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Impulse approximation in the np → dπ 0 reaction reexamined
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The impulse approximation (one-body operator) in the np → dπ0 reaction is reexamined with emphasis on
the issues of reducibility and recoil corrections. An inconsistency when one-pion exchange is included in the
production operator is demonstrated and then resolved via the introduction of “wave function corrections” which
nearly vanish for static nucleon propagators. Inclusion of the recoil corrections to the nucleon propagators is
found to change the magnitude and sign of the impulse production amplitude, worsening agreement with the
experimental cross section by ∼30%. A cutoff is used to account for the phenomenological nature of the external
wave functions and is found to have a significant impact for � � 2.5 GeV.
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I. INTRODUCTION

The theory of pion production in nucleon-nucleon
collisions has seen many advances. For an older review see
Ref. [1] and for a newer one see Ref. [2]. Modern calculations
are based on effective field theory (EFT) in an effort to
eventually obtain model-independent predictions. Such a
goal is quite ambitious and naturally there are several major
obstacles to overcome. Two such obstacles are the large
threshold momentum and the presence of initial and final state
interactions. Understanding pion production is interesting
largely because of the aforementioned large threshold
momentum. When neutrons and protons with such momenta
collide, they come much nearer to each other than they do in
the similar np → dγ reaction. Thus we are able to “see” and
therefore study a short-range region of strong nuclear force.

The EFT that has been used to describe np → dπ0 is
called baryon chiral perturbation theory [3–6], a theory
based on the low-energy symmetries of QCD. The theory
consists of an infinite sum of interactions which are organized
according to a “power counting” scheme, an expansion in
the typical momentum appearing in an interaction divided by
the symmetry-breaking scale �χ ≈ mN . This power counting
was developed assuming the momentum to be ∼mπ . In order
to produce a pion at rest, the initial relative momentum of the
colliding nucleons must be p ∼ √

mπmN , which means that
the expansion parameter of the theory, χ ≡ √

mπmN/mN =
0.38, is much larger than the normal mπ/mN = 0.14. It was
first proposed in Ref. [7] that the terms in the theory be
reorganized to reflect this large momentum. This modified
power counting scheme is referred to as MCS.

In Ref. [8], MCS was used to answer two important
questions: why the theoretical pp → dπ+ (equivalent to
np → dπ0 under isospin symmetry) cross section was so
much smaller than in experiment and why there existed
formal inconsistencies with the next-to-leading-order (NLO)
loops. The answers to both questions followed from a subtle
reducibility issue with the rescattering diagram that dominates
the cross section. In this paper we investigate the question of
reducibility in the impulse approximation.

An attempt to address this issue was put forth in our recent
study [9] of charge symmetry breaking in np → dπ0 where
we introduced “wave function corrections.” These corrections

were calculated for the final state, and found to be a small
fraction of the impulse diagram that they are correcting. How-
ever, this calculation suffers from a particular approximation,
which we will describe. Fixing this approximation has a very
significant effect. Furthermore, we show that the wave function
corrections in the initial state are larger than one would expect
in the MCS scheme.

In Sec. II we review the np → dπ0 reaction and the impulse
approximation’s role. Then, Sec. III examines the inconsis-
tency that is found when one includes static one-pion exchange
(OPE) with the impulse approximation. Also in this section,
wave function corrections are presented as a solution to the
problem. Section IV discusses the correct implementation of
the recoil corrections to the nucleon propagators. The effects
of including a cutoff are shown in Sec. V. Finally, we discuss
the total cross section in Sec. VI and conclude in Sec. VII.

II. PION PRODUCTION

The pion production operator in momentum space depicted
in Fig. 1 is a function of the pion momentum �q and �l =
�k − �p, where �k ( �p) refers to the final (initial) relative
momentum of the nucleons. The momentum transfer between
the two nucleons in M is defined as q ′ ≡ p2 − k2. We use a
phenomenological, nonrelativistic potential (V ) that is static:
the energy of each individual nucleon is conserved by V .
Given this choice, working in the center of mass frame requires
q ′ 0 = ωq/2. It should be noted that this is an approximation
(the “fixed kinematics approximation”) that one needs to
adopt in order to work in position space. If one works in
momentum space and fixes q ′ 0 via energy conservation at
the NNπ vertex, this is called the “equation of motion
approximation.” As was shown in Ref. [10], both of these
approximations have problems, particularly when considering
initial state interactions. Nevertheless, it appears that the
former is preferable to the latter.

In this work we employ threshold kinematics, where
q = (mπ, 0), q ′ = (mπ/2, �l ), p1,2 = (mπ/2,± �p ), and k1,2 =
(0,±�k ) with | �p| = 359 MeV. Also, at threshold only s-wave
pions (lπ = 0 with respect to the deuteron) are produced and
the initial state is purely 3P1. We use the hybrid methodol-
ogy introduced in Ref. [11] where “operators” (two-particle
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FIG. 1. Pion production operator. Solid lines represent nucleons,
dashed lines represent pions, and ovals represent interactions.

irreducible diagrams) are calculated perturbatively and then
convolved with NN wave functions which are obtained using
phenomenological potentials. Details of how this procedure
is carried out for NN → NNπ can be found in Sec. III of
Ref. [9]. Appendix A discusses the chiral Lagrangian that
defines the theory. Using Eqs. (A2) and (A3), we obtain the
Feynman rules shown in Fig. 2.

At leading order, O(χ1), the s-wave amplitude is dominated
by the “rescattering” diagram, where a single pion is emitted
from one nucleon and inelastically scattered by the other
nucleon into an on-shell-produced pion. The only other leading
order s-wave diagram is the impulse approximation, shown in
Fig. 3(a) [9]. The details of the calculation of this diagram are
given in Appendix B. For the initial and final states, we make
use of three different potentials: Argonne v18 [12], Nijmegen
II [13], and Reid ’93 [13]. The results for the s-wave reduced
matrix element A0 are shown in Table I along with the leading
order (LO) rescattering results which are detailed in Appendix
C of Ref. [9]. A0 also receives loop contributions at NLO
(χ2) which were calculated in Ref. [14]. However, a major
result of the aformentioned Ref. [8] was that these loops
cancel, with the modification of the tree-level rescattering
diagram being put on-shell. This modification (which is truly
LO) is included in Table I. Finally, we point out that the
experimental data (Sec. VI) imply a reduced matrix element of
80 � A0 � 94.

It is important to notice that the impulse approximation
operator of Fig. 3(a) cannot formally be convolved with the
initial and final states as described above because the nucleon
emitting the pion cannot remain on shell. To put it another
way, q ′ 0 = 0 because there is no way for the energy to
be transferred. The common approximation made in pion
production calculations is to ignore this formal difficulty.
On the other hand, one “pulls” an OPE from the final state
wave function [Fig. 3(b)] in order to argue that the impulse

q ′, a p

k
= − gA

2fπ
τa �σ · �q ′ − ωq

2mN
�p + �k

q′
= −i

�q ′ 2 + m2
π − (q′ 0) 2

p
= i

p0 − �p 2/2mN + iε

FIG. 2. Feynman rules.
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FIG. 3. Impulse approximation operator alone (a), with OPE
pulled out from the final state (b), and with OPE pulled out from the
initial state (c). Solid lines represent nucleons, dashed lines represent
pions, and ovals represent interactions.

approximation is leading order. This can be seen as an
application of the Lippmann-Schwinger equation for the final
state deuteron,

|ψd〉 = GV |ψd〉, (1)

where G represents the two-nucleon propagator and V

represents the full potential. In Figs. 3(b) and 3(c), we have
made the approximation that V ≈ OPE, which is known to be
a good approximation for the deuteron [15], but is not as valid
for the initial state. Eq. (1) begs the question: are the diagrams
in Figs. 3(a) and 3(b) the same size? If so, we will be able to
conclude that Fig. 3(a) is doing its job well.

III. INCLUDING OPE

Calculation of Fig. 3(b) using Eq. (1) is detailed in
Appendix C. For lack of a better name, we will call this the
“OPE reducible” diagram. In this calculation, we take G =
(E − H0)−1 = (−Ed − �p 2/mN )−1, where Ed = 2.22 MeV is
the binding energy of the deuteron and mN/2 is the reduced
mass. The energy of the exchanged pion in this case is taken to
be q ′ 0 = 0. This choice is consistent with the fact that the OPE
is the first term in the V of Eq. (1), which should be the same
V that is used to generate the initial and final wave functions.
The results are shown in the second row of Table II.

We find an inconsistency between the impulse approxi-
mation [Fig. 3(a)] and OPE reducible [Fig. 3(b)] diagrams:
although they are equivalent according to the Lippmann-
Schwinger equation, they are of very different size numer-
ically. Using Av18, they are 4.9 and 75.2, respectively. Of
course this inconsistency is not surprising when one notes that
three-momentum transfer is provided for in the latter diagram
but not the former.

To resolve this problem, we reconsider the diagram in
Fig. 3(b) as a fully irreducible operator (without mentioning

TABLE I. Reduced matrix elements of the rescattering and
impulse production operators for three different potentials.

Diagram Av18 Nijm II Reid ’93

Ares
0 76.9 83.4 80.3

A
imp
0 4.9 1.3 3.5
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TABLE II. Reduced matrix elements of the impulse approxima-
tion with an OPE pulled out from the final state interaction [see
Fig. 3(b)].

Diagram Av18 Nijm II Reid ’93

A
OPE,red,f
0 75.2 64.6 79.3

A
OPE,irr,f
0 75.6 64.7 79.8

A
OPE,irr,f
0 − A

OPE,red,f
0 0.5 0.1 0.5

external wave functions). This is justifiable in that the left
intermediate nucleon is off shell by mπ , more than the m2

π/mN

typical of reducible diagrams. If we view it in this way, we are
free to chose the energy of the exchanged pion to be q ′ 0 =
mπ/2 as mentioned in Sec. II. Additionally, the single-nucleon
propagator for the left intermediate nucleon is taken from the
rules shown in Fig. 2. The reduced matrix element for this
“OPE irreducible” operator is given in Appendix C, and the
results are shown in the third row of Table II. We find that
this diagram, which correctly accounts for energy transfer, is
approximately equal to the OPE reducible diagram.

The question remains: should Fig. 3(b) be included, and
if so, how? Until a clear procedure is defined for going from
the full four-dimensional πNN coupled-channels formalism
to the more common three-dimensional uncoupled formalism,
this question is open to interpretation. We continue to take the
view proposed in Ref. [9], which is that the OPE irreducible
diagram should be included with the OPE reducible diagram
subtracted off to prevent double counting. This difference is
shown in the fourth row of Table II, and is referred to as the
(nearly vanishing) “wave function correction.” Note that the
cancellation is not as trivial as it appears. Schematically, OPE
is two derivatives on a Yukawa that has different ranges for
the reducible and irreducible cases. In going from reducible to
irreducible, the radial integral gets bigger because the range
increases. The derivatives bring down inverse powers of the
range such that the overall amplitudes are similar in size.

As in Sec. II, for s-wave pions at threshold we have a
�σ · ( �pi + �pf ) at the vertex where the pion is produced. For this
reason the authors of Ref. [9] only considered OPE in the final
state, assuming initial state OPE [Fig. 3(c)] to be suppressed
by the small final state momentum �k. However, one needs to
be careful when applying power counting to calculations that
involve external NN wave functions. At small distances the
momenta of the nucleons (derivatives in position space) are
distorted away from their constant values at asymptotically
large distances. As an example of this difficulty, it can be shown
that the �k 2/2mN operator becomes larger than the �p 2/2mN

operator in the rescattering diagram. For this reason, we also
calculate Fig. 3(c) (for the details, see Appendix C). The results
of this calculation are shown in Table III where, again, the full
wave function correction is nearly zero.

There is one more formal point to discuss with regard to
the above calculations. Expressions for nucleon propagators
in irreducible diagrams differ based on the power counting
scheme used. Consider the situation shown in Fig. 4. Starting
from the full, relativistic propagator, the authors of Ref. [16]
showed that, if p0 ∼ mπ and �p ∼ √

mπmN , the correct

TABLE III. Reduced matrix elements of the impulse approxima-
tion with an OPE pulled out from the initial state interaction [see
Fig. 3(c)].

Diagram Av18 Nijm II Reid ’93

A
OPE,red,i
0 −11.2 −23.7 −15.0

A
OPE,irr,i
0 −11.2 −23.7 −15.0

A
OPE,irr,i
0 − A

OPE,red,i
0 ∼ 0 ∼ 0 ∼ 0

propagator after emitting the pion is

i

−q0 + (2 �p · �q − �q 2)/2mN + iε
, (2)

where the second term in the denominator is the recoil
correction, suppressed by one power of χ if q0 ∼ √

mπmN .
Note that we have ignored the resulting vertex corrections
and antinucleon effects, both of which are suppressed for
any choice of q0. Equation (2), which we will refer to as
the “new” method, comes in opposition to the “old” method
which derives the propagator from the nonrelativistic chiral
Lagrangian,

i

p0 − q0 − ( �p − �q)2/2mN + iε
, (3)

where the third term comes from the NLO Lagrangian and
is a candidate for promotion in MCS counting. Let us now
consider the case of Fig. 3(b), where in terms of the momenta
shown in Fig. 4 we have p = (mπ/2, �p) and q = (mπ, 0).
Since p0 − q0 ∼ mπ , we promote the recoil corrections in the
old propagator and find

iGirr,f
new = i

−mπ

, iG
irr,f
old = i

mπ/2 − mπ − �p 2/2mN

. (4)

Next, consider the case of Fig. 3(c) where we have p =
(mπ/2, �p) and q = (−ω, �p − �k), and thus

iGirr,i
new = i

ω + ( �p 2 − �k 2)/2mN + iε
,

(5)

iG
irr,i
old = i

mπ/2 + ω − �k 2/2mN + iε
.

Note that in the absence of distortions (| �p| ≈ √
mπmN ,

|�k| ∼ 0), iGnew = iGold for both the initial and final state
propagators. For the sake of clarity we will define as the “free
recoil approximation” (FRA) the use of these free particle
values for the nucleon momenta.

P = mNv + p

q

P − q

FIG. 4. Momenta of the nucleon propagator where v =
(1, 0, 0, 0) is used.
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IV. NUCLEON PROPAGATOR RECOIL

In Sec. III, the FRA was used for the recoil corrections
to the nucleon propagators. In this section we calculate the
diagrams again, treating the momenta properly as operators
instead of numbers. In this section we use the old nucleon
propagators for the irreducible diagrams. In doing so, we avoid
the Gi

new of Eq. (5), which would be difficult to evaluate exactly
in position space. It was pointed out in Ref. [17] that the old
nucleon propagators have formal convergence problems owing
to the large external momenta. Nevertheless, we expect to gain
insight into the validity of the FRA using these propagators,

iGirr,f = i

−mπ/2 − �p 2/2mN

,

(6)

iGirr,i = i

mπ − �k 2/2mN + iε
.

Of course, according to MCS, �k should not be counted
as ∼ √

mπmN and the �k 2/2mN term should therefore not
appear as in Eq. (6) until higher order. We choose to
retain it here as an investigation into the effects of the
distortions. For the reducible diagrams we continue to use
Gred = (E − H0)−1.

The matrix elements can be calculated exactly in position
space with Green function methods (see Appendix D). The
results are shown in Table IV. We find that the final state wave
function correction evaluated without the FRA gives a sizable
negative contribution of approximately −10. Additionally,
we find that the initial state corrections become as important as
the lower-order final state corrections. To verify the surprising
results of this calculation, we examine as an example the
mN → ∞ limit of the radial integral for the irreducible initial
state OPE in comparison with its analog from the previous
section (which is independent of mN since �k = 0 is used),

I ≡
∫

dr r2

[√
2

∂

∂r

u(r)

r
+

(
∂

∂r
+ 3

r

)
w(r)

r

]
×GOPE,irr,i [2f (mπ/2, r) + g(mπ/2, r)] Ri(r), (7)

where the functions f and g are defined in Appendix C.
As shown in Fig. 5, in the large-mN limit the recoil term
in the propagator vanishes and we recover the leading order
result.

TABLE IV. Reduced matrix elements for the wave function
corrections with proper treatment of the momenta using the old
expressions for the nucleon propagators.

Av18 Nijm II Reid ’93

A
OPE,irr,f
0 80.8 70.8 89.1

A
OPE,red,f
0 92.4 81.2 103.3

A
OPE,irr,f
0 − A

OPE,red,f
0 −11.7 −10.4 −14.2

A
OPE,irr,i
0 5.1 + 24.5i 15.1 + 34.7i 7.8 + 27.8i

A
OPE,red,i
0 16.2 + 8.2i 22.9 + 9.9i 18.2 + 8.7i

A
OPE,irr,i
0 − A

OPE,red,i
0 −11.1 + 16.3i −7.7 + 24.8i −10.4 + 19.1i

5 10 15 20

mN

mN,phys

10

5

5

I

FIG. 5. (Color online) Irreducible initial state OPE integral as a
function of mN using Av18. The solid line displays the FRA result
and the real (imaginary) part of the exact propagator result is shown
as a dashed (dotted) curve.

V. CUTOFF DEPENDENCE

It should not come as a surprise that odd things are
happening in the short-distance part of the wave function,
especially when we take derivatives. In the hybrid formalism
we are using, this domain of the wave function is calculated
from a phenomenological potential: Woods-Saxon for Av18,
one boson exchange (OBE) for Nijm II, and Yukawa for
Reid ’93 (the very short range is exponential, exponential,
and dipole, respectively). Because these potentials are fitted
to experimental phase shifts, the wave functions derived from
them can be considered as infinitely high order in the EFT.
Thus one should consider using a cutoff to account for this
mismatch between the operator and the wave functions. Use
of such a cutoff is referred to as EFT*, and was introduced in
Ref. [11].

In this section we investigate the effects of cutting off the
convolution integrals that account for the the presence of initial
and final states as discussed in Sec. IV. We use the procedure
of Ref. [18], which modifies the Fourier transforms with a
Gaussian cutoff,

M(�r) =
∫

d3l

(2π )3
ei�l·�rS2

�(�l 2)M(�l),
(8)

S�(�l 2) = exp

(
−

�l 2

2�2

)
.

Note that the impulse approximation is not affected by such a
cutoff scheme. For the OPE operators we define g�(ω, r):

µ(ω)g�(ω, r)

4π
≡

∫
d3l

(2π )3
ei�l·�r−�l 2/�2 1

�l 2 + µ(ω)2
. (9)

The exact evaluation of this integral and of the derivatives
required to compute the diagrams of this work are shown in

0.5 1.0 1.5 2.0
r fm

1
2
3
4
5
6
7

g r

FIG. 6. (Color online) Comparison of g (solid curve) and g�

(dashed curve) with ω = mπ/2 and � = 1 GeV.
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FIG. 7. (Color online) Cutoff dependence of various reduced
matrix elements for Av18 (solid curve), NijmII (dashed curve), and
Reid ’93 (dotted curve).

Appendix E. As desired, the cutoff regulates the behavior of
g(r) at the origin, as shown in Fig. 6. The cutoff dependence
of various reduced matrix elements is shown in Fig. 7.

The fact that we observe significant cutoff dependence
of the wave function corrections above the typical scale of
∼1 GeV is surprising. Indeed, this sensitivity indicates the
need for a counterterm because observables must be cutoff
independent. As pointed out in Ref. [19], if one considers the
difference of terms that comprise the wave function correction,

1

�q ′ 2 + m2
π

− 1

�q ′ 2 + 3m2
π

/
4

= − m2
π

/
4

�q ′ 2 + m2
π

· 1

�q ′ 2 + 3m2
π

/
4
,

(10)

it can be argued that wave function correction is N2LO in
the MCS scheme. However, if this view is to be accepted,
the fact that the wave function corrections are much larger
in magnitude than the LO impulse approximation should be
considered surprising.

VI. CROSS SECTION RESULTS

Shown in Table V is a summary of the findings discussed
in this paper at � = ∞ and � = 1 GeV along with the
rescattering diagram. We also discuss the total cross section,

TABLE VI. Experimental total cross section parameters.

Experiment α (µb) β (µb)

np → dπ 0 [20] 184 ± 5 781 ± 79
�pp → dπ+ (Coulomb corrected) [21] 208 ± 5 1220 ± 100
pp → dπ+ (Coulomb corrected) [22] 205 ± 9 791 ± 79
Pionic deuterium decay [23] 252+5

−11 N/A

which near threshold is parametrized as

σ = 1
2 (αη + βη3), (11)

where q = mπη. At threshold, one can only calculate α,

α = mπ

128π2sp
|A0|2, (12)

where s = (mπ + md )2. Note that charged pion production
is related to neutral pion production by isospin symmetry
(breaking is expected to be small in the total cross section).
This symmetry is the reason for the 1/2 present in the
definition of σ . The most recent experimental data are shown in
Table VI.

The theoretical total cross section as a function of the cutoff
is shown in Fig. 8. The theoretical results include all diagrams
up to O(χ2). Thus theory can assign a rough uncertainty to the
threshold cross section of 2 × χ2 ≈ 30%.

VII. SUMMARY

Before the findings of this work, the total theoretical
cross section at � ≈ 1 GeV [Fig. 8(a)] was in agreement
with the most recent experiment (fifth row of Table VI) at
approximately the 1σ level. Fixing the FRA approximation
decreases the cross section, and if we stop here [Fig. 8(b)],
the agreement between theory and experiment becomes more
tenuous (approximately the 2.5σ level). A second conclusion
regards the MCS power counting, which dictates that | �p| ∼√

mπmN while |�k| ∼ mπ . We find that the wave function
corrections of the initial state are of similar size to those of
the final state once the FRA is removed, contradicting the
previous sentence. There exists a contact term (an NNNNπ

vertex) at N2LO along with tree-level diagrams proportional
to the ci low-energy constants (LECs) and two-pion exchange

TABLE V. Reduced matrix elements for three different potentials.

Diagram Av18 Nijm II Reid ’93

� = ∞ � = 1 GeV � = ∞ � = 1 GeV � = ∞ � = 1 GeV

Rescattering (NLO) 76.9 76.2 83.4 81.5 80.3 79.1
Impulse 4.9 4.9 1.3 1.3 3.5 3.5
Final wfn cor (FRA) 0.5 −0.3 0.1 −0.7 0.5 −0.5
Final wfn cor (exact) −11.7 0.4 −10.4 −1.5 −14.2 −0.7
Initial wfn cor (FRA) ≈0 0.1 ≈0 0.1 ≈0 0.1
Initial wfn cor (exact) −11.1 + 16.3i −13.0 + 11.7i −7.7 + 24.8i −13.0 + 14.2i −10.4 + 19.1i −13.0 + 13.0i

Total (FRA) 82.2 80.8 84.8 82.2 84.2 82.2
Total (exact) 59.0 + 16.3i 68.5 + 11.7i 66.7 + 24.8i 68.4 + 14.2i 59.2 + 19.1i 69.0 + 13.0i
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(a) FRA nucleon propagators
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FIG. 8. (Color online) Cutoff dependence of the total cross
section. Av18 (solid curve), NijmII (dashed curve), and Reid ’93
(dotted curve).

loops. Since all the LECs except the contact term are fixed by
other data, it will be interesting to see if that contact term is of
natural size.

We plan to investigate further into the concept of reducibil-
ity. Specifically, we would like to define a clear procedure for
deciding what to include in the impulse diagram. There has
been a lack of consensus in the literature as to the inclusion
of OPE, and if it is included, how that should be done.
Understanding this issue is important, not only for calculation
of the total cross section but also for p-wave pion production,
since the leading contribution to p-wave pion production
comes from the impulse diagram.
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APPENDIX A: LAGRANGE DENSITIES

We define the index of a Lagrange density to be

ν = d + f

2
− 2, (A1)

where d is the sum of the number of derivatives and powers
of mπ , and f is the number of fermion fields. This represents
the standard power counting for nuclear physics. The ν = 0
Lagrangian (with isovectors in bold font) is [7]

L(0) = 1

2
(∂π)2 − 1

2
m2

ππ2 + N †i∂0N

+ gA

2fπ

N †(τ · �σ · �∇π )N + · · · , (A2)

where τ and �σ are the pauli matrices acting on the isospin and
spin of a single nucleon. The “+ · · ·” indicates that only the
terms used in this calculation are shown.

The ν = 1 Lagrangian includes recoil corrections and other
terms invariant under SU(2)L × SU(2)R .

L(1) = 1

2mN

N †∇2N − 1

2mN

(
gA

2fπ

iN †τ · π̇ �σ · �∇N + H.c.

)
+ · · · , (A3)

where we use the values given in Table VII. Note that the terms
with the ci low-energy constants that appear at this order do
not get promoted in MCS for these kinematics and are thus

TABLE VII. Parameters used.

mπ = 134.98 MeV gA = 1.32 MeV
mN = 938.92 MeV fπ = 92.4 MeV

not used. Also, the terms with the di low-energy constants do
not contribute to s-wave pion production. Finally, the NNNN

contact terms, CS,T , do not contribute because we are using a
potential with a repulsive core [Ri(r)Rf (r) → 0 as r → 0 for
li = 1, lf = 0].

APPENDIX B: IMPULSE APPROXIMATION DETAILS

Evaluating the isospin matrix element

〈00|τ1,3|10〉 = 1 (B1)

and using the vertex rule shown in Fig. 2, we obtain for Fig. 3(a)
at threshold

〈00|M̂′
L( �p, �k)|10〉

= gA

2fπ

mπ

2mN

�σ1 · ( �p + �k)(2π )3δ3( �p − �k), (B2)

where M̂′ = M̂/
√

2mN 2mP 2md ≡ M̂/N . Since we are
using position space np wave functions, we Fourier transform
the matrix element with respect to �l = �k − �p, which is identical
to �q ′ at threshold,∫

d3l

(2π )3
ei�l·�r (2π )3δ3( �p − �k) = 1. (B3)

Note that we group the �p and �k with their respective wave
functions prior to performing the Fourier transform

�σ1 · ( �p + �k) → �σ1 · (−i
−→∇ np + i

←−∇ d ). (B4)

Thus the full position space operator is

〈00|M̂′
L(�r)|10〉 = −i

gA

2fπ

mπ

2mN

�σ1 · (
−→∇ np − ←−∇ d ). (B5)

To calculate the diagram with rescattering on the other nucleon,
we consider how each part of the left side of Eq. (B5) trans-
forms under 1 ↔ 2. Since the strong part of the Lagrangian is
invariant under isospin, M̂ is invariant. The initial isospin ket
|1, 0〉 is invariant as well, but |0, 0〉 → −|0, 0〉 and �∇ → −�∇.
Thus,

〈00|M̂′
L+R(�r)|10〉 = −2i

gA

2fπ

mπ

2mN

�S · (
−→∇ np − ←−∇ d ).

(B6)

The final spin-angle wave function is that of the deuteron,
while the initial state for s-wave pion production is solely 3P1,

|f (�r)〉 ≡ u(r)

r
|3S1〉 + w(r)

r
|3D1〉,

(B7)

|i(�r)〉 ≡ 4πi
u1,1(r)

pr
|3P1〉,

where we have absorbed the unobservable (since there is only
one initial channel available) phase into the definition of the
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matrix element. The spin-angle matrix elements are calculated,

〈f (�r)|| �S · (
−→∇ − ←−∇ )||i(�r)〉

= 4πi

(
Rf (r)

∂Ri(r)

∂r
+ Rf,2(r)

2

r
Ri(r) − ∂Rf (r)

∂r
Ri(r)

)
,

(B8)

where Rf (r) ≡ √
2u(r)/r + w(r)/r , Rf,2(r) ≡ √

2u(r)/
r − 2w(r)/r , and Ri(r) ≡ u1,1(r)/pr .

Using Eqs. (B6) and (B8), we have the final result for the
reduced matrix element,

A
imp
0 ≡

∫
dr r2 (〈00| ⊗ 〈f (�r)||)M̂(�r) (||i(�r)〉 ⊗ |10〉)

= N8π
gA

2fπ

mπ

2mN

K, (B9)

K ≡
∫

dr r2

(
Rf (r)

∂Ri(r)

∂r
+ Rf,2(r)

2

r
Ri(r)

− ∂Rf (r)

∂r
Ri(r)

)
. (B10)

APPENDIX C: INCLUDING OPE DETAILS

A. Reducible OPE

Taking just the �q ′ terms at the OPE vertices, Fig. 3(b) is
given by

M̂′( �p, �k) =
(

− gA

2fπ

)3

τ 1 · τ 2 �σ1 · (−�q ′)
−i

�q ′ 2 + µ(0)2
�σ2 · �q ′

× τ1,3
i

−Ed − �p 2/mN

�σ1 ·
(

− mπ

2mN

2 �p
)

, (C1)

where µ(ω)2 ≡ m2
π − ω2. Adding to this expression emission

from the right nucleon and approximating �p 2 = mπmN as
discussed at the end of Sec. III, we find

〈00|M̂′( �p, �k)|10〉 = 12g3
A

8f 3
π

mπ

2mN

�σ1 · �q ′ �σ2 · �q ′

× 1

�q ′ 2 + µ(0)2

1

−Ed − mπ

�S · �p,

〈00|M̂′(�r)|10〉 = ig3
A

8πf 3
π

mπ

2mN

µ(0)3[S12f (ω, r)

+ �σ1 · �σ2 g(ω, r)]
1

−Ed − mπ

�S · �∇,

(C2)

where the �∇ acts on the initial np wave function, S12 = 3�σ1 ·
r̂ �σ2 · r̂ − �σ1 · �σ2 is the normal tensor operator, and

g(ω, r) = e−µ(ω)r

µ(ω)r
,

(C3)

f (ω, r) =
(

1 + 3

µ(ω)r
+ 3

[µ(ω)r]2

)
e−µ(ω)r

µ(ω)r

come from the Fourier transform [see Eq. (B3)] of the pion
propagator. Next, we evaluate(

u(r)

r
〈3S1| + w(r)

r
〈3D1|

)
[S12f (ω, r) + �σ1 · �σ2 g(ω, r)]

≡ ũ(ω, r)

r
〈3S1| + w̃(ω, r)

r
〈3D1|, (C4)

where
ũ(ω, r)

r
= u(r)

r
g(ω, r) + 2

√
2
w(r)

r
f (ω, r),

w̃(ω, r)

r
= w(r)

r
[g(ω, r) − 2f (ω, r)] + 2

√
2
u(r)

r
f (ω, r).

(C5)

Thus,

〈f (�r)||[S12f (ω, r) + �σ1 · �σ2 g(ω, r)]�S · �∇||i(�r)〉
= 4πi

[
ũ(ω, r)

r

√
2

(
∂

∂r
+ 2

r

)

+ w̃(ω, r)

r

(
∂

∂r
− 1

r

)]
Ri(r), (C6)

and we finally arrive at the full reduced matrix element,

A
OPE,red,f
0 = −N

g3
A

2f 3
π

mπ

2mN

µ(0)3

−Ed − mπ

Lf (0),

Lf (ω) =
∫

dr r2

[
ũ(ω, r)

r

√
2

(
∂

∂r
+ 2

r

)

+ w̃(ω, r)

r

(
∂

∂r
− 1

r

)]
Ri(r). (C7)

B. Irreducible OPE

Finally, as described in Sec. III, for the irreducible diagram
we use (−mπ/2 − �p 2/2mN )−1 ≈ (−mπ )−1 for the interme-
diate nucleon propagator and take ω = mπ/2.

A
OPE,irr,f
0 = −N

g3
A

2f 3
π

mπ

2mN

µ(mπ/2)3

−mπ

Lf (mπ/2). (C8)

C. Initial state OPE

For OPE in the initial state, the isospin matrix element is
〈00|τ1,3τ 1 · τ 2|10〉 = 1, and because the initial state consists
of just one channel, 3P1,

[S12f (ω, r) + �σ1 · �σ2 g(ω, r)]|3P1〉
= [2f (ω, r) + g(ω, r)]|3P1〉.

Evaluating the �S · ←−∇ reduced matrix elements, we find

A
OPE,red,i
0 = −N

g3
A

2f 3
π

mπ

2mN

µ(0)3/3

mπ

Li(0),

A
OPE,irr,i
0 = −N

g3
A

2f 3
π

mπ

2mN

µ(mπ/2)3/3

mπ

Li(mπ/2),

]Li(ω) =
∫

dr r2

[√
2

∂

∂r

u(r)

r
+

(
∂

∂r
+ 3

r

)
w(r)

r

]
× [2f (ω, r) + g(ω, r)]Ri(r). (C9)
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APPENDIX D: EXACT WAVE FUNCTION
CORRECTION DETAILS

Consider the nucleon propagator for reducible OPE in the
initial state. Pulling out a −mN and expanding this function in
spherical coordinates, we have

iG0(�r, �r ′) = −mN

∫
d3k

(2π )3
e−i�k·(�r−�r ′) i

�k 2 − ξ 2 − iε

= −2imN

eiξ |�r−�r ′|

4π |�r − �r ′|
= 2mNξ

∑
l,m

jl(ξr<)h(1)
l (ξr>)Y l ∗

m (r̂ ′)Y l
m(r̂),

(D1)

where ξ = √
mπmN and r< (r>) is the lesser (greater) of

|�r|, |�r ′|. This spherical partial wave expansion was derived
from the differential equation(

−1

r

∂2

∂r2
r + l(l + 1)

r2
− ξ 2

)
G(r, r ′) = δ(r − r ′)

rr ′ , (D2)

where iG0 = −imNG. First, one solves the homogenous
equation and requires both finiteness at the origin and outgoing
wave behavior for large r . Thus, G(r, r ′) = Ajl(ξr<)h(1)

l (ξr>).
Next, the boundary condition at r = r ′ is obtained by integrat-
ing the differential equation across the boundary. In terms of
g(r, r ′) = rr ′G(r, r ′),

∂

∂r
g>(r, r ′)|r=r ′+ε − ∂

∂r
g<(r, r ′)|r=r ′−ε = −1, (D3)

which yields A = iξ . At this point in the diagram, the two-
nucleon state is still 3P1, so we preform one of the angular
integrals and obtain

iG0(�r, �r ′) → mNξj1(ξr<)h(1)
1 (ξr>). (D4)

Thus,

A
OPE,red,i
0 (mπ/2) = −N

g3
A

2f 3
π

mπ

2mN

µ(0)3

3
[−imNξLi(0)],

Li(mπ/2) =
∫

dr dr ′ r2r ′2
[√

2
∂

∂r

u(r)

r

+
(

∂

∂r
+ 3

r

)
w(r)

r

]
j1(ξr<)h(1)

1 (ξr>)

× [2f (mπ/2, r ′) + g(mπ/2, r ′)]Ri(r
′).

(D5)

For the irreducible initial state OPE, the only difference
is that a −2mN gets pulled out and the momentum becomes
ξ ′ = √

2mπmN ,

A
OPE,irr,i
0 (mπ/2) = −N

g3
A

2f 3
π

mπ

2mN

µ(mπ/2)3

3

× [−2imNξ ′Li(mπ/2)]. (D6)

For the final state OPE, we can obtain the correct Green
function from Eq. (D4) by letting ξ → iξ and using the
correct l for the term under consideration.

APPENDIX E: CUTOFF DETAILS

In this section we display the exact expressions needed
to implement the Gaussian cutoff of Sec V. For the OPE
diagrams, the integral of Eq. (9) is evaluated,

g�(ω, r) = 1

2
eµ(ω)2/�2

[
e−µ(ω)r

µ(ω)r
erfc

(
−�r

2
+ µ(ω)

�

)

− eµ(ω)r

µ(ω)r
erfc

(
�r

2
+ µ(ω)

�

)]
. (E1)

One also needs derivatives of Eq. (E1),

�σ1 · �∇ �σ2 · �∇g�(ω, r)

= µ(ω)3

3
[S12f�(ω, r) + �σ1 · �σ2l�(ω, r)],

f�(ω, r) = 1

2
eµ(ω)2/�2

[(
1 + 3

µ(ω)r
+ 3

(µ(ω)r)2

)

× erfc

(
−�r

2
+ µ(ω)

�

)

− �√
πµ(ω)

(
�2

2µ(ω)2
µ(ω)r + 1 + 3

µ(ω)r

)

× e
−[−�r/2+µ(ω)/�]2

]
e−µ(ω)r

µ(ω)r
+ (µ → µ and � → −�),

l�(ω, r) = 1

2
eµ(ω)2/�2

[
erfc

(
−�r

2
+ µ(ω)

�

)

− �√
πµ(ω)

(
�2

2µ(ω)2
µ(ω)r + 1

)

e−[−�r/2+µ(ω)/�]2

]
e−µ(ω)r

µ(ω)r
+ (µ → µand� → −�) . (E2)
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