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High-performance algorithm to calculate spin- and parity-dependent nuclear level densities
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A new algorithm for calculating the spin- and parity-dependent shell-model nuclear level densities using the
moments method in the proton-neutron formalism is presented. A new, parallelized code based on this algorithm
was developed and tested using up to 4000 cores for a set of nuclei from the sd-, pf -, and pf + g9/2-model
spaces. By comparing the nuclear level densities at low excitation energy for a given nucleus calculated in two
model spaces, such as pf and pf + g9/2, one can estimate the ground-state energy in the larger model space,
which is not accessible to direct shell-model calculations due to the unmanageable dimension. Examples for the
ground-state energies of for 64Ge and 68Se in the pf + g9/2 model space are presented.
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I. INTRODUCTION

Spin- and parity-dependent nuclear level densities represent
an important ingredient for the theory of nuclear reactions.
For example, the Hauser-Feschbach approach [1] requires
exact knowledge of nuclear level densities for certain quantum
numbers Jπ of spin and parity in the Gamow window of
excitation energies around the particle threshold [2,3]. In
most of the cases relevant to nuclear astrophysics, where
experimental information is not available, the reaction rates
for medium and heavy nuclei can only be estimated using
the Hauser-Feshbach approach. Nuclear level densities are
usually obtained using the back-shifted Fermi gas approxima-
tion [4–6], which was improved over the years. More modern
approaches to the level densities based on the mean field
were recently proposed by Goriely and collaborators [7–9].
These approximations assume an independent particle model
in a mean field that lacks information about the many-body
correlations. These correlations can be included exactly if one
can fully diagonalize the many-body nuclear Hamiltonian,
a task of increasing difficulty. Alternatively, one can use
Monte-Carlo techniques [10–15], or other methods of the
statistical spectroscopy [16,17], including applications to large
shell-model spaces [18,19].

Most of these methods [2,10–12,20,21] calculate the
density of states and later use a spin-weight factor that includes
an energy-dependent cutoff parameter to extract the spin-
dependent nuclear level density. Although there are recent
efforts to improve the accuracy of such parametrizations [21].
It was shown that the spin cutoff parameter has very large
fluctuations at low excitation energy, when compared with the
shell-model results [22]. Statistical spectroscopy provides a
path to a direct calculation of the spin cutoff parameter using
a polynomial expansion for its estimate [23]. This approach
was recently investigated (see Fig. 2 of Ref. [22]), where
it was shown that although the smooth part of the energy
dependence of the spin cutoff parameter can be described
reasonably well, significant fluctuations are still present in the
low-energy regime. The quality of the results of this approach
are mixed. Therefore, one would like to have a spin-projected
method of calculating nuclear level densities that is accurate
and fast. The parity is usually taken as equally distributed,

although there are attempts [13,24] to model the effect of the
uneven parity-dependence of the level densities at the low
excitation energies of interest for nuclear astrophysics.

Recently, we developed a strategy [22,25–27] of calculating
the spin- and parity-dependent shell-model level density. The
main ingredients are: (i) extension of methods of statistical
spectroscopy [23,28] by exactly calculating the first and second
moments for different configurations at fixed spin and parity;
(ii) exact decomposition of many-body configurational space
into classes corresponding to different parities and number
of harmonic oscillator excitations; (iii) development of new
effective interactions for model spaces of interest starting
with the G matrix [29] and fixing/fitting monopole terms
and/or linear combinations of two-body matrix elements
to experimental data; and (iv) an accurate estimate of the
shell model ground-state (g.s.) energy. The calculation of
the latest ingredient is generally as time consuming as
the previous three. One can minimize this effort using the
exponential convergence method suggested and applied in
Refs. [30–32], and/or the recently developed projected con-
figuration interaction method [33,34]. In reverse, one can
envision using some knowledge about the level density to
extract the g.s. energy. This idea is not new (see, for example,
Refs. [23,35–37]). However, we propose new algorithm that
extracts the g.s. energy for a large model space by comparing
the level density with that obtained in a reduced model space
that can be exactly solved.

The techniques described in this article are based on nuclear
statistical spectroscopy [23]. We calculate the configuration
spin and parity projected moments of the nuclear shell-
model Hamiltonian, which can be further used to obtain an
accurate description of the nuclear level density up to about
15 MeV excitation energy. Therefore, our methodology does
not require any spin-cutoff parameter. One should mention
that some of the more recent Monte Carlo approaches for level
densities can also use direct spin projection techniques [14].

The article is organized as follows. In Sec. II the fixed
spin- and parity-dependent configuration moments method
is revisited. The method allows one to trace such quantum
numbers as parity and angular momentum explicitly. The
extension of the algorithm to the proton-neutron formalism is
discussed in Sec. III. Section IV is devoted to the results of the
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moments method, which are compared to exact shell-model
results and the results from Hartree-Fock-Bogoliubov plus
combinatorial method. In Sec. IV we also present our new
algorithm to extract the g.s. energy by comparing level density
in related model spaces. Section V is devoted to conclusions
and future prospects of the moments method.

II. SPIN- AND PARITY-DEPENDENT CONFIGURATION
MOMENTS METHOD

In this work we closely follow the approach proposed in
Refs. [25,26]. According to this approach one can calculate
the nuclear level density ρ as a function of excitation energy
E in the following way:

ρ(E, α) =
∑

κ

Dακ · Gακ (E). (1)

Here, α = {n, J, Tz, π} is a set of quantum numbers, where
n is the number of particles (protons and neutrons), J is total
spin, Tz is isospin projection, and π is parity. κ represents
a configuration of n particles distributed over q spherical
single-particle orbitals. Each configuration κ is fixed by a set
of occupation numbers κ = {κ1, κ2, . . . , κq}, where κj is the
number of particles occupying the spherical single-particle
level j . Each configuration has a certain number of particles,
isospin projection, and parity. The sum in Eq. (1) spans all
possible configurations corresponding to the given values
of n, Tz, and π . The dimension Dακ equals the number of
many-body states with given J that can be built for a given
configuration κ . The function Gακ is a finite-range Gaussian

defined as in Ref. [25]

Gακ (E) = G(E + Egs − Eακ, σακ ), (2)

G(x, σ ) = N ·
{

exp(−x2/2σ 2), |x| � η · σ

0, |x| > η · σ
, (3)

where Eακ and σακ are the fixed-J centroids and widths, which
will be defined later, Egs is the g.s. energy, η is the cutoff
parameter, and N is the normalization factor corresponding to
the following condition:

∫ +∞
−∞ G(x, σ ) dx = 1. In this work

we treat η as a free parameter. From previous works (see,
for example, Ref. [22]) we know that the cutoff parameter is
η ∼ 3. We can slightly variate the value of η to achieve a better
description of the nuclear level density, see Fig. 3.

The J -dependent moments method provides a good de-
scription of the exact J -dependent shell-model level density.
Figure 1 presents the results for 28Si in the sd shell for
different values of spin J and positive parity. Figures 4 and 5
present results for 52Fe and 52Cr nuclei in the pf shell. Similar
results were obtained for the density of states using the general
moments method (see examples in Refs. [22,23,38]). A very
important ingredient for our method is an accurate knowledge
of the g.s. energy Egs. It is also important to investigate the
sensitivity of the results to the the cutoff parameter η, and find
optimal values for it. These issues will be discussed in more
detail in Sec. IV.

Let us define now the fixed-J centroids and widths from
Eq. (2). To calculate them for a two-body Hamiltonian,

H =
∑

i

εia
†
i ai + 1

4

∑
ijkl

Vijkla
†
i a

†
j alak, (4)
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FIG. 1. 28Si, parity = +1. Comparison of nuclear level densities between exact shell model (solid line) and moments method (dashed line).
Cutoff parameter η = 2.8, interaction: USD, sd shell.
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one has to calculate traces of the first and second power of this
Hamiltonian, Tr[H ] and Tr[H 2], for each configuration κ

Eακ = 〈H 〉ακ , (5)

σακ =
√

〈H 2〉ακ − 〈H 〉2
ακ , (6)

where

〈H 〉ακ = Tr(ακ)[H ]/Dακ, (7)

〈H 2〉ακ = Tr(ακ)[H 2]/Dακ. (8)

Here the symbol of trace Tr(ακ)[· · ·] means the sum of all
diagonal matrix elements, as

∑〈ν, J | · · · |ν, J 〉, over all many-
body states |ν, J 〉 belonging to the given configuration κ and
having a certain set of quantum numbers α, including spin
J . Technically, it is more convenient to derive these traces
in a basis with a fixed spin projection |ν,Mz〉, Tr(Mz)[· · ·],
rather than in the basis with fixed total spin |ν, J 〉, Tr(J )[· · ·].
J traces can be easily expressed through the Mz traces, given
the spherical symmetry of the Hamiltonian

Tr(J )[· · ·] = Tr(Mz)[· · ·]|
Mz=J

− Tr(Mz)[· · ·]|
Mz=J+1 . (9)

For simplicity, in Eq. (9) we omitted all quantum numbers,
except the projection Mz and the total spin J .

Hereafter we use the label α to denote a set of quantum
numbers that includes either the fixed Mz or the fixed J ,
keeping in mind that Eq. (9) can always connect them. In
every important case we will point out which set of quantum
numbers was used. Following the approach of Ref. [39]
(a similar method can be found in Ref. [40]), we obtain the
following expressions for the traces from Eqs. (7) and (8):

Tr(ακ)[H ] =
∑

i

εiD
[i]
ακ +

∑
i<j

VijijD
[ij ]
ακ , (10)

Tr(ακ)[H 2]

=
∑

i

ε2
i D

[i]
ακ +

∑
i<j

[
2εiεj + 2(εi + εj )Vijij +

∑
q<l

V 2
ijql

]
D[ij ]

ακ

+
∑

(i<l)�=l

[∑
q

(
2VliiqVljjq −V 2

ijql

)+ 2εlVijij

]
D[ij l]

ακ

+
∑

(i<j )�=(q<l)

[
V 2

ijql+VijijVqlql −4VqiilVqjjl

]
D[ijql]

ακ ,

(11)

where i, j , l, and q are single-particle states with certain spin
projections and possible occupation numbers equal to 0 or 1.
Notice that the single-particle orbitals we used to define the
configurations in Eq. (1), can host all particles with all possible
spin projections corresponding to the orbital’s spin. D[i]

ακ =
Tr(ακ)[a†

i ai] can be interpreted as a number of many-body
states with fixed projection Mz (if we consider Mz traces) and
the single-particle state i occupied, which can be constructed
for the configuration κ , D

[ij ]
ακ = Tr(ακ)[a†

i a
†
j ajai], D

[ijq]
ακ =

Tr(ακ)[a†
i a

†
j a

†
qaqajai], and so on. These D structures were

called propagation functions in Ref. [39]. For completeness,
we repeat here the recipe used to calculate them. One can

show [39] that

D[r1r2···rs ]
ακ =

∑
s�t�n

(−1)t−s
∑

t1+···+ts=t

Dα′κ ′ , (12)

where all ti are integers, configuration κ ′ = {κ ′
1, κ

′
2, . . . , κ

′
q}

can be derived from the original configuration κ =
{κ1, κ2, . . . , κq} by removing t particles corresponding to the
single-particle states r1, r2, . . . , rs . Formal expression for the
new κ ′ configuration can be written as follows:

κ ′
j = κj −

∑
i (ri∈j )

ti , (13)

where the sum includes only those values of i for which the cor-
responding single-particle state ri belongs to the single-particle
level j . We also assume that all the occupation numbers
κ ′

j must be positive, which imposes certain restrictions on
the possible values of the amplitudes ti . For every new
configuration κ ′ one can easily define new quantum numbers,
α′ = {n′M ′

zT
′
zπ

′}, entering Eq. (12). Examples are the new
number of particles n′ = n − t and the new spin projection

M ′
z = Mz − t1mr1 − t2mr2 − · · · − tsmrs

, (14)

where mri
is the Mz projection of the single-particle state ri .

The new isospin T ′
z and parity π ′ are defined similarly.

III. THE MOMENTS METHOD ALGORITHM IN THE
PROTON-NEUTRON FORMALISM

Let us describe some technical features of the algorithm
we developed for the nuclear level density calculation. First of
all, we treat protons and neutrons separately, that is, the basis
of many-body wave functions are represented by a product of
proton and neutron parts

|ν,Mz〉 = ∣∣νp,M (p)
z

〉 · ∣∣νn,M
(n)
z

〉
, (15)

where M
(p)
z + M (n)

z = Mz. Thus, the wave functions (15) have
fixed isospin projection Tz, but do not have a fixed isospin
T . As we already mentioned, it is more convenient to use the
basis of wave functions with fixed spin projection Mz, rather
than one with fixed spin J .

One can gain essential advantages from such a proton-
neutron separation of the basis. One of them is connected
to the number of configurations that appear in the sum of
Eq. (1). Naturally, the number of configurations with fixed
Tz is much greater than the number of configurations with
fixed isospin. The large number of configurations allows the
use of many-cores computers with greater efficiency. In other
words, the calculation of the sum in Eq. (1) with a larger
number of configurations can be more efficiently distributed
on a larger number of processors. Figure 2 presents the speedup
(calculation speed gain) as a function of the number of used
processors. One can see that the case with the larger number of
configurations, 68Se, scales better than the case with the lower
number of configurations, 64Ge. Up to 2000 cores the speedup
is almost perfect (the dotted line presents an ideal speedup). At
this point the calculation time is about 1-2 minutes and further
improvement is hardly achieved.
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FIG. 2. Speedup is defined as T1/Tn, where Tn is the calcula-
tion time, when n processors were used. These calculations were
performed on FRANKLIN supercomputer at the National Energy
Research Scientific Computing Center (NERSC) [41].

Another significant advantage of the proton-neutron for-
malism is the new algorithm of calculation of the dimensions
Dακ , D[i]

ακ , D
[ij ]
ακ , and so on. Because of the proton-neutron

separation one can calculate all proton and neutron dimensions
separately. Later, the dimensions we are interested in can be
easily constructed from the proton and neutron parts using the
following convolution:

DMzκ =
∑

M
(p)
z +M

(n)
z =Mz

D
M

(p)
z κp

· D
M

(n)
z κn

, (16)

where, instead of the whole set of quantum numbers α, only
the spin projection Mz was printed out. κp and κn are the
proton and neutron parts of the configuration κ . Equation (16)
can be easily applied to all types of dimensions, D[···]

α... , we have
shown in the formalism of Sec. II. The advantage comes from
the fact that one can calculate and keep in memory all proton
and neutron dimensions, D

M
(p)
z κp

and D
M

(n)
z κn

, for all possible

projections M
(p)
z and M (n)

z , and for all possible configurations
κp and κn. Afterward, using Eqs. (16) and (12), one can very
quickly calculate all the dimensions: Dακ , D[i]

ακ , D
[ij ]
ακ , and so

on, for all Mz and J .
One more technical detail, which allows a significant

speedup of the algorithm, is that using the proton-neutron
separation one can avoid multiple computations of the most
time-consuming structures, such as D

[ijql]
ακ . Let us consider a

case when all four single-particle states {ijql} are protons.
One can then use an equation similar to Eq. (16)

D
[ijql]
Mzκ

=
∑

M
(p)
z +M

(n)
z =Mz

D
[ijql]

M
(p)
z κp

· D
M

(n)
z κn

. (17)

For all configurations κ that have the same proton parts κp one
will have to recalculate D

[ijql]

M
(p)
z κp

for each neutron configuration.

Alternatively, one can calculate D
[ijql]

M
(p)
z κp

only once and store

them in memory. That strategy, however, will require a large
amount of storage. More efficiently, one can only store the
contributions of the D

[ijql]
ακ structures to the width, Eq. (11),

TABLE I. Elapsed times of nuclear level density calculations
(for all J , positive parity) with the moments method code. The
calculations were done on a 16 cores machine with 2.8 GHz CPU
frequency.

Element Space Total dim Elapsed time (sec)

70Br pf + g9/2 1015 1.07 × 104

68Se pf + g9/2 1015 1.03 × 104

64Ge pf + g9/2 1014 0.76 × 104

60Zn pf 1011 37.4
52Fe pf 1010 13.6
28Si sd 106 0.7

that is, one can only store the following structures,

T
M

(p)
z κp

=
∑

(i<j )�=(q<l)

[
V 2

ijql + VijijVqlql − 4VqiilVqjjl

]
D

[ijql]

M
(p)
z κp

,

(18)

where all single-particle states are protons. Thus, instead of
using Eq. (17) one can calculate the contribution to the width
directly via the convolution

Tr(ακ)[H 2] = · · · +
∑

M
(p)
z +M

(n)
z =Mz

T
M

(p)
z κp

· D
M

(n)
z κn

, (19)

which is very similar to Eqs. (16) and (17). As one can see the
new approach avoids multiple calculations of D

[ijql]

M
(p)
z κp

. Storing

the structures Eq. (18) may significantly speed up the algorithm
for large cases, such as 68Se in pf + g9/2 model space. The
downside is that the calculation of the structures T

M
(p)
z κp

, T
M

(n)
z κn

does not always scale well on a large number of cores since
the number of these structures is much smaller than the total
number of configurations.

Table I presents calculation times for different nuclei
calculated in different shell-model spaces. The calculations
were done on a 16 cores machine with 2.8 GHz CPU frequency.
One core (“master”) distributed all the work between the
other 15 cores (“slaves”). One can emphasize here that the
listed times correspond to calculations of the nuclear level
densities for all J and for positive parity. For the case of
68Se the largest m-scheme dimension is about 1015. For each
J the m-scheme dimensions vary from 1012 to 1014, which
makes direct diagonalization impossible. Using the moments
method and our algorithm we are able to calculate the shapes
of nuclear densities for 68Se in less than three hours on a
16 cores machine. If the number of processors reaches 1000
then one needs only a few minutes to complete the calculation.

IV. RESULTS

As a first example we consider the nuclear level densities
of 28Si in the sd-shell model space, for which we use the
USD interaction [42]. Figure 1 presents the comparison of
the exact nuclear level densities of different spins (solid lines)
with those obtained with the moments methods (dashed lines).
Equations (1) and (2) require the knowledge of the g.s. energy
Egs and the cutoff parameter η. While the g.s. energy of 28Si
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can be calculated in this case using the standard shell model,
Egs = −135.94 MeV, for the value of the cutoff parameter
η we only have some general idea that it should be around
3 [25,26]. In Fig. 1 by choosing η = 2.8, the moments method
reproduces quite well the exact shell-model densities. To get
a better description of the moments method level densities we
can adjust the η parameter to optimally reproduce the exact
shell-model densities. The cutoff parameter plays a similar
role as that of the width in a Gaussian distribution. Indeed,
if we increase the cutoff parameter then the density becomes
wider and lower, while decreasing it leads to a narrowing of
the density. Figure 3 helps to determine the optimal value of
the cutoff parameter η. In this figure the vertical axis presents
an error factor ferr, which is a measure of the deviations of
the calculated density ρmm (using the moments method) from
the exact shell-model level density, ρsm. One possible way to
construct this error factor is the following [43,44]:

ferr = exp

⎛
⎝

√√√√ 1

Ni

Ni∑
i=1

ln2

[
ρmm(Ei)

ρsm(Ei)

]⎞
⎠ − 1, (20)

where the sum over i spans an energy region, for which one
wants to compare the level densities. The moments method
is known to be statistically valid when the fluctuations can
be described by a Gaussian orthogonal ensemble. Strictly
imposing this condition may not be very practical. Therefore
we consider it valid in the regime where the density is at least

5–10 levels per MeV. This condition can be used to establish a
starting energy for the sum in Eq. (20). The sum should also be
upper limited to excitation energies for which the 2h̄ω states
are not contributing significantly. For most of the model spaces
considered here this upper limit is about 10–15 MeV. Figure 3
presents the dependence of the ferr on the cutoff parameter
η. It suggests that optimal values for η are in the interval
2.5–3.0, which supports our initial guess. It also indicates that
there is relatively small sensitivity to this parameter in the
indicated interval. Therefore, for the pf and pf + g9/2 spaces
we chose η = 2.6, the value for which the moments method
level densities reproduce quite well the exact shell-model level
densities. The minimum value of ferr = 0.1−0.2 offers an
estimated average accuracy of the moments method for the
model spaces and the nuclei shown in the inset. A study of an
optimal η parameters for a larger class of nuclei and model
spaces will be published elsewhere [44]. One should also
mention that the exact spin- and parity-dependent shell-model
densities were calculated with the NUSHELLX code [45].

Next we present a couple of examples for the pf shell, for
which we used the GXPF1A interaction [46,47]. Figures 4
and 5 present the results for 52Fe (J = 0, 1) and for 52Cr
(J = 0, 1, 2, 3) in the pf shell, for which we have used
the GXPF1A interaction [46,47]. The corresponding g.s.
energies are known and the cutoff parameter was chosen to
be η = 2.6. One can only compare the lowest parts of the level
densities (up to 200 levels). For higher excitation energies it
already becomes too difficult to calculate the exact shell-model
densities because of the large number of states needed. As one
can see, the moments method densities are in a very good
agreement with the exact shell-model densities. Figures 4
and 5 also include results obtained by Goriely et al. using
the Hartree-Fock-Bogoliubov (HFB) single particle energies
and the combinatorial method [7,48].

We mentioned in the Introduction that one can envision
using information from level densities to extract with good
approximation values for the g.s. energies. Using our algorithm
and the moments method one can easily calculate the nuclear
level density for any nucleus that can be described in the
pf + g9/2 model space. The interaction we used for this model
space was built starting with the GXPF1A interaction for the
pf model space, to which G-matrix elements that describe
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FIG. 4. 52Fe, parity = +1. Comparison of nuclear level densities between exact shell model (solid line) and moments method (dashed line).
Cutoff parameter η = 2.6, interaction: GXPF1A, pf shell.
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FIG. 5. 52Cr, parity = +1. Comparison of nuclear level densities between exact shell model (solid line) and moments method (dashed line).
Cutoff parameter η = 2.6, interaction: GXPF1A, pf shell.

the interaction between the pf orbits and g9/2 orbit were
added. The single particle energy for the g9/2 orbit was fixed at
−0.637 MeV. The calculation time for the worst case is more
than reasonable: It takes about three hours for 16 processors
and only a few minutes for 1000 processors. Figures 6 and 7
summarize the results obtained for 68Se and 64Ge, nuclei
that are believed to be “waiting-points” in the rp-process
path [49–51]. We have only presented the densities for J = 0,
2, and positive parity.

It is important to notice that in the pf model space the
shell-model calculations of the g.s. energies can be done. For
the pf shell we have the following g.s. energies: Egs(pf ) =
−304.25 MeV for 64Ge and Egs(pf ) = −353.1 MeV for 68Se.
Using these g.s. energies and the cutoff parameter η = 2.6, we
are able to calculate the nuclear level densities according to
Eqs. (1) and (2). The solid lines on Figs. 6 and 7 present
the densities in the pf shell. To calculate the same level
densities in the pf + g9/2 model space we have to adjust
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FIG. 6. 64Ge nuclear level densities for J = 0, 2, and positive parity. Solid line presents the calculation in the pf shell with GXPF1A
interaction. For this calculation we know the g.s. energy Egs(pf ) = −304.25 MeV. Other three lines present calculations in the large model
space, when level g9/2 is added. The g.s. energy for these cases Egs(pf + g9/2) = Egs(pf ) − 
E, where 
E is the energy shift. The cutoff
parameter is η = 2.6.
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E, where 
E is the energy shift. The cutoff parameter
is η = 2.6.

the g.s. energies and the cutoff parameter for this space.
For the cutoff parameter we use the same value, η = 2.6.
The dotted lines show the nuclear level densities if we keep
the g.s. energies as they were in the pf shell. It is natural
to expect only small differences between the level densities
calculated in those two model spaces at low excitation energy.
The difference must be compensated by the fact that the g.s.
energy for the larger model space, that is, pf + g9/2 must
be lower compared to the g.s. energy for the smaller model
space, that is,pf . By decreasing the g.s. energies for the
pf + g9/2 model space, one gets the dashed lines on Figs. 6
and 7. The dash-dotted lines on Fig. 6 correspond to an g.s.
energy Egs = −305.8 MeV of 64Ge, which was obtained by a
truncated shell-model calculation in which up to six particles
were excited from the f7/2 orbits and/or into the g9/2 orbit. The
m-scheme dimension in this calculation, 13.5 × 109, is at the
upper limit of the state-of-the-art shell-model calculation. As
one can see, this value does not describe satisfactorily the low
excitation energy level densities. To make the low-lying part of
the two densities very close, one has to adjust the g.s. energies
for the pf + g9/2 model space to the following values:

Egs(pf + g9/2) = −306.7 MeV for 64Ge, (21)

Egs(pf + g9/2) = −356.5 MeV for 68Se. (22)

The “low-lying part of the density” should be chosen such
that the excitations to the g9/2 orbit do not give a significant
contribution. For these cases we use the interval 3–6 MeV in
excitation energy. We conclude that the g.s. energy adjustment
of Eqs. (21) and (22) can be treated as a method of estimating
the g.s. energies in larger spaces. Therefore, one can formulate
now the following recipe: ito get the g.s. energy for a nucleus
in a large model space, in which the direct shell-model
calculation is presently impossible, one can calculate the
nuclear level densities in the large model space and in an
associated smaller model space, for which the g.s. energy
calculation is possible. Then, the g.s. energy for the larger
model space can be estimated by demanding that the level
densities in the two model spaces at low excitation energy be
the same or very close. Certainly, one should not arbitrarily

select the larger model space and the associated solvable model
space. What we proved here seems to be valid when adding
one more single particle level to a solvable model space, such
that the entire shell structure is not significantly distorted.

V. CONCLUSION AND OUTLOOK

In conclusion, we developed a very efficient algorithm to
calculate the shell-model spin- and parity-dependent configu-
rations centroids and widths, which can be used to calculate
nuclear level densities. The new algorithm takes advantage
of the separation of the model space in neutron and proton
subspaces. This separation provides two important advantages:
(i) the exponentially exploding dimensions and propagators
can be calculated more efficiently in proton and neutron
subspaces, and the full results can be recovered via simple
convolutions; (ii) the number of configurations is significantly
increased in the proton-neutron formalism, which very much
improves the scalability of the algorithm on massively parallel
computers. Our tests indicate almost perfect scaling for up to
4000 cores, and we are convinced that it can scale well up to
tens of thousand of cores. The new algorithm is so fast that
the bottleneck of the calculation is now that of the g.s. energy.
That is why we cannot test our algorithm for cases that take
more than 1 minute on 4000 cores.

Therefore, we investigated the possibility of using the
calculated shapes of the nuclear level densities to extract
the g.s. energy. We showed that by slightly incrementing the
model space, and imposing the condition that the level density
does not change at low expectation energy, one can reliably
predict the g.s. energy, and further the full level density.
This new method of extracting the shell-model g.s. energy
for model spaces whose dimensions are unmanageable to
direct diagonalization opens new opportunities for calculating
shell-model nuclear level densities of heavier nuclei of interest
for nuclear astrophysics and nuclear energy and medical
physics applications. In particular, one can envision using
effective interactions extracted from ab initio theories, such
as the G matrix with core polarization, with some adjustable
monopole corrections that can be tuned to describe the effect
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of the correlations to nuclear level densities of heavy nuclei.
This class of effective interactions is much larger than the
class of pairing plus multipole interactions that Monte Carlo
methods [15] can use.

The present method can be also used in more than one
major harmonic oscillator shell for medium-mass nuclei to
describe level densities of both parities. The center-of-mass
spurious states can be eliminated in these cases using a method
proposed in Ref. [27]. This method requires an extension of the
present algorithm that will enforce restrictions on the classes
of configurations included in the widths formula, similar to the
one proposed in Ref. [26]. Work in this direction is in progress.

Our method seems to exhibit some sensitivity to the cutoff
parameter η. In the cases we studied, a value of about 2.8 seems
to provide very good results, but further investigations of the
optimal values of this parameter are necessary. In addition, one

should consider going beyond the two-moments approach for
the configuration distributions. These higher moments were
used in the past for the density of states. The J -dependent
higher moments are more difficult to calculate, but given the
computational advances we made with the first two moments,
one will envision an efficient algorithm to calculate the higher
moments in the near future.
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