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A new approach for the calculation of angular momentum projected potential energy surfaces (AMPPESs) is
proposed which combines the projected shell model with a quadrupole constrained relativistic Hartree-Bogoliubov
(RHB) theory in which the NL3 effective interaction is chosen for the relativistic mean-field effective Lagrangian
and a separable Gogny D1S interaction for the pairing force (QCRHB-NL3 + separable Gogny D1S force
theory). We apply this approach to compute the AMPPESs of 80,82,84Zr nuclei up to high spins and investigate
the spin-induced shape transitions and decay out of the superdeformed (SD) bands in these nuclei. We find that
the shape transitions occur in 80Zr and 84Zr, which are driven by the rotational alignments of the nucleons in the
1g9/2 orbitals, and a strong shape mixing happens in 82Zr. Moreover, it is shown that the barrier separating the
SD states and normal deformed (or spherical) states becomes lower and narrower for 82Zr and 84Zr at high spins,
indicating that the decay out of the SD bands could occur at high spins. For 80Zr, however, there is no decay out
of the SD band because the barrier is so high and thick. Meanwhile, the QCRHB-NL3 + separable Gogny D1S
force theory is employed to calculate the ground-state potential energy surfaces and the single-particle levels
of these nuclei, which in turn are used to determine and analyze the equilibrium shapes and discuss the shape
coexistence of these nuclei. In addition, this theory is compared with other state-of-the-art mean-field theories to
justify its use to study the ground-state potential energy surfaces of 80,82,84Zr.
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I. INTRODUCTION

One of the great challenges of modern nuclear structure
physics is understanding microscopically the evolution of
structure, in particular, the development of deformation, shape
coexistence, and shape transition. This effort has expanded
tremendously in recent years with the advent of new genera-
tions of facilities for the production and study of exotic nuclei.
The shape of an atomic nucleus is one of the most important
nuclear bulk properties, and shape coexistence is understood
as the occurrence of two (or more) nearly equally deep minima
in the potential energy surface at different deformations. As a
result of the low density of single-particle energy levels, the
nuclear shapes are strongly configuration dependent. They are
predicted to vary not only with particle number but also with
excitation energy and spin.

Proton-rich nuclei near the N = Z line in the mass region
A ≈ 80 is known to provide abundant and exotic nuclear
structure phenomena, which are often characterized by shape
coexistence. This stems from the fact that large parts of
protons and neutrons of these nuclei are distributed in the
pfg orbitals; thus, their level density is high and there
is a severe competition between single-particle motion and
collective motion. Moreover, the intruder of the 1g9/2 orbitals,
which are located just above the N = 40 subclosure, further
complicates the structure and plays an important role in the
shape coexistence. These nuclei, therefore, offer an ideal place
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to study the evolution of nuclear structure with particle number,
excitation energy, and spin.

Experimental evidence of the shape coexistence of these
nuclei has been found, for instance, for Se and Kr isotopes
[1–5]. Meanwhile, since the first observation of a superde-
formed (SD) band (β2 ≈ 0.55) in the nuclei with N,Z ≈ 40
[6], it has been a focal issue to investigate the SD bands
in nuclei of mass A ≈ 80 [7–9]. We would mention that in
Ref. [9] the linking transitions between the yrast SD states and
normal deformed (ND) states were observed in the nucleus of
84Zr. This is the first observation of such transitions in the mass
region A ≈ 80.

There have also been many theoretical studies on the
structure of these nuclei. For the shape coexistence, the
first studies were performed for 72Kr and a few neighboring
nuclei with the help of the Nilsson-Strutinsky approach [10].
Detailed calculations have been carried out since then with
an improved microscopic-macroscopic model [11], with self-
consistent mean-field models using nonrelativistic Skyrme
[12] and Gogny [13] interactions, as well as with relativistic
Lagrangians [14–16] and with the angular momentum and
particle-number projected generator coordinate method [17].
These studies confirm the presence of oblate and prolate
minima in the potential energy surface of some lighter Kr,
Sr, and Zr isotopes. Sometimes, however, their predictions are
not consistent with each other. For instance, Ref. [17] predicted
that the ground state of the nucleus of 80Zr is spherical;
nevertheless, it is predicted to be prolate in Ref. [15]. Oblate
ground states were predicted for the nuclei of 82Zr and 84Zr in
Ref. [15], but they became prolate based on the total Routhian
surfaces calculation in Refs. [18,19].
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The nucleus of 80Zr is indeed one of the typically exotic
nuclei in the A ≈ 80 mass region, which has the unique
structural feature that both the proton number and the neutron
number are semimagic. Its neighboring nuclei, 82,84Zr, are
expected to have quite different nuclear structures from that
of 80Zr because more neutrons occupy the 1g9/2 orbitals.
All of the above conditions constitute a challenge for a
theoretical description of the nuclear structures of 80,82,84Zr
nuclei and might be the reasons why the above-mentioned
theoretical predictions are sometimes inconsistent with each
other. Therefore, further studies are needed to obtain a more
precise nuclear structure of 80,82,84Zr nuclei.

The physics of exotic nuclei necessitates a unified and self-
consistent treatment of mean-field and pairing correlations,
which is crucial for an accurate description of the ground
states of exotic nuclei. This has actually led to the formulation
and development of the relativistic Hartree-Bogoliubov (RHB)
theory [20], which was successfully employed in the study
of the ground states of exotic nuclei. In the present article,
we investigate the nuclear structures of the three zirconium
isotopes 80,82,84Zr. Their shapes and shape coexistence are
studied, for the first time, based on the quadrupole constrained
RHB theory, in which the relativistic mean-field (RMF)
Lagrangian is described by the NL3 effective interaction
[21] and the pairing correlations by a separable Gogny D1S
force [22]. For convenience, we denote the RHB theory
as QCRHB-NL3 + separable Gogny D1S force theory. The
parameters involved in this separable force are adjusted to
reproduce the pairing properties of the Gogny D1S force [23]
in nuclear matter. It preserves translational invariance and has
finite range. Applying the well-known techniques of Talmi
and Moshinsky [24–26], it was shown in Ref. [22] that this
separable force can be represented by a sum of separable terms
that converges quickly. This avoids the complicated problem
of a cutoff at large momenta or energies inherent in zero-range
pairing forces. And this separable force has a behavior very
similar to the Gogny D1S force. To examine the change of the
nuclear structures with the spin (the angular momentum of a
nucleus), we calculate the potential energy surfaces with given
angular momenta by combining the QCRHB-NL3 + separable
Gogny D1S force theory and the angular momentum projected
shell model (PSM) [27]. The potential energy surfaces actually
allow us to study the shape transitions and decay out properties
of the SD bands of these nuclei. Note that all the calculations
in the present article assume an axial symmetry.

The article is arranged as follows. In Sec. II, the PSM,
QCRHB-NL3 + separable Gogny D1S force theory, and
method to calculate the angular momentum projected potential
energy surfaces (AMPPESs) are introduced. Results and
discussion are given in Sec. III. Single-particle levels (SPLs)
calculated with the QCRHB-NL3 + separable Gogny D1S
force theory are used to analyze the stability of the equilibrium
shapes of 80,82,84Zr nuclei and their shape coexistence. Their
shape transitions and decay out of their SD bands is discussed
based on the AMPPESs obtained by combining the QCRHB-
NL3 + separable Gogny D1S force theory with the PSM.
In addition, the results for the equilibrium shapes, shape

coexistence, shape transitions, and decay out of the SD bands
that are obtained by other theoretical methods are presented
for comparison. Finally, we give a summary in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Angular momentum projected shell model

During the past decades, the angular momentum projected
shell model [27–29] has become a standard tool to study the
nuclear rotational properties up to high spins. The PSM is
a spherical shell model truncated in a deformed basis and
solves the many-nucleon system fully quantum mechanically.
The PSM proceeds as follows. Starting from the Nilsson +
BCS procedure, the shell model truncation is first performed
in the multi-quasiparticle (multi-qp) basis by selecting low-
lying states; then the rotational symmetry (and the number
conservation, if necessary) is restored for these (multi-qp)
states by the projection method to form a spherical (many-
body) basis in the laboratory frame; finally, the Hamiltonian is
diagonalized in this basis.

The detailed description of the PSM calculations for the
proton-rich nuclei in the mass region A ≈ 80 can be found
in Ref. [29]. Therefore, we only recapitulate the most relevant
points of the PSM that are used in the calculations for 80,82,84Zr
nuclei. For each nucleon, first we diagonalize the Nilsson
Hamiltonian for the known quadrupole and hexadecapole
deformation parameters [30], then we carry out the usual BCS
procedure to take the monopole pairing force into account.
This defines the Nilsson + BCS quasiparticle basis. Three
major shells (N = 2, 3, 4) for both neutrons and protons are
used, and the shell model space includes the zero-, two-, and
four-quasiparticle (qp) states:

|φk〉 = {|0〉, a+
ni

a+
nj

|0〉, a+
pi

a+
pj

|0〉, a+
ni

a+
nj

a+
pi

a+
pj

|0〉}, (1)

where a+ is the creation operator for a qp, and the index n

(p) denotes the neutron (proton) Nilsson quantum numbers
which run over the low-lying orbitals below the cutoff energy.
The corresponding qp vacuum is |0〉. The indices n and p in
Eq. (1) are general; for example, a 2qp state can be of positive
(or negative) parity if both quasiparticles i and j are from
the same (or two neighboring) major shell(s). Positive and
negative parity states span the entire configuration space with
the corresponding matrix in a block-diagonal form classified
by parity. It is important to note that for the N = Z nuclei
under consideration, unperturbed 2qp states of a+

ni
a+

nj
|0〉 and

a+
pi

a+
pj

|0〉 with the same configuration can occur pairwise as
nearly degenerate states.

In our calculations, the PSM uses the pairing forces plus a
quadrupole-quadrupole correlation Hamiltonian [27] (that has
been known to be essential in nuclear structure calculations
[12]) with inclusion of the quadrupole-pairing term

Ĥ = Ĥ0 − χ

2

∑
µ

Q̂+
µQ̂µ− GMP̂ +P̂ − GQ

∑
µ

P̂ +
µ P̂µ. (2)

The first term, Ĥ0, is the spherical harmonic oscillator
single-particle Hamiltonian. Note that, in the Hartree-Fock-
Bogoliubov single-particle Hamiltonian resulting from the
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above many-body Hamiltonian, the contribution from the
quadrupole-quadrupole correlation can be identified as the
Nilsson potential. As a result, the strength of the quadrupole-
quadrupole correlation χ can be determined in such a way
that it has a self-consistent relation with the quadrupole
deformation ε2. (For more details, see formulas (2.45) and
(2.51) of Ref. [27].) The monopole pairing force constant GM

is determined by the BCS gap equation, which is explained
below.

In the BCS calculation, as usual, we only take the monopole
pairing force into account and use the following four-point
formulas to evaluate the pairing gap parameters �p and �n

[31]:

�p = 1

4
[B(N,Z − 2) − 3B(N,Z − 1)

+ 3B(N,Z) − B(N,Z + 1)], (3)

�n = 1

4
[B(N − 2, Z) − 3B(N − 1, Z)

+ 3B(N,Z) − B(N + 1, Z)], (4)

for which the values of the total nuclear binding energy B

are taken from Ref. [32]. The results for the three nuclei are
given in Table I. The values of the hexadecapole deformation
parameter ε4 taken from the compilation of Möller et al. [33]
are also presented in Table I. The spin-orbit force parameters
appearing in the Nilsson potential, κ and µ, are taken from
Ref. [34] and are a modified version of that in Ref. [35]
and were fitted to the latest experimental data for proton-rich
nuclei with proton or neutron numbers 28 � N � 40. With
the above-mentioned pairing gap parameters, we solve the
BCS equations. In turn, we use the solutions to determine the
monopole pairing force constant by means of the gap equation.
As to the strength parameter GQ for the quadrupole pairing,
it is simply assumed to be GQ = γGM as commonly used in
the PSM calculations [27]. The proportionality constant γ is
fixed to be 0.16 in the present calculations.

The eigenvalue equation of the PSM for a given spin I takes
the form ∑

k′
{HI

kk′ − EINI
kk′ }F I

k′ = 0, (5)

where the Hamiltonian and norm matrix elements are respec-
tively defined by

HI
kk′ = 〈φk|Ĥ P̂ I

KK ′ |φk′ 〉, NI
kk′ = 〈φk|P̂ I

KK ′ |φk′ 〉, (6)

where P̂ I
MK is the angular momentum projection operator [27].

The expectation values of the Hamiltonian with respect to a
“rotational band k” HI

kk/NI
kk are the so-called band energies.

We use a computer code [36] to perform the PSM calcula-
tions in this article. And the configuration space is constructed

TABLE I. Relevant parameters used in the projected shell model.

Nuclei �p (MeV) �n (MeV) γ ε4

80Zr 1.7935 1.9225 0.16 0.087
82Zr 1.4645 1.5400 0.16 0.000
84Zr 1.5845 1.5325 0.16 0.000

for these nuclei by selecting the qp states close to the Fermi
energy in the N = 4 major shell for both neutrons and protons
and forming multi-qp states from them. The dimension of the
qp basis is around 100 and all the calculations are for the
positive-parity states.

B. The QCRHB-NL3 + separable Gogny D1S force theory

Let us start with the relativistic Hartree-Bogoliubov theory,
a theory developed decades ago by Ring and his collaborators
[37,38]. In the Hartree approximation for a consistent mean
field, the RHB equations read(

ĥD − λ �̂

−�̂∗ −ĥD + λ

) (
Uk(r)
Vk(r)

)
= Ek

(
Uk(r)
Vk(r)

)
, (7)

where ĥD is the single-nucleon Dirac Hamiltonian,

ĥD = −iα · ∇ + β[m + gσσ (r)] + gωτ3ω
0(r) + gρρ

0(r)

+e (1−τ3)
2 A0(r) − m. (8)

The Dirac Hamiltonian contains the mean-field potentials
of the isoscalar scalar σ meson, the isoscalar vector ω meson,
the isovector vector ρ meson, as well as the photon; m is
the nucleon mass, and the term −m subtracts the rest mass
and normalizes the energy scale to the continuum limit. The
chemical potential is to be determined by the subsidiary
particle number condition, where the expectation value of the
particle number operator in the ground state equals the number
of nucleons. The column vectors are the quasiparticle spinors,
and Ek are the quasiparticle energies; �̂ denotes the pairing
fields, which is an integral operator with the kernel

�ab(r, r′) = 1

2

∑
c,d

Vabcd (r, r′)κcd (r, r′), (9)

where a, b, c, d denote the quantum numbers that specify
the Dirac indices of the spinor. They run over the two spin
orientations and the large and small components. Vabcd (r, r′)
are matrix elements of the two-body pairing interaction. The
pairing tensor is defined as

κcd (r, r′) =
∑
Ek>0

Uck(r)∗Vdk(r′). (10)

The RHB theory with Gogny pairing provides an excellent
tool for the description of ground-state properties of nuclei
such as deformation and shape coexistence [20,39–41]. Nev-
ertheless, its applications are limited because of its numerical
complexity.

A few years ago, Duguet proposed a method to derive
a separable form of the pairing interaction by recasting the
gap equation, written in terms of the bare force, into a fully
equivalent pairing problem [42]. This separable pairing force
can reproduce the pairing properties provided by the realistic
Argonne v18 (AV18) force very accurately. Although this
separable force is finite ranged, nonlocal, total-momentum
dependent, and density dependent, it has a very simple form
and makes mean-field plus Bogoliubov calculations in the
coordinate space tractable.
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Recently Tian et al. introduced a new separable form of
the pairing force for the RHB calculations in spherical nuclei
[22,43]. The parameters of this separable force are adjusted to
reproduce the pairing properties of the Gogny force in nuclear
matter. The gap equation in the 1S0 channel has the form

�(k) = −
∫ ∞

0

k′2dk′

2π2
〈k|V 1S0 |k′〉 �(k′)

2E(k′)
, (11)

where a separable form of the pairing force is introduced [22],

〈k|V 1S0
sep |k′〉 = −Gp(k)p(k′). (12)

A simple Gaussian ansatz p(k) = e−a2k2
is assumed. In

Ref. [22], the two parameters G and a were fitted to the density
dependence of the gap at the Fermi surface �(kF ) as given
by the finite-range Gogny force. Comparing with the Gogny
force, we found two sets of parameters G = 738 MeV fm3 and
a = 0.636 fm for the parameter set D1 [44] and G = 728 MeV
fm3 and a = 0.644 fm for the set D1S [45].

This pairing force is separable in momentum space. In
coordinate space the translational invariance leads to a δ force
in the center-of-mass coordinates and therefore, at first glance,
translational invariance forbids exact separability. However,
using the well-known techniques of Talmi and Moshinsky
[24–26], it was shown that this force can be represented by
a sum of separable terms that converges rapidly [22]. This
simple separable force can reproduce the pairing properties
of the ground states for spherical nuclei on almost the same
footing as the original Gogny pairing interaction. Furthermore,
Tian et al. applied this separability technique of pairing
force to the axially deformed RHB calculations [46]. For
axially symmetric shapes, the densities are invariant with
respect to a rotation around the symmetry axis. Therefore,
it is convenient to work in cylindrical coordinates. Because
Talmi and Moshinsky’s techniques are restricted to spherical
coordinates, Tian et al. developed similar techniques for
cylindrical coordinates working in an anisotropic oscillator
basis. Again the matrix elements of the pairing force in this
basis are no longer fully separable. Nevertheless, they can be
expanded, as in the spherical case, into a series of separable
terms. Obviously the convergence of this expansion is not
as fast as in the spherical case, but it is still quick enough to
save considerable numerical effort compared to the full Gogny
calculations.

Using the pairing force separability technique for axially
deformed nuclei, we compute the total binding energy of
80,82,84Zr nuclei as a function of the quadrupole deformation in
the framework of the QCRHB-NL3 + separable Gogny D1S
force theory. The computer code used for this purpose was
developed by one of the authors of this article (Y. Tian) using
the framework of the computer program for the relativistic
mean-field description of the ground-state properties of even-
even axially deformed nuclei [47]. Note that the constrained
RHB equations are solved by expanding the Dirac spinors in
an axially deformed oscillator basis with 16 major oscillator
shells, and the convergence of this expansion has been checked.

C. Angular momentum projected potential energy surfaces

Let us now briefly introduce the method of calculation of
the AMPPESs. The Hamiltonian of the PSM does not contain
the Coulomb interaction of protons [27,29,36], which is in-
dispensable for the potential energy surface (PES). To remedy
this shortcoming of the PSM and compute the AMPPESs, we
combine the PSM with the QCRHB-NL3 + separable Gogny
D1S force theory, both of which were introduced in Sec.
II B. We first calculate the ground-state PES based on the
QCRHB-NL3 + separable Gogny D1S force theory. Then we
calculate the PES with a given angular momentum in the
framework of the PSM. Finally, the energy difference between
the PSM-calculated PES with a nonzero angular momentum
and that with zero spin is added to the ground-state PES,
and a new PES is then formed, which, roughly speaking, has a
given angular momentum. Certainly, since angular momentum
projection has not yet been performed for the ground-state
PES, anything added to the top of it is also unprojected. Those
new PESs together with the ground-state PES constitute a
group of PESs with (approximate) given angular momenta.
We would say that the ground-state PES serves as a kind of
bandhead of the PES group.

We give some further justifications for our combined
method of calculating the AMPPESs as follows.

(a) For a great variety of many-body systems (including the
nucleus), it is possible to describe the excitation spectra in
terms of elementary modes of excitation representing the
different, approximately independent, fluctuations about
equilibrium [48]. This implies a separation of scale between
the excitations of many-body systems and their ground-
state energies and therefore justifies our combined method
where nuclear ground states are treated with the RHB, and
nuclear excitations are described by the PSM.

(b) The Nilsson + BCS quasiparticle states in the PSM are
different from the RHB quasiparticle states, which is also
justified by the separation of scale. In fact, the former only
serves as a basis for the PSM.

(c) The Hamiltonian used in the PSM [see Eq. (2)] is rather
schematic for nuclear excitations; however, it takes into
account the most important long-range correlations (the
quadrupole-quadrupole correlation) and the most important
short-range correlations (the pairing forces) [49]. In this
sense, the PSM is a shell-model-like approach.

III. RESULTS AND DISCUSSION

In this section we present and discuss the results of the
equilibrium shapes, shape coexistence, shape transitions, and
decay out of the SD bands for 80,82,84Zr nuclei. In Sec. III A,
the ground-state PESs and SPLs for these nuclei based on
the QCRHB-NL3 + separable Gogny D1S force theory are
presented. A comparison of the QCRHB-NL3 + separable
Gogny D1S force theory with other state-of-the-art mean-field
theories is made to justify the use of this theory to study
the ground-state properties of these nuclei in Sec. III B. The
shape coexistence of these nuclei is described, analyzed, and
compared with that given by other state-of-the-art mean-field
theories in Sec. III C. In Sec. III D, the AMPPESs calculated
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FIG. 1. Ground-state total binding energies (ground-state potential energy surfaces) calculated with the QCRHB-NL3 + separable Gogny
D1S force theory as functions of the quadrupole deformation ε2 compared with the single-neutron levels (EN ) and the single-proton levels
(EP ) for 80,82,84Zr nuclei. The zero energy is set to be the total energy at ε2 = 0. The numbers denote the nucleon numbers at pronounced or
important shell gaps.

based on the projected shell model together with the QCRHB-
NL3 + separable Gogny D1S force theory are described. We
alternatively calculate the AMPPESs for these nuclei by
replacing the QCRHB-NL3 + separable Gogny D1S force
theory by a relativistic point-coupling model for comparison.
The two kinds of AMPPESs are used to discuss the shape
transitions, strong shape mixing, and decay out of the SD
bands for these nuclei.

A. Single-particle levels and ground-state potential
energy surfaces

Deformation plays a key role in the structure of N = Z nu-
clei. Because of the coinciding low-level densities in both the
proton and neutron nuclear potentials, the nuclear shapes are
extremely configuration dependent. The SPLs give important
information for interpreting nuclear stable deformations. With
the Dirac spinors obtained by solving the constrained RHB

equations, one can construct the single-particle density matrix
and determine the SPLs in the canonical basis [20]. Based on
the QCRHB-NL3 + separable Gogny D1S force theory, we
calculated the single-neutron levels and single-proton levels
together with the ground-state total binding energies (namely,
the ground-state potential energy surfaces) as functions of
quadrupole deformation ε2 as exhibited in Fig. 1. From the
SPL diagrams and the ground-state PESs, one can find that
the minima of the potential energy surfaces correspond to the
shell gaps of the SPL diagrams. For example, the three minima
of 80Zr are located at ε2 = −0.2, 0.0, and 0.475, respectively,
and they correspond to the three large shell gaps in the SPL
diagram, which stabilize the nucleus. Similar situations can
be found for 82,84Zr nuclei. Since Z = 40 is a subclosed shell
and has a semimagic character, a spherical shape exists in each
of the three zirconium isotopes (see Fig. 1). The ground-state
PESs allow us to determine the equilibrium shapes (the lowest
minimum). We find that ε2 = +0.475 for 80Zr, ε2 = −0.175
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for 82Zr, and ε2 =−0.200 for 84Zr. These values are consistent
with the experimental data: a strongly prolate shape β2 >

+0.4 for 80Zr [50], |β2| ≈ 0.3 for 82Zr [18], and |β2| ≈ 0.2
for 84Zr [19]. There is a link between the two quadrupole
deformation parameters ε2 and β2, β2 ≈ 0.95ε2 [49].

B. Comparison of the QCRHB-NL3 + separable Gogny D1S
force theory with other state-of-the-art mean-field theories

To justify the use of the QCRHB-NL3 + separable Gogny
D1S force theory to study the ground-state properties of
the three nuclei, we make a comparison of this theory with
other state-of-the-art mean-field theories: the Hartree-Fock-
Bogoliubov (HFB) theory with D1S Gogny interaction and
the relativistic mean-field theories with point-coupling force.
Let us start with an overview of these theories.

In the nonrelativistic framework, thanks to the high
computer power available nowadays, large-scale HFB axial
mean-field calculations based on the D1S Gogny interaction
(HFB full Gogny D1S) were recently fulfilled for nearly
7000 nuclei from proton to neutron drip lines by a French
group [51]. The ground-state total binding energies (or PESs)
as functions of the quadrupole deformation for these nuclei
were determined [52]. In the calculation of the PESs using
the quadrupole constrained HFB full Gogny D1S approach,
however, angular momentum projection was not performed.

Indeed, angular momentum projection, which separates the
contribution from different angular momenta to the mean-
field states and generates wave functions in the laboratory
frame with good angular momenta, has been a goal of nuclear
physicists for many years. However, because of its numerical
complexity, only in the past decade was it possible to apply
such projection procedures in the context of nonrelativistic
self-consistent mean-field theory, with realistic Skyrme force
[53–56] and the Gogny force [57,58].

In the relativistic framework, angular momentum projection
has so far been restricted to the mean-field level with the rel-
ativistic point-coupling force [59–61]. In practical application
of the relativistic mean-field point-coupling theory, the most

frequently used nonlinear coupling parameter sets are PC-LA
[62] and PC-F1 [63]. PC-LA is determined by the ground-state
observables for 16O, 88Sr and 208Pb. Because of the explicit
omission of the pairing interaction, the pairing effects are
not included in the fitting procedure. Moreover, the test for
naturalness in Ref. [64] shows that only six of the nine coupling
constants are natural. As an improvement, PC-F1 is optimized
to the observables of 17 spherical nuclei, including some
open-shell nuclei, and the pairing correlation is considered
through a standard BCS approach in the fitting procedure.
Furthermore, all the coupling constants of PC-F1 turn out to
be natural [63]. Nevertheless, the predicted isospin dependence
of binding energy by PC-F1 along either the isotopic or the
isotonic chains deviates from the data remarkably.

Very recently, Zhao et al. proposed a new parametrization
named PC-PK1 [65]. They fitted to the observables for 60
selected spherical nuclei, including the binding energies,
charge radii, and empirical pairing gaps. All nine parameters
in PC-PK1 proved to be natural in the test for naturalness.
It was found that PC-PK1 can achieve not only the same
quality in the description for the charge radius as other
popular effective interactions but also higher accuracy for the
binding energy. Moreover, PC-PK1 improves the description
for isospin dependence of binding energy along either the
isotopic or isotonic chains, which makes its application to
exotic nuclei more reliable.

We calculated the angular momentum projected ground-
state total binding energies (PESs) for 80,82,84Zr nuclei within
the quadrupole constrained relativistic mean-field framework
with the PC-PK1 parameter set. The pairing correlation is
considered through a standard BCS method with a density-
independent δ pairing force [61]. We denote this approach by
AMP-QCPC-PK1+BCS. The ground-state PESs calculated
with the AMP-QCPC-PK1+BCS approach are displayed in
Fig. 2 with those given by the QCHFB full Gogny D1S
approach [52] and by the QCRHB-NL3 + separable Gogny
D1S force theory. From Fig. 2, one can see that the AMP-
QCPC-PK1+BCS approach yields equilibrium shapes that are
consistent with the experimental data. However, the QCHFB
full Gogny D1S approach predicts spherical equilibrium

FIG. 2. Ground-state total binding energies (PESs) calculated with different approaches for various spins as functions of deformation
variable ε2 for nuclei of 80Zr, 82Zr, and 84Zr. The solid lines are given by QCRHB-NL3 + separable Gogny D1S force theory, the dashed lines
by the AMP-QCPC-PK1+BCS approach, and the dotted lines by the QCHFB full Gogny D1S approach.

024309-6



MICROSCOPIC DESCRIPTION OF NUCLEAR STRUCTURE . . . PHYSICAL REVIEW C 82, 024309 (2010)

shapes for the three nuclei, which are inconsistent with the
experimental data. So this approach is not so suited to study
the ground-state PESs of the three nuclei, although it is a
very coherent approach based on a good phenomenological
effective interaction that captures most of the physics of nuclei
and works beautifully for many other nuclei.

Both the AMP-QCPC-PK1+BCS approach and the
QCRHB-NL3 + separable Gogny D1S force theory yield
equilibrium shapes that are consistent with the experimental
data; therefore, the ground-state PESs given by the two
relativistic theories are used as the bandheads of the groups of
the PESs with given angular momenta (or approximate given
angular momenta) in Sec. III D. Nevertheless, the values of the
equilibrium shapes given by the two relativistic approaches are
quite different from each other, especially for 82,84Zr nuclei.
Moreover, we mention here that the QCRHB-NL3 + separable
Gogny D1S force theory actually has some advantages over
the AMP-QCPC-PK1+BCS approach: Its mean field is meson
exchange based, and nucleon-nucleon interaction is of finite
range and has clear physical origin; therefore, its mean field is
much more realistic than that of the AMP-QCPC-PK1+BCS
approach, in which the nucleon-nucleon interaction is a contact
force. Its pairing force is of finite range and coupled with
a proper Bogoliubov transformation, which is more realistic
than the δ force at the BCS level used in the AMP-QCPC-
PK1+BCS approach.

In fact, the RMF with the NL3 effective interaction is able to
describe many ground-state properties of finite nuclei all over
the periodic table. For instance, an RMF-NL3 + BCS approach
[66] predicted the equilibrium shapes for 80,82,84Zr nuclei,
which are also consistent with the experimental data. And the
RHB-NL3+Gogny-D1S-force proved a very successful tool
for the description of various properties of ground states as well
as of excited states with collective character [67]. In addition,
for deformed 80,82,84Zr nuclei, a quantitative description
of their ground-state structure evolution with deformation
requires careful treatment of the pairing correlation. The
Gogny-D1S pairing force is one of the best pairing forces
for the study of nuclear structure. All these facts may also
justify the use of the QCRHB-NL3 + separable Gogny D1S
force theory to study the ground-state properties of the three
nuclei. Certainly, as was mentioned at the end of the previous
section, we have not yet performed the angular momentum
projection in the QCRHB-NL3 + separable Gogny D1S force
theory.

All the above comparisons allow us to draw the following
conclusions: (a) the QCHFB full Gogny D1S approach is
not so suited to study the ground-state PESs of the three
nuclei; (b) the QCRHB-NL3 + separable Gogny D1S force
theory has a good mean field and a pairing force, but it
serves as only an approximation to the description of the
ground-state PESs because it contains no angular momentum
projection; and (c) the AMP-QCPC-PK1+BCS approach
gives exact angular momentum projected PESs, but the un-
derlying mean field and pairing force are less competitive than
those used in the QCRHB-NL3 + separable Gogny D1S force
theory.

The fact that the QCRHB-NL3 + separable Gogny D1S
force theory yields results that are consistent with the

experimental data, and its accuracy is as good as if not better
than that of the AMP-QCPC-PK1+BCS approach, allows us to
conclude that the QCRHB-NL3 + separable Gogny D1S force
theory is a rather good approximation for the ground-state PES
calculations of 80,82,84Zr nuclei. We note that the separation of
the pairing interaction in this method reduces the computation
time substantially. We hope that the angular momentum
projection brings the results closer to the data.

C. Shape coexistence

The coexistence of multiple shapes was first revealed in
the proton-rich nuclei with N = Z and A = 72–92 by Patra
et al. based on an RMF approach [16]. Other theoretical
results [68,69] support the existence of shape coexistence in
zirconium isotopes. Experiments also showed the evidence
of shape coexistence in nuclei of 82Zr and 84Zr [18,19]. In
each of the 80,82,84Zr nuclei, multiple shapes can be seen, and
two shapes coexist as shown in Fig. 1 where the ground-state
PESs are calculated with the QCRHB-NL3 + separable Gogny
D1S force theory. The reason for this is that the high-j
g9/2 orbitals intrude into the pf shell near the Fermi level
as the deformation develops. The intrusion of the high-j
orbitals is also responsible for a pronounced shell effect at
the superdeformations in 82Zr and 84Zr. For the three nuclei
of 80,82,84Zr, although they have very similar occupied proton
orbitals, their occupied neutron orbitals differ significantly.
This difference results in the rapid change in their equilibrium
shapes and the patterns of their shape coexistence. The PESs
with the AMP-QCPC-PK1+BCS approach indicate that there
is not any shape coexistence for 80Zr nucleus; however,
shape coexistence occurs in 82,84Zr nuclei, which is different
from that appearing in the PESs generated by the QCRHB-
NL3 + separable Gogny D1S force theory, especially for the
82Zr nucleus (see Fig. 2). From Fig. 2 one can see clearly that
the PESs obtained by the QCHFB full Gogny D1S approach
show no shape coexistence phenomenon for any of the three
nuclei. Therefore, the choice of the mean field and pairing
interaction is rather crucial for the occurrence of the shape
coexistence phenomenon in the three nuclei. The QCHFB full
Gogny D1S approach fails to describe the equilibrium shapes
and shape coexistence of the three nuclei.

D. AMPPESs, shape transitions, and decay out of the SD bands

To study the shape evolution as spin increases, we cal-
culated the AMPPESs with various angular momenta (I =
0, 2, . . .) for 80Zr, 82Zr, and 84Zr by combining the QCRHB-
NL3 + separable Gogny D1S force theory with the PSM (the
description of this method can be found at the end of Sec. II).
The results are shown in Fig. 3. One can see in Fig. 3 a
pronounced SD rotational band in each of the three nuclei and
a less pronounced vibrational-like ND band in 82Zr only. The
assignment of the three SD rotational bands (vibrational-like
ND band) is based on a fit of the energy versus spin sequences
assuming a parabolic (linear) dependence. The features of the
bands built on the spherical minima are different from nucleus
to nucleus. The spherical band is an irregular (a single-particle)

024309-7



ZOU, TIAN, GU, SHEN, YAO, PENG, AND MA PHYSICAL REVIEW C 82, 024309 (2010)

FIG. 3. Angular momentum projected potential energy surfaces for various spins as functions of deformation variable ε2 for nuclei of 80Zr,
82Zr, and 84Zr, which are generated by combining the PSM with the QCRHB-NL3 + separable Gogny D1S force theory. The zero energy is set
to be the ground-state total energy at ε2 = 0.

excitation spectrum in 80Zr, and a vibrational-like band in
both 82Zr and 84Zr. The vibrational-like bands might stem
from the oscillation of the excess neutrons against the core
(80Zr). More excess neutrons benefit the collectivity of a
nucleus and strengthen the oscillation. That might be the
reason why the level spacing of the vibrational-like spectrum
in 84Zr is large compared to that in 82Zr, and 84Zr is not as
soft as 82Zr. Certainly, more excess neutrons complicate the
oscillation. As a result, some spherical states of 84Zr are not
vibrational-like ones. When the double semimagic nucleus of
80Zr remains spherical, its angular momentum comes mainly
from the alignment of paired nucleons; therefore, its spherical
band is dominated by a single-particle excitation spectrum.
The bands built on the oblate minima also appear in these
nuclei. The oblate band has a vibrational-like structure in 80Zr
and 84Zr and a single-particle excitation feature in 82Zr.

With the AMPPESs and the nature of the bands discussed
above, one can understand the phase-shape transitions and
high spin structures of the three nuclei. A strong competition
between different shapes is observed in these nuclei as
spin increases. For instance, there is a prolate-spherical-
oblate shape competition for the nucleus of 80Zr, especially
at high spins. As a result, a phase-shape transition from
prolate to spherical occurs at spin I ≈ 14 as is shown in
Fig. 3. A similar situation can be found for 84Zr, however;
the shape transition is from oblate to spherical at spin I ≈ 12.
The above-mentioned two shape transitions are induced by
spin, but they nevertheless stem from their ground-state shape
coexistences; namely, the shape coexistences appear in the
spin-zero potential energy surfaces (see Fig. 1). From Fig. 3, a
strong oblate-spherical-prolate shape mixing can be observed
in 82Zr, which is unique to this nucleus. The reason for
this phenomenon might be that with adding two neutrons to
the double semimagic nucleus 80Zr the competition between
the single-particle motion and the collective motion becomes
severe, and the nucleus changes its shape easily (it is rather
soft), which leads to a strong competition among the oblate,

spherical, and prolate shapes (see Fig. 1). Meanwhile, because
of the oscillation of the excess neutrons against the core (80Zr),
the vibrational-like states dominate the excited spectra in a
quite wide deformation range. Then it is difficult for the
82Zr nucleus to organize a collective rotation, and therefore
no rotational band can be found in a wide deformation
range, as shown in Fig. 3. Experimental data clearly show
that the first rotational alignment begins at I = 12 for 82Zr
[18], I = 10 for 84Zr [19], and a higher spin for 80Zr [50].
Therefore, it is understood that the rotation alignments induce
the shape transitions in 80,84Zr nuclei. Note that almost all the
calculated bands in the mass region of N = Z and A ≈ 80
show pronounced shape changes at rotational frequencies
corresponding to the alignments of nucleons occupying states
originating from πg9/2 and νg9/2 subshells. Satisfactory
agreement between theory and experiment in the Tz = 1 nuclei
analyzed in Ref. [18] as well as in the Tz = 1/2 nuclei 75Rb
and 77Sr analyzed in Ref. [70] supports this scenario.

Another important feature should be pointed out that for
nuclei 82Zr and 84Zr a superdeformation (ε2 ≈ 0.55) becomes
more pronounced, namely, the minimum at the superdeforma-
tion gets deeper as spin increases, which can be clearly seen in
Fig. 3. In 1995, Baktash et al. [6] provided the first evidence for
the existence of a new region of high-spin superdeformation
(β2 ≈ 0.55) in medium-mass nuclei from Sr to Zr isotopes
with particle numbers N,Z ≈ 40. Since then, a great deal of
experimental work [7–9] about superdeformation was carried
out in the A = 80 mass region. Among the three zirconium
isotopes, only the SD bands in 84Zr have been observed so
far. Recently, Chiara et al. [9] observed the decay-out of the
SD band in 84Zr, which is rather fragmented. This is the first
observation of such linking transitions in the A ≈ 80 mass
region.

One can see in Fig. 3 that for the 80Zr nucleus the barrier
separating the SD and spherical states is high and thick for
all spin values. Hence, the tunneling of the SD states into
the spherical states through the barrier could be negligible;
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FIG. 4. Same as Fig. 3 but the angular momentum projected potential energy surfaces are obtained by combining the PSM with the
AMP-QCPC-PK1+BCS approach.

namely, there is no decay out of the SD band in that nucleus.
However, Fig. 3 shows that the barrier becomes lower and
narrower for 82Zr and 84Zr nuclei at high spins. This implies
that the decay out of the SD bands could occur at high spins
for the two nuclei. Note that in Ref. [9] a study of least-action
tunneling paths indicates that for the 84Zr nucleus the barrier
separating the SD and ND states is very small. The decay out
is actually attributed to a mixing of the SD states with the ND
(or spherical) states with equal spin, which are close in energy
to the SD states (more precisely, with the excited compound
states which are located several MeV above the yrast ND
states [71–74]). Because the typical energy difference between
the SD states and ND (spherical) states is as high as 6–8 MeV
for 82Zr and 84Zr nuclei at high spins, the decay-out intensity
should be rather fragmented, as those found in A = 150 and
190 mass regions [75–79].

The AMPPESs discussed above are not exactly angular
momentum projected, as we explained at the end of Sec. II.
We used the same procedure described in Sec. II to recalculate
the AMPPESs for 80,82,84Zr nuclei by combining the PSM
with the AMP-QCPC-PK1+BCS approach instead of the
QCRHB-NL3 + separable Gogny D1S force theory. The new
AMPPESs are truly angular momentum projected because
the ground-state PESs computed with the AMP-QCPC-
PK1+BCS approach were angular momentum projected. The
new AMPPESs for the three nuclei are presented in Fig. 4.
Although the AMP-QCPC-PK1+BCS approach yields the
equilibrium shapes for all three nuclei, which is consistent
with the experimental data and predicts the shape coex-
istence in 82,84Zr nuclei, both the equilibrium shapes and
shape coexistence differ significantly from those given by
the QCRHB-NL3 + separable Gogny D1S force theory. The
difference between the two kinds of ground-state PESs spreads
out over the two kinds of AMPPESs as displayed in Figs. 3
and 4, which makes the two kinds of AMPPESs look different,
especially at low spins. Nevertheless, from the new AMPPESs,
one can find that there also exist shape transitions in 80,84Zr
nuclei, which are less pronounced than those appearing in

the old AMPPESs. Surprisingly enough, the two seemingly
different kinds of AMPPESs share a few common aspects:
(1)the strong oblate-spherical-prolate shape mixing exists in
82Zr; (2) the barrier separating the SD states and ND (spherical)
states becomes lower and narrower for 82Zr and 84Zr nuclei at
high spins, implying that the decay out of the SD bands could
occur at high spins for the two nuclei; and (3) for nucleus 80Zr,
the barrier is high and thick at all spin values, and there is no
decay out of the SD band in that nucleus. Therefore, for the
three nuclei, it seems that the strong shape mixing and decay
out of the SD bands are not so sensitive to the choice of the
bandheads (ground-state PESs).

IV. SUMMARY

In this article, we investigated in detail the nuclear structure
of the three proton-rich 80,82,84Zr nuclei. We calculated the
ground-state PESs for these nuclei based on the QCRHB-
NL3 + separable Gogny D1S force theory and compared
them with those obtained with the AMP-QCPC-PK1+BCS
approach and the QCHFB full Gogny D1S approach. It
was shown that the QCRHB-NL3 + separable Gogny D1S
force theory is a rather good approximation for the ground-
state properties of these nuclei, although angular momentum
projection was not included in this theory. This is probably
because of the well-behaved mean field and pairing force used
in this theory. The deformation values at the equilibrium shapes
were determined by the ground-state PESs. The deformation
values given by the QCRHB-NL3 + separable Gogny D1S
force theory are different from those given by the AMP-QCPC-
PK1+BCS approach, although both of them are consistent
with the experimental data. The SPLs of these nuclei calculated
with the QCRHB-NL3 + separable Gogny D1S force theory
were used to understand their equilibrium shapes and shape
coexistence. It was found that the minima of the total energies
corresponded very well to the shell gaps of the single-particle
levels. Based on the QCRHB-NL3 + separable Gogny D1S
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force theory, we also found that, in each of the 80,82,84Zr nuclei,
multiple shapes exist and two shapes coexist. The intrusion of
the high-j orbitals is responsible for this presence and for a
pronounced shell effect at the superdeformations in 82Zr and
84Zr. For the three nuclei 80,82,84Zr, their occupied neutron
orbitals differ significantly, which results in the rapid change
in their equilibrium shapes and the patterns of their shape
coexistence. Although the AMP-QCPC-PK1+BCS approach
predicts the shape coexistence in 82,84Zr nuclei, this shape
coexistence differs significantly from those given by the
QCRHB-NL3 + separable Gogny D1S force theory.

Meanwhile, a method to calculate the AMPPESs was
proposed for the first time that combines the projected shell
model with the QCRHB-NL3 + separable Gogny D1S force
theory. The AMPPESs calculations were carried out up to
high spins for 80,82,84Zr nuclei. It was shown that shape
transitions occur in 80Zr and 84Zr nuclei, which are driven by
the rotational alignments of the nucleons in the 1g9/2 orbitals,
and a strong shape mixing happens in 82Zr, which might
originate from the competition between the single-particle
motion and the collective motion. Moreover, we found that
the barrier separating the SD states and ND (spherical) states
becomes lower and narrower for nuclei 82Zr and 84Zr at high
spins, which indicates that the decay out of the SD bands could

occur at high spins for the two nuclei. The decay out could be
rather fragmented since the energy difference between the SD
states and ND (spherical) states is as high as 6–8 MeV for
82Zr and 84Zr nuclei at high spins. Nevertheless, for the 80Zr
nucleus, there is no decay out of the SD band because the
barrier is so thick. We hope future experiments would confirm
our prediction. We recalculated the AMPPESs of 80,82,84Zr
nuclei by replacing the QCRHB-NL3 + separable Gogny D1S
force theory by the AMP-QCPC-PK1+BCS approach, and
we found that the two kinds of AMPPESs have a few common
features: the strong shape mixing in 82Zr and the decay out of
the SD bands in 82,84Zr nuclei, although at low spins they are
different from each other. The common features imply that the
strong shape mixing and the decay out of the SD bands are not
so sensitive to the choice of the bandheads.
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