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Schrödinger equations for the square root density of an eigenmixture and the square root
of an eigendensity spin matrix
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We generalize a “one-eigenstate” version of the density square root theorem to the case of densities coming
from eigenmixture density operators. The generalization is of a special interest for the radial density functional
theory (RDFT) for nuclei, a consequence of the rotational invariance of the nuclear Hamiltonian; when nuclear
ground states have a finite spin, the RDFT uses eigenmixture density operators to simplify predictions of
ground-state energies into one-dimensional, radial calculations. We also study Schrödinger equations governing
spin eigendensity matrices.
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I. INTRODUCTION

It has been noticed by many authors [1–8] that, when
basic interactions are local, the square root of the density of
an eigenstate can be driven by a Schrödinger equation. The
theorem may be described as follows:

(i) Let HA be a Hamiltonian for A identical particles, with
individual mass m:

HA =
A∑

i=1

[−h̄2��ri
/(2m) + u(�ri)] +

A∑
i>j=1

v(�ri, �rj ).

(1)

(ii) Consider a ground-state (g.s.) eigenfunction of HA,

ψ(�r1, σ1, �r2, σ2, . . . , �rA, σA), where σi denotes the spin
state of the particle with space coordinates �ri .

(iii) Use a trace of |ψ〉〈ψ | upon all space coordinates but
the last one, and upon all spins, to define the density,

ρ(�r) = A
∑

σ1...σA

∫
d�r1d�r2 · · · d�rA−1

× |ψ(�r1, σ1, �r2, σ2, . . . , �rA−1, σA−1, �r, σA)|2.
(2)

(iv) Then there exists a local potential veff(�r) such that

[−h̄2��r/(2m) + veff(�r)]
√

ρ(�r) = (EA − EA−1)
√

ρ(�r),

(3)

where the eigenvalue is the difference of the g.s. energy
EA of the A-particle system and that (EA−1) of the
(A − 1)-particle one.

Reasonings leading to such a theorem belong, schematically,
to three complementary approaches, namely, (1) the consid-
eration of density functionals related to von Weizsäcker’s
functional and then a change of unknown function from ρ

to
√

ρ [1,3,7], (2) interpretations of squared wave functions
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as probabilities (conditional, marginal, etc.) [2,6,8], and (3)
more direct derivations [4,5,7], including that from the A-body
Schrödinger equation [4,6]. In Ref. [8], an equation driving
ρ, extending the Thomas-Fermi approach, is also obtained.
The corresponding effective potential, incidentally, must not
be confused with the Kohn-Sham potential; the latter rather
drives those orbitals out of which ρ later results as a by-
product; however, see Ref. [9] for a relation between the
Kohn-Sham equations and the equation driving

√
ρ. Beyond

these approaches, the quantal density functional theory [10]
offers a detailed analysis of all the kinetic, potential, and
correlation energies.

Can this theorem be generalized for densities derived
from eigenoperators, D ∝ ∑N

n=1 wn|ψn〉〈ψn|, corresponding
to cases where H has several (N > 1) degenerate ground
states ψn? Many authors [11–17] have been interested in
mixtures of degenerate eigenstates or have also considered
nondegenerate ones, if only for extensions of the Rayleigh-Ritz
variational principle to calculation of excited energies. But the
simultaneous consideration of (1) degenerate mixtures and (2)
the square root of their density has not yet, to our knowledge,
received explicit attention. The degeneracy situation is of wide
interest in nuclear physics for doubly odd nuclei, the ground
states of which often have a finite spin, and, if only because
of Kramer’s degeneracy, for odd nuclei. In particular, because
of the rotational invariance of the nuclear Hamiltonian, the
density operator of interest for the radial density functional
theory (RDFT) [17] reads D = ∑

M |ψJM〉〈ψJM |/(2J + 1),
where J and M are the usual angular momentum numbers
of a degenerate magnetic multiplet of ground states ψJM.

More generally, it is easily seen that the argument that
follows holds for a degenerate multiplet of excited states as
well.

This article proves the generalization for the square root of
the density of a mixture of degenerate eigenstates by closely
following the argument used for one eigenstate only [4]. In
Sec. II, the proof for generalization is given for the case
where spins are summed upon. In Sec. III, the generalization
is extended to mixtures that retain spin information by means
of a spin-density matrix, the square root of which is shown to
obey a matrix Schrödinger equation. A short discussion and
conclusion make up Sec. IV.
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II. MIXTURES OF DEGENERATE EIGENSTATES

Given A particles and their Hamiltonian, a generalization
for degenerate mixtures can be obtained without the need
to assume identical particles. No symmetry or antisymmetry
assumption for eigenfunctions is needed. Let �pi and �σi be
the momentum and spin operators for the ith particle, at
position �ri . We single out the Ath particle, with its degrees
of freedom labeled �r and �σ rather than �rA and �σA. For
a theorem of maximal generality, with distinct masses and
one- and two-body potentials, our Hamiltonian may become
HA = HA−1 + VA + hA, with

HA−1 =
A−1∑
i=1

[−h̄2��ri
/(2mi) + ui(�ri, �pi, �σi)]

+
A−1∑

i>j=1

vij (�ri, �pi, �σi, �rj , �pj , �σj ),

(4)

VA =
A−1∑
j=1

vAj (�r, �rj , �pj , �σj ),

hA = −h̄2��r/(2mA) + uA(�r).

The potentials acting upon the first A − 1 particles may be
nonlocal and spin dependent, but, for a technical reason which
soon becomes obvious, those potentials acting upon the Ath
particle in VA and hA must be strictly local and independent
of the Ath spin. For notational simplicity, we choose units so
that h̄2/(2mA) = 1 from now on.

As in the one-eigenstate case [4], we select situations
where there exists a representation in which, simultaneously,
the Hermitian Hamiltonian HA and all the eigenfunctions
ψ(�r1, σ1, . . . , �rA, σA) under consideration are real. This reality
condition does not seem to be restrictive in view of time-
reversal invariance.

Let EA be a degenerate eigenvalue of HA. Because the
degeneracy multiplicity is larger than 1, we select N � 2 of
the corresponding eigenfunctions ψn, orthonormalized. Their
set may be either complete or incomplete in the eigensubspace.
The density operators,

D =
N∑

n=1

|ψn〉wn 〈ψn|,
N∑

n=1

wn = 1, (5)

with otherwise arbitrary, positive weights wn, are normalized
to unity, TrD = 1, in the A-body space. They are eigenoper-
ators of HA, namely, HA D = EA D.

The partial trace of a D upon the first A − 1 coordinates
and all A spins,

τ (�r) =
N∑

n=1

wn

∑
σ1...σA−1σ

∫
d�r1 · · · d�rA−1

× [ψn(�r1, σ1, . . . , �rA−1, σA−1, �r, σ )]2, (6)

defines a “density” τ , normalized so that
∫

d�r τ (�r) = 1. Let
φn �r σ now be, in the space of the first A − 1 particles, an

auxiliary wave function defined by

φn �r σ (�r1, σ1, . . . , �rA−1, σA−1)

= ψn(�r1, σ1, . . . , �rA−1, σA−1, �r, σ )/
√

τ (�r) . (7)

Note that this auxiliary wave function depends on the choice
of the weights wn.

Now the density operator in the space of the first
A − 1 particles, D ′

�r = ∑
nσ |φn �r σ 〉wn 〈φn �r σ |, is normalized,

Tr ′ D ′
�r = 1, where the symbol Tr ′ means integration over

the first A − 1 coordinates and sum upon the first A − 1
spins. Because this normalization of D ′

�r in the (A − 1)-
particle space does not depend on �r, two trivial consequences
read ∇�r Tr ′ D ′

�r = 0 and ��r Tr ′ D ′
�r = 0. More explicitly, this

gives

∑
n σ σ1···σA−1

∫
d�r1 · · · d�rA−1wn φn �r σ (�r1, σ1, . . . , �rA−1, σA−1)

×∇�r φn �r σ (�r1, σ1, . . . , �rA−1, σA−1) = 0 , (8)

and ∑
n σ σ1···σA−1

∫
d�r1 · · · d�rA−1wn

×{[∇�r φn �r σ (�r1, σ1, . . . , �rA−1, σA−1)]2

+φn �r σ (�r1, σ1, . . . , �rA−1, σA−1)

×��r φn �r σ (�r1, σ1, . . . , �rA−1, σA−1)} = 0. (9)

Then one can rewrite the eigenstate property, (HA − EA)
ψn = 0, into

(HA−1 + VA + hA − EA)
√

τ φn �r σ = 0. (10)

This also reads
√

τ (HA−1 + VA + uA − EA) φn �r σ − (��r
√

τ ) φn �r σ

= 2(∇�r
√

τ ) · (∇�r φn �r σ ) + √
τ (��r φn �r σ ). (11)

The right-hand side (rhs) of Eq. (11) occurs because the
Laplacian, ��r , present in hA, also acts upon the parameter
�r of φn �r σ . This is where the local, multiplicative nature of
uA and vAj in the last particle space is used, avoiding the
occurrence of further terms that would induce a somewhat
unwieldy theory.

Define, for any integrand �n�rσ , the following expectation
value in the first (A − 1)-particle space:

〈〈�n �r σ 〉〉 =
∑

σ1···σA−1

∫
d�r1 · · · d�rA−1

×�n �r σ (r1, σ1, . . . , rA−1, σA−1). (12)

Multiply Eq. (11) by φn �r σ and integrate out the first A − 1
coordinates and spins to obtain〈〈
φ2

n �r σ

〉〉[
Eexc

nσ (�r) + EA−1 + Unσ (�r) + uA(�r) − EA −��r
]√

τ (�r)

= 2 〈〈φn �r σ (∇�r φn �r σ )〉〉 · [∇�r
√

τ (�r)]

+〈〈φn �r σ (��r φn �r σ )〉〉
√

τ (�r), (13)
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where Eexc
nσ (�r) is defined from〈〈

φ2
n �r σ

〉〉[
Eexc

nσ (�r) + EA−1
]

=
∑

σ1···σA−1

∫
d�r1 · · · d�rA−1φn �r σ (r1, σ1, . . . , rA−1, σA−1)

× [HA−1 φn �r σ ](r1, σ1, . . . , rA−1, σA−1), (14)

and Unσ (�r) results from〈〈
φ2

n�rσ
〉〉
Unσ (�r)

=
A−1∑
j=1

∑
σ1···σA−1

∫
d�r1 · · · d�rA−1φn�rσ (r1, σ1, . . . , rA−1, σA−1)

× vAj (�r, �rj , �pj , �σj )φn�rσ (r1, σ1, . . . , rA−1, σA−1). (15)

The square norm of φn �r σ in the (A − 1)-particle space
results from Eq. (12) with � = φ2. In Eq. (14), the expectation
value of HA−1 is obtained explicitly as the sum of the g.s.
energy EA−1 of HA−1 and a positive excitation energy Eexc

nσ (�r).
From Eq. (15), the Hartree nature of the potential Unσ (�r) is
transparent.

Keeping in mind that the density operator D ′ is normalized
to unity ∀ �r , namely, that

∑
nσ wn〈〈φ2

n �r σ
〉〉 = 1, multiply

Eq. (13) by wn and perform the sum upon n and σ. This
gives

[U exc(�r) + EA−1 + UHart(�r) + uA(�r) − EA − ��r ]
√

τ

=
∑
nσ

wn[2〈〈φn �r σ (∇�r φn �r σ )〉〉 · (∇�r
√

τ )

+〈〈φn �r σ (��r φn �r σ )〉〉√
τ ], (16)

where the “mixture excitation potential”

U exc(�r) =
∑
nσ

wn

〈〈
φ2

n �r σ

〉〉
Eexc

nσ (�r) (17)

is local and positive and the “mixture Hartree-like potential,”

UHart(�r) =
∑
nσ

wn

〈〈
φ2

n �r σ

〉〉
Unσ (�r), (18)

is also local. Because of the frequent dominance of at-
tractive terms in vAj , it may show more negative than
positive signs. Then notice that, because of Eqs. (8),
and Eq. (12) with � = φ ∇φ, the sum on the rhs of
Eq. (16),

∑
nσ wn〈〈φn �r σ (∇�r φn �r σ )〉〉, vanishes. Note also,

from Eqs. (9), and Eq. (12) with � = φ �φ, that, again for
the rhs of Eq. (16), the following equality holds:

−
∑
nσ

wn〈〈φn�rσ (��r φn �r σ )〉〉

=
∑
nσ

wn 〈〈(∇�r φn �r σ ) · (∇�r φn �r σ )〉〉, (19)

where, again, the symbol 〈〈〉〉 denotes the trace Tr ′, an
integration upon the first A − 1 coordinates together with
summation upon their spins. The rhs of this equation, Eq. (19),
defines a positive, local potential:

U kin(�r) =
∑
nσ

wn〈〈(∇�r φn �r σ ) · (∇�r φn �r σ )〉〉. (20)

Finally, according to Eq. (16), the sum of local potentials,
U eff = U exc + UHart + U kin + uA, drives a Schrödinger
equation for

√
τ :

[−��r + U eff(�r)]
√

τ (�r) = (EA − EA−1)
√

τ (�r) . (21)

This is the expected generalization of the one-eigenstate
theorem. Note that, if the A − 1 particles are not identical, then
EA−1, the g.s. energy of HA−1, denotes here the mathematical,
absolute lower bound of the operator in all subspaces of
arbitrary symmetry or lack of symmetry. In practice, however,
most cases imply symmetries in the A − 1 space, and EA−1

denotes the ground-state energy under such symmetries. For
nuclear physics, this generalization can be used in two ways.

The first one consists of considering hypernuclei or mesonic
nuclei, where the Ath particle is indeed distinct. Theoretical
calculations with local interactions for the distinct particle
may be attempted while nonlocal and/or spin-dependent inter-
actions for the A − 1 nucleons are useful, if not mandatory.
Then, obviously, the density τ refers to the hyperon or the
meson and, given the respective neutron and proton numbers
N and Z, wave functions ψn and φn �r, σ belong to both N -
and Z-antisymmetric subspaces. The energy EA−1 is the g.s.
energy of the nucleus {N,Z}, a fermionic g.s. energy, rather
than the absolute lower bound of the mathematical operator
HA−1 in all subspaces.

The second one consists of setting all A particles to be
nucleons, at the cost of restricting theoretical models to local
interactions. Such models are indeed not without interest,
although interactions that are spin dependent are certainly
more realistic. The antisymmetric properties of the functions
ψn are requested in both N and Z spaces. If the singled-out Ath
coordinate is a neutron one, the density τ defined by Eq. (6) is
the usual neutron density, divided by N ; the functions φn �r σ are
antisymmetric in the N − 1 neutron space and the Z proton
space. The energy EA−1 now denotes the fermionic g.s. of
the nucleus {N − 1, Z}, not that absolute, mathematical lower
bound of operator HN−1,Z. Conversely, if the Ath coordinate
is a proton one, then, with the respective differences having
been considered, τ is the usual proton density, divided by Z,

and EA−1 is the g.s. energy of the nucleus {N,Z − 1}.
In both cases, the Hamiltonians to be used are scalars

under the rotation group and, therefore [17], the density
operators D considered by the RDFT are also scalars. Hence,
all calculations defining U eff reduce to calculations with a
radial variable r only.

III. GENERALIZATION FOR A SPIN-DENSITY MATRIX

We now extend our previous results to the case where
we allow spin dependence for all interactions, a most useful
feature if all A particles are nucleons. Polarized eigenmixtures
are also interesting and must also be considered. Hence, a
generalization of our approach, which uses the spin-density
matrix (SDM) formalism [18,19], is in order. The Hamiltonian
may become

A∑
i=1

[−h̄2��ri
/(2mi) + ui(�ri, �σi)] +

A∑
i>j=1

vij (�ri, �σi, �rj , �σj ).

(22)
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It allows subtle differences between neutrons and protons
besides the Coulomb interactions between protons. More
explicitly, there can be two distinct one-body potentials, un

and up, namely one for neutrons and one for protons, but
within the neutron space the function un(�ri, σi) obviously
does not read uni(�ri, σi). Similarly in the proton space,
the Hamiltonian contains terms up(�ri, σi) rather than
upi(�ri, σi). The same subtlety allows terms vpp(�ri, σi, �rj , σj ),
vpn(�ri, σi, �rj , σj ), vnp(�ri, σi, �rj , σj ) and vpp(�ri, σi, �rj , σj ),
rather than vppij (�ri, σi, �rj , σj ), . . . . (Of course, vpn = vnp.)
But nonlocalities of potentials and interactions, in the sense
of explicit dependences upon momenta pi, remain absent.

Then the Ath particle is again singled out, with degrees of
freedom again labeled �r and �σ , and the Hamiltonian is split
as a sum, KA−1 + WA + kA, somewhat similar to the split
described by Eqs. (4). For simplicity, we use short notations,K,

W , and k, rather than KA−1,WA, and kA. With two spin states,
σ = ±1/2, for the Ath nucleon, we represent eigenstates ψn

as column vectors, ψn = [ψn+
ψn−

], and operators as matrices such
as

W =
[W++ W+−
W−+ W−−

]
, k =

[
k++ k+−
k−+ k−−

]
,

and ū =
[
uA++ uA+−
uA−+ uA−−

]
.

The matrix K = [K 0
0 K ] is a scalar in spin space, since K does

not act upon the Ath particle.
The spin-density matrix ρn results from an integration and

spin sum over the A − 1 space of the matrix, ψn × ψ
T

n , where
the superscript T denotes transposition:

ρn(�r) =
〈〈[

ψn+
ψn−

]
× [ψn+ ψn−]

〉〉

=
〈〈[

(ψn+)2 ψn+ψn−
ψn−ψn+ (ψn−)2

]〉〉
. (23)

It depends on the last coordinate, �r, and its matrix elements
are labeled by two values, {σ, σ ′}, of the last spin. For an
eigenmixture one defines, obviously, θ̄ (�r) = ∑

n wn ρn(�r),
and the trace in the last spin space, [θ++(�r) + θ−−(�r)], is that
density τ (�r), defined by Eq. (6).

The SDM, θ̄ , is symmetric and positive semidefinite, ∀ �r.
Except for marginal situations, it is also invertible, in which
case there exists a unique inverse square root, also symmetric
and positive. Define, therefore, a column vector φn �r of states
in the A − 1 space according to

φn �r = θ̄ − 1
2 (�r) ψn. (24)

Then the following property,∑
n

wn

〈〈
φn �r × φ

T

n �r
〉〉

= θ̄ − 1
2 (�r)

(∑
n

wn

〈〈
ψn × ψ

T

n

〉〉)
θ̄ − 1

2 (�r) = 1̄, (25)

holds ∀ �r. Here 1̄ denotes the identity matrix. Hence,
the following gradient and Laplacian properties also

hold:

∑
n

wn

〈〈(
∇�r

[
φn �r +
φn �r −

])
× [φn �r+ φn �r −]

〉〉

+
∑

n

wn

〈〈[
φn �r+
φn �r −

]
× (∇�r [φn �r+ φn �r −])

〉〉
= 0, ∀�r,

(26)

and

∑
n

wn

〈〈(
��r

[
φn �r +
φn �r −

])
× [φn �r+ φn �r −]

〉〉

+ 2
∑

n

wn

〈〈(
∇�r

[
φn �r +
φn �r −

])
· (∇�r [φn �r+ φn �r −])

〉〉

+
∑

n

wn

〈〈[
φn �r +
φn �r −

]
× (��r [φn �r+ φn �r −])

〉〉
= 0, ∀ �r.

(27)

The eigenvector property, (K + W + k − EA 1̄) ψn = 0, also
reads

(K + W + ū − EA 1̄) θ̄
1
2 (�r) φn �r − [

��r θ̄
1
2 (�r)

]
φn�r

= 2
[∇�r θ̄

1
2 (�r)

] · (∇�r φn �r ) + θ̄
1
2 (�r)(��r φn �r ). (28)

Right-multiply Eq. (28) by the row vector, φ
T

n �r , integrate and
sum over the A − 1 space, weigh the result by wn, and sum
over n. Because of Eq. (25), the weighted sum of averages
over the A − 1 space simplifies to

[U exc
(�r) + (EA−1 − EA) 1̄ + UHart

(�r) + ū(�r) − ��r ] θ̄
1
2 (�r)

=
∑

n

wn

{
2
[∇�r θ̄

1
2 (�r)

] · 〈〈
(∇�r φn �r ) × φ

T

n �r
〉〉

+ θ̄
1
2 (�r)

〈〈
(��r φn �r ) × φ

T

n �r
〉〉}

, (29)

with

U exc
(�r) =

∑
n

wn

〈〈
(K φn �r ) × φ

T

n �r
〉〉 − EA−1 1̄, (30)

and

UHart
(�r) =

∑
n

wn

〈〈
(W φn �r ) × φ

T

n �r
〉〉
. (31)

The rhs of Eq. (29) can be simplified, but less than that of
Eq. (16). Indeed Eq. (26) does not imply that the coefficient of
∇�r θ̄

1
2 (�r) vanishes. In fact, this coefficient is∑

n

wn

〈〈
(∇�r φn�r ) × φ

T

n�r
〉〉

=
∑

n

wn

[
0 〈〈(∇�rφn�r+)φn�r−〉〉

〈〈(∇�rφn�r−) φn�r+〉〉 0

]
, (32)

and Eq. (26) shows that the matrix on the rhs is antisymmetric.
In turn, from Eq. (27), the “Laplacian induced coefficient” in
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the rhs of Eq. (29) may be listed as,∑
n

wn

〈〈
(��r φn �r ) × φ

T

n �r
〉〉

= −
∑

n

wn

〈〈(
∇�r

[
φn �r +
φn �r −

])
· (∇�r [φn �r+ φn �r −])

〉〉

+ 1

2

∑
n

wn

〈〈[(
��r

[
φn�r+
φn�r−

])
× [φn�r+ φn�r−]

−
[

φn�r+
φn�r−

]
× (��r [φn�r+ φn�r−])

]〉〉
. (33)

On the rhs of Eq. (33), the similarity of its first term with
potential U kin, Eq. (19), is transparent. Also transparent is the
antisymmetry of the second term. With the definitions

Ukin
(�r) =

∑
n

wn

〈〈
(∇�r φn �r ) · (∇�r φ

T

n �r
)〉〉

, (34)

U ant
(�r) = 1

2

∑
n

wn

〈〈[
(��r φn �r ) × φ

T

n �r − φn �r × (
��r φ

T

n �r
)]〉〉

,

(35)

and

Ugrd
(�r)

= 2
∑

n

wn

[
0 〈〈(∇�r φn�r+) φn�r−〉〉

〈〈(∇�r φn�r−) φn�r+〉〉 0

]
,

(36)

the Schrödinger equation for the square root of the spin-density
matrix reads

[U exc + UHart + ū + Ukin − U ant − �] θ̄
1
2 − Ugrd · ∇ θ̄

1
2

= (EA − EA−1) θ̄
1
2 . (37)

IV. DISCUSSION AND CONCLUSION

We found two generalizations of the one-eigenstate
theorem. On the one hand [see Eq. (21)], we obtained for
the square root density of an eigenmixture a Schrödinger
equation, most similar to the one-eigenstate equation. On the
other hand, at the cost of a slightly less simple result, we also

obtained [see Eq. (37)] a somewhat similar equation to drive
the square root of the spin-density matrix.

One may ask whether the densities, or spin densities,
obtained from degenerate mixtures are v representable and,
for that matter, whether their Kohn-Sham v [20] is finite
everywhere, shows cusps, etc. [9]. This representability ques-
tion was raised for electronic densities [21,22], with the result
that interacting v representability does not hold, but ensemble
v representability is satisfied. See Ref. [23] for the topologies
relevant to ensemble v representability. Similar issues can be
raised for nuclear densities, and have not yet been investigated.
Anyhow, representability questions are not very relevant in the
context of the present work, because (1) of the very existence
of that “veff driver of ρ

1
2 ,” directly derived from the many-body

Schrödinger equation through the proofs offered by this paper,
and (2) it is indeed ρ

1
2 that is being studied here, not ρ.

The formal derivations used in this paper seem to be
too unwieldy to guide actual implementations of effective
potentials for ρ

1
2 and θ̄

1
2 . The quantal density functional theory

[10] offers a possible construction (see Ref. [24]). In addition,
nuclear physics is also familiar with empirical approaches,
such as the parametrization of optical potentials. Because of the
presence of a Hartree-like term, UHrt or UHrt, in the elementary
proofs shown here, a connection of such Hartree-like terms
with optical potentials, or rather their real parts, is likely. The
nuclear literature about optical potentials for nucleon-nucleus
collisions, involving spin terms if necessary, is very rich.
Extended parametrizations can be tested with models of
already-known densities. Among many possible papers on the
subject of nuclear optical potentials, we can quote a review [25]
of those for low-energy nucleon-nucleus scattering, for the
obvious reason that bound orbitals are dominated by low- or
moderate-energy components.

This article opens a completely new zoology of nuclear, lo-
cal, effective potentials. Little of them is known at present, but
their interest is obvious, because they drive a reasonably easily
measurable observable, the square root of an eigenmixture
density. The latter depends on one degree of freedom, r = |�r|,
only. It can be stressed again that the radial, one-dimensional
formalism of the RDFT holds for deformed as well as spherical
nuclei. This should bring a considerable simplification for
practical calculations.
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