
PHYSICAL REVIEW C 82, 024310 (2010)

Filter diagonalization of shell-model calculations

Takahiro Mizusaki,1 Kazunari Kaneko,2 Michio Honma,3 and Tetsuya Sakurai4
1Institute of Natural Sciences, Senshu University, Tokyo 101-8425, Japan

2Department of Physics, Kyushu Sangyo University, Fukuoka 813-8503, Japan
3Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, 965-8580, Japan

4Department of Computer Science, University of Tsukuba, Tsukuba, 305-8573, Japan
(Received 5 April 2010; published 11 August 2010)

We present a method of filter diagonalization for shell-model calculations. This method is based on the Sakurai
and Sugiura (SS) method, but extended with the help of the shifted complex orthogonal conjugate gradient
(COCG) method. A salient feature of this method is that it can calculate eigenvalues and eigenstates in a given
energy interval. We show that this method can be an alternative to the Lanczos method for calculating ground
and excited states, as well as spectral strength functions. With an application to the M-scheme shell-model
calculations we demonstrate that several inherent problems in the widely used Lanczos method can be removed
or reduced.
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I. INTRODUCTION

To perform numerical investigations of quantum many-
body systems, many approaches have been proposed (e.g.,
exact diagonalization, the quantum Monte Carlo method, the
density matrix renormalization group method, and so on).
Compared with other approaches, the exact diagonalization
method has a broader range of applications, and can calculate
energies and wave functions without any approximation. Al-
though a required dimensionality for the Hilbert space is huge,
the matrix dimension that can be handled in the exact diago-
nalization approach has recently increased dramatically, owing
to the development of computers. Hence, the diagonalization
method has become a basic tool in numerical studies, and
has played an important role in various fields of sciences. For
instance, in nuclear structure physics, the exact diagonalization
method is of primary importance for shell-model calculations.

For an exact diagonalization in large-scale shell-model
calculations, the Lanczos method [1] has so far been the
only feasible method for practical use. This method has been
widely employed to obtain not only ground states but also
low-lying excited states. Nevertheless, there still exist three
long-standing problems: (1) In calculating highly excited
states, convergence is much slower than that for the ground
and low-lying states. The number of the Lanczos iteration
process tends to grow rapidly as the energy goes higher.
(2) The Lanczos method needs to do reorthogonalization
of all obtained Lanczos vectors, which demands substantial
numerical effort. This problem is rather technical but crucial
in practice because the reorthogonalization procedure sets
a practical limitation in solving highly excited states. (3)
In large-scale shell-model calculations with the M scheme,
the total angular momentum J and the total isospin T are
not necessarily conserved for each basis, although the total
magnetic quantum number Jz = M is conserved by definition.
Then, conservation of angular momentum and isospin may be
violated in some cases. In the Lanczos method, conservations
of J and T can be realized by choosing an initial wave
function with good quantum numbers J and T . However,
this procedure is not so stable against round-off errors.

Therefore, the conservation of these quantum numbers is an
important issue particularly in the M-scheme shell-model
calculations.

Up to now, several shell-model codes [2–4] have been de-
veloped for state-of-the-art large-scale calculations. However,
there has been no attempt to solve the long-standing and basic
problems in the Lanczos method mentioned previously.

Recently, Sakurai and Sugiura (SS) [5,6] proposed a new
diagonalization method for a generalized eigenvalue problem:
Ax = λBx, where A and B are arbitrary matrices (i.e., not nec-
essarily symmetric matrices). Their method is applicable even
to complex matrices. In this method, Cauchy’s integral formula
is used to obtain eigenvalues (and associated eigenvectors)
inside of the region enclosed by a given integration contour,
which can be considered to be a kind of a filter. Therefore, we
call this new method “filter diagonalization” hereafter.

In the SS method, a diagonalization problem turns into a
problem of solving a large number of linear equations, which
also demands a heavy computation for large-scale shell-model
calculations. To overcome this difficulty, we use the shifted
complex orthogonal conjugate gradient (COCG) method [7].
The shifted COCG method corresponds to a combination of
“shift” algorithms [8] and the COCG method [9], which is
designed to solve a particular family of linear equations. An
advantage of the shifted COCG method is that a problem of
diagonalization can be reduced to just one linear equations.
With the help of the shifted COCG method, the SS method is
greatly reinforced and becomes more feasible. The first study
on the SS method with the shift algorithms was presented in
Ref. [10]. Very recently, an application and an extension of the
SS method with the shift algorithms have been reported for
all-to-all propagators in the lattice quantum chromodynamics
(QCD) [11].

In this article, we apply the filter diagonalization based
on the SS method combined with the shifted COCG to
quantum many-body systems, and demonstrate that the filter
diagonalization is indeed an alternative to the Lanczos method
in evaluating energy eigenvalues, eigenstates, and spectral
strength functions. Moreover, the aforementioned problems of
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the Lanczos method in the M-scheme shell-model calculations
are shown to be removed or reduced.

This article is organized as follows: In Sec. II, we show
the filter diagonalization based on the SS method and the
shifted COCG method, and present how to evaluate the spectral
strength function. In Sec. III, we present several examples of
numerical calculations and discuss characteristic properties
of the method. In Sec. IV, we give a conclusion. In the
appendixes, we summarize useful relations concerning the
Hankel matrix and an algorithm of the shifted COCG method.
For readers who have an interest in this diagonalization, this
article is written in a self-contained manner.

II. FILTER DIAGONALIZATION OF SHELL-MODEL
CALCULATIONS

A. SS method

In this section, we summarize the SS method in the
shell-model calculations. To reduce a large-scale eigenvalue
problem to a small-scale one, we first consider moments
µp(p = 0, 1, 2, . . .), defined by Cauchy’s integral as

µp = 1

2πi

∫
�

〈ψ | (z − ε)p

z − H
|φ〉dz, (1)

where |ψ〉 and |φ〉 are arbitrary wave functions, and H is a
shell-model Hamiltonian, satisfying the eigenvalue equation
H |ϕi〉 = ei |ϕi〉. ε denotes the energy in the vicinity of an
energy region of interest (target region). � means an integration
contour to enclose energy eigenvalues in the target region, as
depicted in Fig. 1. The integration is carried out on the complex
z plane, so that energy eigenvalues on the real axis are energy
poles if they are inside the integration contour �. As a result,
these eigenvalues contribute to the integral, and they are central
quantities in the SS method [5].

To clarify the physical meaning of these moments, we
expand |ψ〉 and |φ〉 in terms of the orthonormalized energy
eigenfunctions |ϕ〉 of the Hamiltonian H , that is, |ψ〉 =∑

ci |ϕi〉 and |φ〉 = ∑
di |ϕi〉, where c and d are coefficients

with
∑ |ck|2 = 1 and

∑ |dk|2 = 1.
Owing to the theorem of residue, Cauchy’s integral is

formally carried out and the moments are rewritten as

µp =
∑
k∈�

(ek − ε)pckdk. (2)

Γ
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FIG. 1. (Color online) An illustration of integration contour �

(open circle) and energy poles (solid circles) on the complex z plane.
In this illustration, � encloses one of the energy poles on the real-z
axis.

The summation over k is taken if energy eigenvalues are inside
the �. The moment µp vanishes when none of the energy poles
is enclosed by �, or when amplitude is zero for the eigenstates
corresponding to the poles (i.e., ckdk = 0).

To extract the energy eigenvalues ek(k ∈ �) from these
moments, we follow the SS method [5]. Namely, we solve
the generalized eigenvalue problem formulated as

Mx = λNx, (3)

where M and N are the n × n Hankel matrices defined by

M =

⎛
⎜⎜⎜⎜⎝

µ1, µ2, · · · µn

µ2, µ3, · · · µn+1

...
. . .

...

µn, µn+1, · · · µ2n−1

⎞
⎟⎟⎟⎟⎠ , (4)

and

N =

⎛
⎜⎜⎜⎜⎝

µ0, µ1, · · · µn−1

µ1, µ2, · · · µn

...
. . .

...

µn−1, µn, · · · µ2n−2

⎞
⎟⎟⎟⎟⎠ . (5)

It is then possible to demonstrate that the eigenvalues λk in
the generalized eigenvalue equation correspond to ek − ε. Its
proof needs a property of the Hankel matrices so that they
can always be factorized with the Vandermonde matrix [5],
as shown in Appendix A. Note that this method to extract
eigenvalues from moments was used in Ref. [12].

The dimension n introduced in the generalized eigenvalue
equation corresponds to the number of eigenvalues inside the
integration contour, but it is not known a priori. The optimum
n can be obtained by monitoring a convergence pattern of the
energy eigenvalues as a function of n. This is because the
energy eigenvalues should be unchanged when the n exceeds
the number of eigenvalues inside the integration contour.

The amplitude ckdk of (ek − ε)p in Eq. (2) can be obtained
by the diagonal matrix given as

D = V −1N (V T )−1, (6)

where V is a Vandermonde matrix defined by Vij = (ej −
ε)i−1, that is,

V T =

⎛
⎜⎜⎜⎜⎝

1, e1 − ε, · · · (e1 − ε)n−1

1, e2 − ε, · · · (e2 − ε)n−1

...
. . .

...

1, en − ε, · · · (en − ε)n−1

⎞
⎟⎟⎟⎟⎠ , (7)

because of Eq. (A6) in Appendix A. It should be noted here
that inverse operations of the Vandermonde matrix are not
numerically stable. It is thus better to use the eigenvectors in
the generalized eigenvalue equation in practical calculations,
because (V T )−1 is equivalent to the eigenvectors of Eq. (3).

To study electromagnetic transition properties, wave func-
tions should be described in the framework of the SS method.
For this purpose, we define vectors |sp〉 as

|sp〉 = 1

2πi

∫
�

(z − ε)p

z − H
|φ〉dz. (8)
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In the same way as Eq. (2), this also can be formally rewritten
as

|sp〉 =
∑
k∈�

dk|φk〉(V T )kp. (9)

Therefore, wave functions |φk〉 are explicitly obtained as

|φk〉 ∝
∑

p

|sp〉(V T )−1
pk . (10)

Its general proof is shown in Ref. [5].
An error analysis was presented for the Hankel and

Vandermonde matrices in the context of the SS method in
Ref. [13].

B. Numerical integration, scaling, and shifted COCG method

Next, we explain how to integrate the moments µp. An
integration contour � is chosen to be a circle given as

z = ε + reiθ (ε, r : real, θ = [0, 2π ]). (11)

The target eigenenergies are then located between ε − r and
ε + r . Cauchy’s integral is now evaluated numerically by the
trapezoidal rule with respect to angle θ as

µp ∼ 1

N0

N0−1∑
k=0

〈ψ | (zk − ε)p+1

zk − H
|φ〉, (12)

where zk = ε + re
i 2π

N0
(k+ 1

2 ). Here, we take integral points in
a symmetric manner about the real axis because we take
an advantage of the property f (z) = f (z) for a complex
number z.

The integration contour with a larger r can include more
energy poles. However, as the µp has the rp dependence, the
moments become larger as a function of p, which causes a
numerical instability in Eq. (3). To remove it, we scale Eq. (1)
by mapping the circle with radius r into a unit circle [6] as

z′ = z/r = ε/r + eiθ . (13)

Under this mapping, the moments µ′
p become

µ′
p =

∑
k∈�

(
ek − ε

r

)p

ckdk, (14)

where µ′
p = µp/rp. Then, the rp dependence is removed in

µ′
p ∼ 1

N0

N0−1∑
k=0

〈ψ | (z′
k − ε′)p+1

z′
k − H ′ |φ〉, (15)

where z′
k = zk/r , H ′ = H/r and ε′ = ε/r .

For each angle θ , we need to evaluate a matrix element
〈ψ | 1

z−H
|φ〉, which involves an inverse operator. To avoid

handling inverse operators, we define |χ〉 as

|φ〉 = (z − H )|χ〉, (16)

and calculate |χ〉 first, then obtain 〈ψ | 1
z−H

|φ〉 = 〈ψ |χ〉.
To obtain |χ〉, we solve linear equations; Ax = b, where

Am,n = 〈m|z − H |n〉, bm = 〈m|φ〉, and xm = 〈m|χ〉. A vector
|m〉 means an M-scheme basis. This equation is solved by

the COCG method [9] for complex, symmetric, but non-
Hermitian matrices, because complex number z appears in the
diagonal matrix elements. As |χ〉 depends on z, the previously
discussed linear equations should be solved for each z. As
the number of integral points N0 increases, this numerical
calculation becomes more time-consuming. However, by using
an invariance property of the Krylov subspace, we can
drastically reduce the amount of computation. Once we can
solve |φ〉 = (z0 − H )|χ0〉 at a certain z0 by the COCG method
and store residual vectors, we can compute |φ〉 = (z − H )|χ〉
for z ∼ z0 from the stored residual vectors. This method is
called the shifted COCG method [7,14]. Details are shown in
Appendix B. We will present how to reduce computation by
this method in Sec. III B.

C. Spectral strength function

To investigate a dynamic property of a system concerning an
operator O, it is useful to evaluate a spectral strength function
I (ω) defined as

I (ω) =
∑

n

∣∣〈ψ (B)
n

∣∣O∣∣ψ (A)
0

〉∣∣2
δ
(
ω − (

E(B)
n − E

(A)
0

))
, (17)

where E(B)
n and E

(A)
0 are energies of the nth state and the 0th

state, respectively, and |ψ (B)
n 〉 and |ψ (A)

0 〉 are the associated
eigenstates. If the operator O violates the conservation of
certain quantum numbers (e.g., angular momentum, isospin,
and numbers of proton and neutron), the initial and the final
states can belong to different Hilbert spaces indicated with
labels A and B. From the relation 1/(x + iη) = P [1/x] −
iπδ(x), the strength function can be rewritten as

I (ω) = − 1

π
Im

[〈
ψ

(A)
0

∣∣O† 1

ω + E
(A)
0 − H + iη

O
∣∣ψ (A)

0

〉]
,

(18)

where η means a half-width. Here, we define a complex
number z as z = ω + E

(A)
0 + iη and a new normalized wave

function belonging to the B space as∣∣ϕ(B)
0

〉 = O
∣∣ψ (A)

0

〉/√〈
ψ

(A)
0

∣∣O†O
∣∣ψ (A)

0

〉
. (19)

Then, evaluation of the strength function can be reduced to
the calculation of the matrix element 〈ϕ(B)

0 | 1
z−H

|ϕ(B)
0 〉. By

the Lanczos method, the Hamiltonian matrix is transformed
into a tridiagonal form with matrix elements that are usually
denoted as αi and βj . The matrix element 〈ϕ(B)

0 | 1
z−H

|ϕ(B)
0 〉 can

be expanded in the form of a continued fraction [15] as

〈
ϕ

(B)
0

∣∣ 1

z − H

∣∣ϕ(B)
0

〉 =
〈
ϕ

(B)
0

∣∣ϕ(B)
0

〉
z − α0 − β2

1

z−α1− β2
2

z−α2−···

. (20)

In practical applications, as various properties of wave func-
tions are also important, we often calculate the eigenstates in
addition to the eigenenergies. In such cases, we can directly
evaluate the strengths by using Eq. (17), which is equivalent to
Eq. (20). The half-width is also introduced by the Lorentzian
curve.
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By the Lanczos method starting from |ϕ(B)
0 〉, strength

functions converge faster as z becomes smaller. To obtain the
strength function of higher excitation energy, the number of
the Lanczos iteration is increased inevitably, which results
in a serious “inflation” of computation time for matrix
element calculations and the input/output (I/O) access time
to storage devices from the reorthogonalization among the
Lanczos vectors. Moreover, in the M-scheme calculations for
large-scale shell models, the Lanczos method often fails to
conserve angular momentum through numerical errors, so
that a delicate treatment is necessary for their conservation
as will be discussed later. In general, such calculations are
quite difficult.

Next, we consider the filter diagonalization for the spectral
strength function. To obtain excitation energies E(B)

n − E
(A)
0

and matrix elements 〈ψ (B)
n |O|ψ (A)

0 〉, two states |ψ〉 and |φ〉 in
Eq. (1) are set to be O|ψ (A)

0 〉. By expanding O|ψ (A)
0 〉 with the

complete set |ψ (B)
i 〉 in the B space as O|ψ (A)

0 〉 = ∑
bi |ψ (B)

i 〉,
the moments in Eq. (2) are rewritten as

µp =
∑
n∈�

(
E(B)

n − ε
)p

b2
n, (21)

where b2
n = |〈ψ (B)

n |O|ψ (A)
0 〉|2. By the filter diagonalization, we

can obtain E(B)
n and b2

n from Eq. (6), and therefore we can plot
b2

n as a function of excitation energies E(B)
n − E

(A)
0 . Compared

to the Lanczos method, it is advantageous that we can directly
evaluate the strength function in a given excitation energy
region. Moreover, aforementioned problems in the Lanczos
method are removed or reduced, which is demonstrated in
Sec. III E.

III. NUMERICAL TESTS

A. Lanczos method and conservation of quantum numbers

To test the filter diagonalization in the shell-model cal-
culation, we consider 48Cr in the model space consisting of
single-particle orbits f7/2, p3/2, f5/2, and p1/2. Its M-scheme
dimension for M = 0 is about 2 × 106. This calculation used
to be a state-of-the-art large-scale shell-model calculation in
1994 [16], so that it has often been used as a benchmark test for
new shell-model methods [17–19]. Moreover, due to N = Z,
the M = 0 space contains all states with angular momentum
0, 1, 2, . . . and isospin 0, 1, 2, . . .. It is a touchstone of whether
the filter diagonalization can handle such quantum numbers
correctly. In this work, we use the KB3 interaction [20] as a
residual interaction.

In the large-scale shell-model calculations, the M scheme
is often used but it has a problem in the conservation of angular
momentum and isospin. In principle, conservations of J and
T should be maintained if we take an initial state with good J

and T , but it works well only for simple cases. For instance, let
us suppose the Lanczos iteration, starting from an initial state
with J = 0. It is easy to obtain a ground-state wave function
having J = 0, but it is not so for excited states. This is because
numerical round-off errors can give rise to eigenstates with
different angular momentum.

TABLE I. The number of the main Lanczos iterations and the
total number of additional Lanczos iterations for J · J are denoted
as NL(H ) and NL(J 2), respectively. They are calculated for several
lowest states with J = 0 and T = 0 of 48Cr.

State 01 02 03 04 012

NL(H ) 17 30 38 47 163
NL(J 2) 0 17 50 88 668

For such a case, we can manage to deal with this problem
by introducing a modified Hamiltonian H ′ = H + αJ · J +
βT · T with positive α and β, which pushes up undesired
components into a higher energy region. Although this
technique is widely used and works well, it is applicable only
to ground and low-lying states.

Higher excited states with J = 0 are quite difficult to
obtain by the previously discussed approach, because the
M = 0 space also contains states with nonzero angular
momentum J �= 0. Small numerical round-off errors can
easily contaminate the J = 0 wave function with wrong
components (J �= 0). In such a case, the double Lanczos
method [21] was proposed. Hence, in addition to the usual
Lanczos iterations for each Lanczos vector, we apply the
Lanczos diagonalization concerning the J · J term (and
T · T ). This additional Lanczos process can remove the
unnecessary components of nonzero angular momentum (and
isospin) caused by the round-off errors.

In Figs. 3 and 4, we show the lowest 12 energies of J = 0
and T = 0 states calculated by the double Lanczos method.
Table I is a list of the numbers obtained by the two kinds
of iterations. The number of the main Lanczos iterations and
the total number of additional Lanczos iterations for J · J are
denoted as NL(H ) and NL(J 2), respectively. For the excited
states with J = 0, the double Lanczos method starts from
the lowest J = 0 state in the (f7/2)8 configuration space. For
the ground state, NL(J 2) is zero as expected, while NL(J 2)
rapidly increases for higher excited states. In this way, it was
demonstrated here that the double Lanczos calculation needs
additional (and heavy) computational efforts. Nevertheless,
there was not a better way than the double Lanczos method, so
that it was inevitably an indispensable approach in obtaining
excited states with good J in the M-scheme shell-model
calculations.

B. Test of ground and low-lying states
by the filter diagonalization

Next we consider the filter diagonalization in the shell-
model calculations.

First of all, we calculate the yrast states of 48Cr at J = 0,

2, 4, and 6 as an example, with an aim to demonstrate how the
filter diagonalization is proceeded numerically. To evaluate the
moments defined by Eq. (1), arbitrary states |φ〉 and |ψ〉 need
to be prepared. In the original SS method, they were chosen
to be vectors consisting of random numbers. Instead, here
we employ lowest energy wave functions obtained through
a diagonalization of the Hamiltonian matrix in the two-
particle two-hole (2p2h) space [i.e., (f7/2)8−r (p3/2, f5/2, p1/2)r
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FIG. 2. (Color online) Demonstration of the filter diagonalization
for the yrast states of 48Cr on the complex z plane. The yrast-state ener-
gies obtained by the filter diagonalization and the Lanczos method are
shown by crosses and small circles, respectively. For J = 0, 2, 4, and
6, the COCG method is applied at z = −32.0 + 0.1i, −31.0 + 0.1i,
−30.0 + 0.1i, and −28.5 + 0.1i (in MeV), respectively (diamonds).
The numerical integrations are carried out separately for each angular
momentum using 10 points along the contour, which are shown by
squares. Horizontal and vertical axes are real and imaginary parts of
z, respectively.

(r � 2)]. These wave functions are approximated states with
good angular momentum (J = 0, 2, 4, 6) and isospin (T = 0).
Hereafter we call these states for |φ〉 and |ψ〉 “initial states” in
the context of the filter diagonalization. The dimension of the
M = 0 (2p2h) space is 62220, whereas the dimensions of the
M �= 0 spaces are smaller. These cases can be easily solved by
means of the standard diagonalization techniques. The energy
of the lowest state with J = 0 is −31.1 MeV.

As for an integration contour �, we take a circle with
radius r , which covers an energy interval [ε − r, ε + r]. In
Fig. 2, we choose a different circular integration contour for
each J , whereby the center is at z = −33.0 MeV for J = 0,
−32.0 MeV for J = 2, −31.0 MeV for J = 4, and −29.5 MeV
for J = 6. The radius r is 1.0 MeV. These integration
contours cover energy intervals [−34, −32], [−33, −31],
[−32, −30], and [−30.5, −28.5] (in MeV) for J = 0, 2, 4,
and 6, respectively. Numerical integrations are carried out by
means of the trapezoidal rule. As shown in Fig. 2, 10 points
along the contour are used for the numerical integration.
[Note that in practice it is sufficient to calculate only at
five points located in Imag(z) > 0 because of the property
f (z) = f (z).]

For numerical evaluations of the moments, at each point
on the integral contours, it is possible to solve a set of linear
equations [Eq. (16)] by means of the COCG method. This
calculation, however, tends to be quite time-consuming as the
number of integral points increases. To reduce the amount
of computation, we use the shifted COCG method. With the
shifted COCG method, once we solve |φ〉 = (z0 − H )|χ0〉 for
a particular z0, solutions at the other neighboring points z ∼ z0

can be obtained with a small computational cost, if the iteration
number needed for the convergence at z is less than that at z0.
This condition will be discussed later. First, Eq. (16) is solved
at z0 = −32.0 + 0.1i MeV for the J = 0 state. The solution
was obtained by 19 iterations under the convergence criterion
that the norm of the residual vector is less than 10−5. The
values of the integration at other integral points for the J = 0

−32 −28 −24
−1

0

1

−32 −28 −24

−2

0

2

(a)

Real z

(b)

 (MeV)

Im
ag

.  
z

Im
ag

.  
z

FIG. 3. (Color online) Demonstration of the filter diagonalization
for excited states of 48Cr on the complex z plane. The convention of
symbols (crosses, circles, diamonds, and squares) is the same as that
of Fig. 2. The energies located in [−33.5, −24.0] MeV are calculated
using two integration contours with different radii: (a) r = 1 MeV and
(b) r = 2 MeV. Horizontal and vertical axes are real and imaginary
parts of z, respectively.

state are obtained by the shifted COCG method. Therefore,
the computational cost does not nearly depend on the number
of integral points. It mainly depends on the iteration numbers
of the COCG method at z0. Thus, exact ground-state energy
is obtained by this filter diagonalization with almost the same
computational cost as that of the Lanczos method (see Table I).

In Fig. 2, the integration contour �0 encloses two energy
poles for 01 and 21 states because of the M = 0 space.
However, as we always use an initial state with good J ,
eigenstates with different J can be filtered out and such states
never appear in the solutions of Eq. (3).

Next, we consider the low-lying excited states with J = 0
and T = 0 quantum numbers. In Figs. 3(a) and 3(b), circles
with r = 1 and r = 2 are shown, respectively, which cover
the same energy interval [−33.5, −24.0] in MeV. In these
calculations, we take the lowest state in 2p2h space as an
initial state in Eq. (1).

Figure 3(a) is an extension of Fig. 2, for the J = 0 state
in wider energy regions. Numerical integration is carried out
by 20 points for each circle, and we carry out the COCG
calculation only at z = 24.5 + 0.1i. For the other integral
points, the values of the integrand are obtained by the shifted
COCG method. For the circle with a center at z = −30.7 MeV,
the moments vanish. It means no eigenvalue in this energy
interval [−31.7, −29.7] in MeV. In the following circles,
we can confirm the energies for 01, 02, 03, and 05 states.
Because the initial state is J = 0 and T = 0 and matrix-vector
multiplications in the COCG method conserve the quantum
numbers, no state with different quantum numbers appears.
Compared to the Lanczos method, the filter diagonalization is
found to be advantageous with respect to the conservation of
quantum numbers in numerical calculations.

In Fig. 3(b), we use circles with radius r = 2 MeV, which
give us the same results. In this calculation, we use Eq. (15)
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FIG. 4. (Color online) Demonstration of the filter diagonalization
for excited states of 48Cr on the complex z plane. The convention of
symbols (crosses, circles, diamonds, and squares) is the same as that
of Fig. 2. The energies located in [−27.5, −22.5] MeV are solved
using integration contours with r = 0.5 MeV. Horizontal and vertical
axes are real and imaginary parts of z, respectively.

for scaling. For both calculations, 04 state is not reproduced
because the initial state has very small components of the 04

state (0.03%).
In Fig. 4, energy interval [−27.5, −22.5] in MeV is shown.

Here, we use smaller circles with r = 0.5 MeV. Because a
smaller circle includes fewer eigenvalues, it is easier to solve
the equation. Smaller circles are expected to be useful when
the level density is large. However, as shown in the next
subsection, convergence of the COCG method unfortunately
becomes slower.

In this calculation, as an initial state, we use the sum of the
lowest five wave functions with J = 0 and T = 0 in the 2p2h
space and can reproduce 03∼9 states, including the 04 state.
As shown in Eq. (2), because Cauchy’s integral makes use
of an initial state to extract eigenstates within the integration
contour, the choice of the initial state is important.

C. Convergence of the COCG method

The computational cost of the present method mainly
depends on the convergence property of the COCG method.
Owing to the shifted COCG method, dependency on the
number of integral points or the size of the integration contour
is very weak. In Fig. 5, we show several convergence patterns

0 100 200 300

10−5

100 z=−23+0.1i

z=−27+0.1i

z=−31+0.1i

iteration number

|r
|/|

b|

FIG. 5. (Color online) Convergence patterns of the COCG
method. The norm of residual vector is shown as a function of iteration
number for z = −31 + 0.1i, −27 + 0.1i, and −23 + 0.1i (in MeV).
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FIG. 6. (Color online) Contour plot of the iteration number of
the COCG method on the complex z plane. Horizontal and vertical
axes correspond to the real and imaginary part of z, respectively. The
energy eigenvalues are shown by open circles on the real axis.

of the COCG method at z = −31 + 0.1i, −27 + 0.1i, and
−23 + 0.1i (in MeV). Here, the norm |r| of the residual vector
defined in Eq. (B4) is plotted as a function of the number of
iterations of the COCG method. We take |r|/|b| < 10−5 as
a criterion of convergence, and as an initial state, we take
the sum of the lowest five wave functions with J = 0 and
T = 0 in the 2p2h space. In general, the convergence pattern
of the COCG method is not monotonic, but on average,
the norm of the residual vector decreases. As the real part
of z increases, the number of iterations for convergence
increases.

To investigate the z dependence of the number of iterations,
a contour plot on the complex z plane is shown in Fig. 6.
The energy eigenvalues are also shown on the real axis by
open circles. In general, as the imaginary part of z increases,
the number of iterations decreases. As the real part of z

increases, the number of iterations also increases. Along a
given integration contour, the number of iterations of the
COCG method becomes largest at the point z whose real part is
largest and imaginary part is smallest. Therefore, in Figs. 2–4,
such a point is chosen as the z0 of the COCG method, and the
values at the other integral points are obtained by the shifted
COCG.

Globally, the COCG method converges fast for the ground
and several low-lying states, while its convergence becomes
worse for highly excited states. For such energy eigenvalues
further theoretical development is necessary.

D. Numerical accuracy

In the filter diagonalization, we use numerical integration
to evaluate the energies and wave functions. Here we discuss
their numerical accuracy. For example, we again consider the
calculation of the ground state, taking the lowest state in the
2p2h space as an initial state. The ground-state energy is
−32.954 MeV. Like Fig. 2, we enclose this energy pole by
one circle with radius r = 1.0 MeV. By moving its center
position ε, the ground-state energy pole is located at center or
peripheral of the circle.

In Figs. 7(a) and 7(b), we plot the moments µ0, µ1

and energy as a function of the center position ε for two
cases of 10 and 30 integral points. Here, µ0 is a square of
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FIG. 7. (Color online) The moments (a), energies (b), and
overlaps (c) are plotted as a function of the center energy of integration
contour, which is a circle with radius r = 1.0 MeV. Two results for 10
and 30 integral points are shown by dotted lines with open circles and
solid line with solid circles, respectively. In (b) and (c), two results
are almost the same. In (c), the top line with marks (sky blue) shows
overlaps between the ground states obtained by the Lanczos method
and by the filter diagonalization. The bottom line with marks (green)
shows the same quantity as the µ0, but it is evaluated by the obtained
wave functions.

an overlap between the initial 2p2h wave function and the
ground state, and energy is given by the ratio of these two
moments, µ1/µ0 + ε because the integration contour encloses
one energy pole. In Fig. 7(b), the energy is quite constant as a
function of the center position, although at ε = −32.954 ±
1.0 MeV, the moments should be divergent, and for ε <

−33.954 MeV or ε > −31.954 MeV, both µ0 and µ1 should be
zero.

On the other hand, in Fig. 7(a), we can see that each
moment ill-behaves at such critical values. From Eq. (2), µ0 is
constant and µ1 = (−32.954 − ε)µ0. When the energy pole
comes to the peripheral of the circle, µ0 deviates from a
constant value and µ1 does not follow the linear behavior.
By increasing the number of integral points, we can see
that the numerical accuracy is improved. However, when the
obtained energy is close to ε ± r , the energy itself may still
be valid but the absolute values of the moments lose their
reliability.

Next we consider the reliability of the calculation of wave
functions. By using Eqs. (9) and (10), we can explicitly obtain
wave functions. In Fig. 7(c), we plot the overlap between
the ground-state wave functions obtained by the Lanczos

method and by the filter diagonalization as a function of the
center position. The overlap is also quite constant like energy.
The ill-behavior comes from the denominator, which can
change the norm of wave functions. By renormalizing the wave
function, this ill-behavior can be weakened. In Fig. 7(c), the
overlap between the initial state and the ground state obtained
by the filter diagonalization is also quite constant. Because
this quantity is the same as µ0, the µ0 obtained from the wave
function is more reliable. Thus, in the filter diagonalization,
the accuracy of energy and wave function is better than that of
the absolute values of the moments.

Note that by the energy variance σ [19] defined as

σ = 〈H 2〉 − 〈H 〉2

〈H 〉2
, (22)

we can evaluate the quality of the calculations without any
references. In this case, this σ is perfectly zero, which
means that the obtained energy and wave function are exact.
The computational cost of σ is the same as that of the
energy expectation value and this σ can be easily numerically
evaluated.

E. Test of M1 strength function

As an accuracy test for the spectral strength functions
obtained with the filter diagonalization, we consider an M1
strength function of 48Cr.

The ground state |ψ0〉 with J = 0 and T = 0 is obtained
by the Lanczos method or the filter diagonalization. The M1
operator O with the free g factors is given as

O = gπ
l Lπ + gν

l L
ν + gπ

s Sπ + gν
s S

ν, (23)

where Lπ and Lν are the proton and neutron orbital angular
momentum operators and Sπ and Sν are the proton and
neutron spin operators, respectively. The free g factors are
gπ

l = 1, gν
l = 0, gπ

s = 5.586, and gν
s = −3.826. We consider

the |ϕ0〉 = O|ψ0〉, of which angular momentum is 1, while
the M1 operator O mixes isospin. Then we classify the M1
operators as

O = OT =0 + OT =1, (24)

and

OT =0 = gπ
l + gν

l

2
(Lπ + Lν) + gπ

s + gν
s

2
(Sπ + Sν) (25)

OT =1 = gπ
l − gν

l

2
(Lπ − Lν) + gπ

s − gν
s

2
(Sπ − Sν). (26)

As an initial wave function of the filter diagonalization, we
prepare |ϕ0〉 = OT =0|ψ0〉 and |ϕ0〉 = OT =1|ψ0〉, of which
angular momentum are 1 and isospin are 0 and 1, respectively.
By this technique, the filter diagonalization is carried out
within the specified space.

In Figs. 8(a)–8(c), we present several strength functions
obtained by the double Lanczos method with different numbers
of Lanczos iterations. The lower energy part of the strength
function converges fast as a function of the number of Lanczos
iterations, whereas convergence of the higher energy part of
the strength function is slow. In Fig. 8(d), we present the
results of the filter diagonalization. We can see that the present

024310-7



MIZUSAKI, KANEKO, HONMA, AND SAKURAI PHYSICAL REVIEW C 82, 024310 (2010)

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0 5 10
0

0.2

0.4

M
1 

st
re

ng
th

 / 
to

ta
l s

tr
en

gt
h

Excitation energy (MeV)

(a)

(b)

(d)

(c)

FIG. 8. (Color online) The M1 strengths divided by the total
strength as a function of excitation energy. The results are obtained
by the double Lanczos method with (a) 50, (b) 100, and (c) 500
iterations, whereas (d) is obtained by the filter diagonalization. The
curves show the results of fits by a Lorentzian with a half-width of
200 keV.

filter diagonalization can correctly reproduce the M1 strength
function, compared to Fig. 8(c).

IV. CONCLUSION

In this article, based on the SS + shifted COCG method,
we have shown an alternative diagonalization method for
shell-model calculations. This method is called the filter
diagonalization. It has a salient feature that eigenvalues and
eigenstates can be searched for within a given energy interval.
The filter diagonalization works equally well or is superior to
the Lanczos method. Because both methods are based on the
property of the Krylov space defined by Eq. (B11), their basic
frameworks are similar. However, the following differences
can distinguish one from the other.

In state-of-the-art large-scale shell-model calculations, the
M scheme is very useful but it needs a delicate treatment for
angular momentum and isospin. In the numerical calculations,
the robustness of conservation of these quantum numbers is
different between the two methods. In the Lanczos method,
small round-off errors easily break down such conservation,
so that the double Lanczos method [21] was developed. On
the other hand, in the filter diagonalization, conservation of
the quantum numbers is found to be quite robust, which
is a superior property. One of the problems in the Lanczos
method, when applied to large-scale calculations, is reorthog-
onalization of the Lanczos vectors, which demands a heavy
I/O access to storage devices. In the filter diagonalization,
we use residual vectors, which are similar to the Lanczos
vectors, but reorthogonalization is not necessary. This is
another superior property. Because of the two merits, the filter
diagonalization is superior to the Lanczos method especially
for the calculations of excited states and spectral strength
functions.

To examine such properties of the filter diagonalization, we
have investigated its feasibility by taking 48Cr as an example
with the configuration space consisting of f7/2, p3/2, f5/2,
and p1/2 orbits. This calculation is often considered as a
touchstone of a new method aiming at large-scale shell-model
calculations. We have demonstrated that while keeping good
angular momentum and isospin, the filter diagonalization can
obtain the yrast states and off-yrast states efficiently, and that it
can also be useful for spectral strength functions. As for larger-
scale calculations, we have tested the filter diagonalization for
the case of 56Ni with GXPF1A interaction [22]. The 8p8h
space [23] has approximately 2.5 × 108 dimension. We can
correctly obtain the ground state and the oblate and prolate
deformed states by the filter diagonalization.

Finally, we point out two open problems. One is the con-
vergence of the COCG method, which depends on the position
of complex energy z. For highly excited states, convergence
becomes slow. The other is how to choose the integral contour
and integral points for more efficient or unskilled computation.
The present integral contour is circle but this is not unique [11].
Other integral contours may be more convenient and may
solve the convergence problem. For these problems, further
theoretical developments are strongly needed.
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APPENDIX A: FACTORIZATION OF HANKEL MATRIX

Here, we summarize a factorization of the Hankel matrix.
The moments are defined as

µp =
∑

a
p

k bk, (A1)

where ak and bk are, in general, complex numbers. The n × n

Hankel matrix is defined as

N =

⎛
⎜⎜⎜⎜⎝

µ0, µ1, · · · µn−1

µ1, µ2, · · · µn

...
. . .

...

µn−1, µn, · · · µ2n−2

⎞
⎟⎟⎟⎟⎠ (A2)

=

⎛
⎜⎜⎜⎜⎝

�bk, �akbk, · · · , �an−1
k bk

�akbk, �a2
kbk, · · · , �an

k bk

...
. . .

...

�an−1
k bk, �an

k bk, · · · , �a2n−2
k bk

⎞
⎟⎟⎟⎟⎠ . (A3)

The n × n Vandermonde matrix V and diagonal matrix D are
defined as

V T =

⎛
⎜⎜⎜⎜⎝

1, a1, · · · an−1
1

1, a2, · · · an−1
2

...
. . .

...

1, an, · · · an−1
n

⎞
⎟⎟⎟⎟⎠ , (A4)
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and

D =

⎛
⎜⎜⎜⎜⎝

b1, 0, · · · 0

0, b2, · · · 0
...

. . .
...

0, 0, · · · bn

⎞
⎟⎟⎟⎟⎠ . (A5)

Therefore, the following factorization holds as

N = V DV T . (A6)

Next, we consider the matrix Mij = µi+j−1, which can be
shown as

M = V D�V T , (A7)

where

� =

⎛
⎜⎜⎜⎜⎝

a1, 0, · · · 0

0, a2, · · · 0
...

. . .
...

0, 0, · · · an

⎞
⎟⎟⎟⎟⎠ . (A8)

By these factorizations, we can prove [5]

M − λN = V D(� − λI )V T . (A9)

Therefore, eigenvalues of the generalized eigenvalue equation,
Mx = λNx, are λ = ak(k = 1, 2, 3, . . .).

APPENDIX B: SHIFTED COCG METHOD

The conjugate gradient (CG) method is an algorithm to
numerically solve the linear system as

Ax = b, (B1)

where A is a matrix and x and b are vectors. We consider the
following quadratic function f (x) defined as

f (x) = 1
2xT Ax − xT b. (B2)

At the stationary point xm, where f ′(xm) = 0, the equation
Axm = b is satisfied. Therefore, we iteratively minimize f (x)
by changing x along the negative gradient direction, starting
from x0. A merit of the CG method is that we can handle only
multiplication of matrix A to vector x. During the iteration
process, matrix A is unchanged and the sparseness of matrix
A always holds. In the application of quantum systems, it is
very useful for the conservation of quantum numbers.

The complex orthogonal conjugate gradient method [9] is a
generalization of the CG method for complex, symmetric, but
non-Hermitian matrices. Its algorithm is shown by iterative
relations among xk, rk , and pk vectors (k = 1, 2, 3 . . .) as

xk+1 = xk + αkpk, (B3)

rk+1 = rk − αkApk, (B4)

pk+1 = rk+1 + βkpk, (B5)

where αk = rT
k rk/p

T
k Apk and βk = rT

k+1rk+1/rT
k rk (note that

αk �= r
†
k rk/p

†
kApk and βk �= r

†
k+1rk+1/r

†
k rk). Initial conditions

are α0 = 1, β0 = 0, x0 = 0, and r0 = b. As the iteration
number k increases, the norm |rk| of the residual vector rk

decreases. The convergence criterion is given for |rk|/|b|.
If this convergence condition is fulfilled, we can obtain the
numerically approximated solution x.

Next we consider a series of shifted linear equations as

(A − σI )xσ = b, (B6)

where σ is a complex number and I is a unit matrix. If we
start the previous iteration from x0 = 0, the kth residual vector
rσ
k of the COCG method for Eq. (B6) can be proven to be

proportional to the kth residual vector rk of the COCG method
[7] for Eq. (B1) [i.e., Eq. (B6) with σ = 0]:

rσ
k = 1

πσ
k

rk, (B7)

where πσ
k is a proportional coefficient and satisfies the

following iterative relations as

πσ
k+1 = (1 + αkσ )πσ

k + αkβk−1

αk−1

(
πσ

k − πσ
k−1

)
, (B8)

ασ
k = πσ

k

πσ
k+1

αk, (B9)

βσ
k =

(
πσ

k

πσ
k+1

)2

βk. (B10)

These iterative relations can be derived [7] from an invari-
ance property of two Krylov subspaces concerning Eqs. (B1)
and (B6). The former Krylov subspace is generated by the
iteration of the CG method, that is,

span{b,Ab,A2b, . . .}. (B11)

By shifting A as A − σI , the latter Krylov subspace becomes

span{b, (A − σI )b, (A − σI )2b, . . .}. (B12)

This subspace is the same as that defined in Eq. (B11).
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