 32, 572 (1985).
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[40] P. E. Hodgson and E. Běták, Phys. Rep. 374, 1 (2003).
[41] R. Blendowske and H. Walliser, Phys. Rev. Lett. 61, 1930 (1988).
[42] K. Varga, R. G. Lovas, and R. J. Liotta, Phys. Rev. Lett. 69, 37

(1992).
[43] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729,

337 (2003).
[44] R. Bonetti et al., Nucl. Phys. A 576, 21 (1994).
[45] R. B. Firestone, V. S. Shirley, C. M. Baglin, S. Y. Frank Chu,

and J. Zipkin, Table of Isotopes, 8th ed. (Wiley Intersicence,
New York, 1996).

[46] R. Bonetti et al., Nucl. Phys. A 562, 32 (1993).

024311-9

http://dx.doi.org/10.1103/PhysRevLett.54.300
http://dx.doi.org/10.1088/0031-8949/44/5/004
http://dx.doi.org/10.1016/S0375-9474(00)00454-1
http://dx.doi.org/10.1016/j.nuclphysa.2010.03.004
http://dx.doi.org/10.1016/j.nuclphysa.2010.03.004
http://dx.doi.org/10.1103/PhysRevC.39.1992
http://dx.doi.org/10.1103/PhysRevC.39.2097
http://dx.doi.org/10.1016/S0370-1573(97)00049-5
http://dx.doi.org/10.1103/PhysRevC.79.064616
http://dx.doi.org/10.1103/PhysRevC.80.034317
http://dx.doi.org/10.1103/PhysRevC.80.034317
http://dx.doi.org/10.1103/PhysRevC.70.034304
http://dx.doi.org/10.1103/PhysRevC.70.034304
http://dx.doi.org/10.1103/PhysRevC.71.014301
http://dx.doi.org/10.1016/j.physletb.2006.09.048
http://dx.doi.org/10.1103/PhysRevC.80.037307
http://dx.doi.org/10.1088/1742-6596/111/1/012050
http://dx.doi.org/10.1103/PhysRevC.74.014312
http://dx.doi.org/10.1103/PhysRevC.74.014312
http://dx.doi.org/10.1088/0954-3899/35/8/085102
http://dx.doi.org/10.1088/0954-3899/35/8/085102
http://dx.doi.org/10.1103/PhysRevC.78.044310
http://dx.doi.org/10.1103/PhysRevC.80.024310
http://dx.doi.org/10.1088/0954-3899/36/12/125101
http://dx.doi.org/10.1088/0954-3899/36/12/125101
http://dx.doi.org/10.1016/j.nuclphysa.2009.12.029
http://dx.doi.org/10.1103/PhysRevC.80.014314
http://dx.doi.org/10.1103/PhysRevC.80.014314
http://dx.doi.org/10.1088/0954-3899/37/3/035104
http://dx.doi.org/10.1103/PhysRevC.80.051303
http://dx.doi.org/10.1103/PhysRevC.80.051303
http://dx.doi.org/10.1103/PhysRevC.81.024315
http://dx.doi.org/10.1103/PhysRevC.72.064613
http://dx.doi.org/10.1103/PhysRevC.72.064613
http://dx.doi.org/10.1103/PhysRevC.73.031301
http://dx.doi.org/10.1103/PhysRevC.76.064605
http://dx.doi.org/10.1103/PhysRevC.76.064605
http://dx.doi.org/10.1016/0375-9474(77)90392-X
http://dx.doi.org/10.1016/0375-9474(82)90305-0
http://dx.doi.org/10.1103/PhysRevC.73.041301
http://dx.doi.org/10.1103/PhysRevC.73.041301
http://dx.doi.org/10.1103/PhysRevC.74.014304
http://dx.doi.org/10.1016/0370-1573(79)90081-4
http://dx.doi.org/10.1088/0954-3899/37/6/064021
http://dx.doi.org/10.1016/0375-9474(86)90268-X
http://dx.doi.org/10.1016/0375-9474(86)90268-X
http://dx.doi.org/10.1016/S0370-1573(02)00268-5
http://dx.doi.org/10.1103/PhysRevLett.61.1930
http://dx.doi.org/10.1103/PhysRevLett.69.37
http://dx.doi.org/10.1103/PhysRevLett.69.37
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1016/0375-9474(94)90736-6
http://dx.doi.org/10.1016/0375-9474(93)90030-2

