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Remarks on the origin of Castillejo-Dalitz-Dyson poles
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Castillejo-Dalitz-Dyson (CDD) poles are known to be connected with bound states and resonances. We
discuss a new type of CDD pole associated with primitives i.e., poles of the P matrix that correspond to
zeros of the D function on the unitary cut. The Low scattering equation is generalized for amplitudes with
primitives. The relationship between the CDD poles and the primitives is illustrated by a description of the
S-wave nucleon-nucleon phase shifts.
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The poles introduced by Castillejo et al. in Ref. [1] are
known as the Castillejo-Dalitz-Dyson (CDD) poles. They
describe ambiguities in solutions to the Low scattering equa-
tion [2] for amplitudes that satisfy correct analytical properties
and unitarity. To clarify the physical meaning of the CDD
poles, Dyson constructed a model [3] that demonstrates the
relation of the CDD poles to bound states and resonances.

Some time ago, Jaffe and Low [4] proposed a method
for identifying exotic multiquark states with primitives that
appear as poles of the P matrix rather than the S ma-
trix. The analysis, performed for scalar mesons [4] and
nucleon-nucleon scattering [5], revealed primitives, in agree-
ment with expectations from the Massachusetts Institute
of Technology bag model. A dynamical model of the P

matrix was developed by Simonov [6] and was applied to
the description of nucleon-nucleon scattering [6–11]. Other
microscopic models of nucleon-nucleon forces have also been
discussed [12–14].

The recent interest in the problem of nucleon-nucleon
interactions is connected to new constraints on the equation
of state (EOS) of nuclear matter, obtained from collective
flow data and subthreshold kaon production in heavy-ion
collisions [15,16] as well as astrophysical observations of
massive neutron stars [17,18]. One-boson exchange models are
in reasonable agreement with the laboratory data but predict
surprisingly low masses for neutron stars in the β equilibrium
[19,20]. Microscopic models can provide better insight into
the short-range dynamics of nucleon-nucleon interactions and
the high-density EOS.

In this Brief Report, we clarify the link between the CDD
poles and the primitives, that can be useful for modeling the
nucleon-nucleon interactions in the P -matrix formalism.

CDD poles arise when the interaction of particles includes
intermediate states that are internally different from combined-
particle states. These are discrete eigenstates of the system and
basically form other channels in the scattering problem. They
have also been referred to as elementary particle or compound
states.

In the Dyson model, one starts from the scattering of two
particles e.g., a nucleon and a pion. A nucleon can absorb
a pion and can turn into an excited compound state Nα of
mass Mα >

√
s0 = m + µ, where m and µ are the nucleon

and the pion masses. The D function of the process can be

written as

D(s) = �(s) − �(s), (1)

where, in the relativistic notations,

�−1(s) =
∑

α

g2
α

s − M2
α

, (2)

�(s) = − 1

π

∫ +∞

s0

�2(s ′)
F2(s ′)
s ′ − s

ds ′. (3)

Here, �2(s) = πk/
√

s is the relativistic two-body phase space,
k is the center-of-mass momentum, gα is the coupling constant,
and F(s) is the form factor of the NαNπ vertex. The S matrix
has the form

S = e2iδ(s) = D(s − i0)

D(s + i0)
. (4)

The poles of �(s) are the CDD poles. They are located between
the zeros of �(s) (i.e., between M2

α and M2
α+1).

The D function constructed in such a way is the generalized
R function [1]. It has no complex zeros on the first Riemann
sheet of the complex s plane. It also has no zeros on the real half
axis (−∞, s0), which corresponds to bound states, provided
D(s0) < 0 and s0 < M2

α .
The simple roots of the equation

D(s) = 0, (5)

located on the second Riemann sheet below the unitary cut,
are identified as resonances. In the limit of small gα , roots
of Eq. (5) are localized in the neighborhood of s = M2

α . �s

gives the renormalized resonance mass, while �s determines
the decay width �α = g2

α�D(M2
α)/Mα .

At the CDD poles δ(s) = 0 mod (π ), the slope of the phase
is positive. If sγ is a CDD pole, then Eq. (2) gives �−1(sγ ) = 0
and �−1(sγ )′ < 0. By expanding the D function around s = sγ

and by using Eq. (4), one finds

δ(sγ )′ = −�D(sγ )�−1(sγ )′ > 0.

Such behavior is in agreement with the Breit-Wigner formula
according to which isolated resonances drive the phase shift
up. In potential scattering, an increasing phase is associated
with attraction.
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The Dyson model, therefore, applies to systems with
attraction where scattering phase shifts increase with increas-
ing energy. The nucleon-nucleon phase shifts, conversely,
decrease with increasing energy and provide evidence for
repulsion. In Refs. [1–3], �D(s) is strictly positive. Softening
this constraint to �D(s) � 0 allows extension of the Dyson
model to systems with repulsion:

Let us consider the scattering of two nucleons through
compound states, dibaryons, with form factors F(s) that
have a simple zero at s = sp > s0 = 4m2. Consequently,
�D(s) ∼ (s − sp)2. Such behavior is presupposed in the
quark compound bag (QCB) model developed by Simonov
for the description of nucleon-nucleon interactions [6]. In
the QCB model, the separable potential generated by the
compound six-quark bags is restricted to the bag surfaces.
The S-wave form factor has the form F(s) = sin(kb)/kb,
where k is the center-of-mass momentum and b is the effective
interaction radius. In relativistic notation, the D function
of the model has the form of Eq. (1), while �(s) and the
self-energy operator �(s) are equivalent to Eqs. (2) and (3),
respectively.

This analogy allows the techniques developed in Ref. [1] to
be used to parametrize nucleon-nucleon scattering amplitudes
with functions that have the correct analytical properties.

If �D(sp) �= 0, the phase touches, at s = sp, one of the
δ(s) = 0 mod(π ) levels without crossing. However, if Eq. (5)
holds at s = sp for both the real and the imaginary parts,
the phase crosses one of the levels δ(s) = 0 mod(π ) with a
negative slope. This can be verified by expanding D(s) around
s = sp. By taking Eq. (4) and the conditions �D(sp)′′ > 0 and
�D(sp)′ > 0 into account, one gets

δ(sp)′ = − �D(sp)′′

2�D(sp)′
< 0.

In potential scattering, a negative slope of the phase shift is
associated with repulsion.

The Low scattering equation [2] is modified in the presence
of primitives. In the systems with �(s) given by Eq. (3), the
scattering amplitude A(s) = eiδ(s) sin δ(s) can be represented
as follows:

A(s) = −�2(s)F2(s)

D(s)
. (6)

This amplitude obeys the generalized Low scattering equation

A(s)

�2(s)F2(s)
= 1

π

∫ +∞

s0

|A(s ′)|2
�2(s ′)F2(s ′)

ds ′

s ′ − s

−
∑

b

Cb

s − sb

−
∑

p

Cp

s − sp

− C, (7)

which is essentially the dispersion integral representation for
the inverse denominator function D(s) that accounts for the
poles, which correspond to the bound states and primitives.
A(s) and F(s) have simple zeros at s = sp, so the integrand in
Eq. (7) is a regular function at s ′ = sp. The bound states and
the primitives generate poles at sb < s0 and sp > s0 on the real

axis, the coefficient

Cp = − 2A(sp)′

�2(sp)F2(sp)′′

is positive.
In the QCB model, the P matrix takes the form

P = Pfree + κ−1�−1, (8)

where Pfree is the free P matrix. For the S wave, Pfree =
kb cot(kb) and P = kb cot[kb + δ(s)]. The value of κ is fixed
by the normalization of D(s). The compound states of masses
Mα show up as poles of the P matrix. The poles of the P

matrix split into two groups according to their physical nature:
The first group is related to the bound states and resonances.
One bound state always exists at D(s0) > 0. Additional

bound states can be generated by compound states with masses
Mα <

√
s0.

A characteristic feature of a resonance is the condition
F(s) �= 0 in the neighborhood of s = M2

α . Equation (5) can
then be used to find a simple pole of the S matrix. The roots
of Eq. (5) that lie on the real half axis (−∞, s0) of the second
Riemann sheet are virtual states and can be influenced by the
compound states.

The poles of the second group are related to roots of Eq. (5)
on the unitary cut in the neighborhood of s = M2

α . Such poles
do not show up as S-matrix poles and cannot be treated as
resonances. They are called primitives according to Jaffe and
Low [4]. If a resonance moves from the second Riemann sheet
to the unitary cut, its singular effect on the S matrix cancels
out. As distinct from resonances, primitives drive the phase
shift down and mimic repulsion.

In the Dyson model, there exist at most one bound state
and at most one resonance, which are not associated with the
CDD poles. In the QCB model, there are CDD poles related to
primitives that do not give rise to bound states or resonances.
The neighboring CDD poles squeeze masses of compound
states that become bound states, resonances, or primitives
when the interaction is switched on. This is illustrated in
Fig. 1.

The S-wave nucleon-nucleon scattering can be considered
as an example of dynamics influenced by the CDD poles that
are connected to primitives.

FIG. 1. (Color online) D-function zeros in the complex s plane.
The unitary cut is shown by a bold solid line. Compound states 1,
2, and 3 are eigenstates of the free Hamiltonian. Upon switching
on the s-channel interaction, zeros move to new positions shown by
crosses. Compound states 1, 2, and 3 become bound state, primitive,
and resonance, respectively. A pair of the CDD poles that squeezes
compound state 2 of the primitive type is shown by arrows.
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The model we discuss is the relativistic extension of the
QCB model. The P -matrix formalism is recovered with

F(s) =
(

s

s0

)1/4 sin(kb)

kb
. (9)

Equation (3) for κ = 2mb/π gives

κ�(s + i0) = − sin(kb)

kb
eikb. (10)

In addition to the interaction through compound states, we
introduce a contact interaction. This amounts to a redefinition
of �−1(s) as compared to Eq. (2). In the case of one CDD
pole, the most general expression for �−1(s) becomes

κ−1�−1(s) = cp

(
rp

s − sp

− rp

sd − sp

)
− 1

γ
, (11)

where cp is a free parameter such that κcprp = g2
α , rp =

8(π/b)2 is the residue of Pfree in the S wave, and sd = M2
d is

the deuteron pole. The D function with the contact interaction
remains the generalized R function.

In the 3S1 channel, the phase shift vanishes at Tlab =
354 MeV. The S matrix according to Eq. (4) is unit in two
cases: �(s) = ∞ and �D(s) ≡ −��(s) = 0. The poles of
�(s) are the CDD poles. At the CDD poles, the slope of the
phase is positive, which corresponds to attraction. The second
case ��(s) = 0 gives repulsion.

Tlab = 354 MeV is equivalent to k = 408 MeV. The equa-
tionF(s) = 0 gives kb = π . Thus, we determine b = 1.52 fm.
Since F(sp) = 0 if and only if ��(sp) = 0, Eq. (5) simplifies
to �(sp) = 0. �(s) vanishes when s = M2

α . The compound
state shows up as the primitive of mass Mα = 2

√
k2 + m2 =

2047 MeV.

The parametrization ensures the existence of the deuteron
pole for

γ = −κ�(sd ) > 0. (12)

Unphysical zeros of the D function are eliminated by
constraining cp. One can easily show that �D(s) ∼ �s and
that the coefficient of proportionality is positive for positive
cp. In this case, D(s) has no zeros for �s �= 0. The real half
axis (−∞, s0) remains to be checked. The derivative D(s)′
is positive below the threshold. D(s) crosses the real axis
at s = sd < s0. This is the unique zero of the D function,
provided �(s) has no poles for s < s0. Let us investigate the
zeros of �−1(s). Since κ−1�−1(sd ) = −1/γ < 0, �−1(s)′ < 0
and �−1(s) has no poles for s < sp by construction, the
condition �−1(−∞) < 0 is sufficient to exclude unphysical
zeros. Finally, cp satisfies the constraint:

0 < cp < cmax
p = sp − sd

γ rp

. (13)

In Fig. 2(a), we show the 3S1 phase shift versus the proton
kinetic energy for cp = 0.9cmax

p . This is compared to the
partial-wave analysis data provided by Ref. [21]. For the pn

system, s = s0 + 2mnTlab, where mn is neutron mass. The
CDD pole is located at M = 3203 MeV. The pion production
threshold is at Tlab = 280 MeV, and the inelasticity is small
up to ∼350 MeV.

In Fig. 2(c), we show �D(s) and �D(s) as functions of
Tlab. �D(s) has one zero below s0, which corresponds to the
deuteron. The second zero at s > s0 with �D(s) �= 0 and a
negative slope of �D(s) ensures the crossing of the level
δ(s) = π . The third zero corresponds to the primitive. In
the 1S0 channel, the phase shift vanishes at Tlab = 265 MeV.
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FIG. 2. (Color online) 3S1 and 1S0 scattering phase shifts in radians (upper panel) and real and imaginary parts of the D functions (lower
panel) versus the proton kinetic energy. The solid curves are parametrizations within the relativistic QCB model. The experimental phase
shifts [21] are shown by triangles.
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The same arguments as before give b = 1.76 fm and Mα =
2006 MeV.

�−1(s) has the form of Eq. (11), with sd replaced by
s0 = 4m2. Near the threshold, κD(s) = −γ + 1 + ikb + · · ·.
From the other side, D(s) ∼ 1 − iδ(k) + · · · = 1 − ika +
. . . , where a = 23.56 fm is the scattering length. One has
to require

γ = 1 + b

a
. (14)

D(s) has no zeros for complex values of s. Its derivative
is positive for real s < s0. To avoid unphysical zeros, it is
sufficient to require

κD(−∞) = 1

− cprp

s0−sp
− 1

γ

< κD(s0) = 1 − γ < 0.

The second inequality is fulfilled, and the first one gives cp <

min[cmax
p , cmax

p /(γ − 1)]. Since b 	 a, this reduces to Eq. (13)
with sd replaced by s0.

In Fig. 2(b), we show our fit of the pn 1S0 phase shift
with cp = 0.9cmax

p compared to the experimental data [21].
The CDD pole occurs at M = 2916 MeV. Shown in Fig. 2(d)
are the real and the imaginary parts of the D function versus
the proton kinetic energy. In Figs. 2(c) and 2(d), the real and
the imaginary parts of the D functions vanish at s = sp. These
are signatures of the primitives, along with crossing the levels
δ(s) = 0 with negative slopes on Figs. 2(a) and 2(b). The values
of b and Mα are close to those obtained in Refs. [5,6].

Benjamins and van Dijk [13] used the hybrid Lee model
with one compound state in each channel to describe the
nucleon-nucleon S-wave phase shifts below Tlab = 500 MeV
and to reproduce parameters related to the deuteron and the
virtual 1S0 state. The model does not have explicit CDD poles

and primitives. However, it can be reformulated in terms of
the QCB model with one CDD pole and two compound
states that correspond to the primitive and a high-mass
resonance [22].

Resonances and primitives do not exist as asymptotic states.
In Feynman diagrams, propagators of primitives 1/(s − M2

α)
are multiplied by form factors F(s). Such combinations do
not have poles at s = M2

α . Primitives, thus, do not propagate,
although they influence the dynamics.

To summarize, the physical meaning of the CDD poles
was revisited. In the general case, the neighboring CDD
poles squeeze masses of compound states related to bound
states, resonances, or primitives. The primitives are P -matrix
poles associated with zeros of the D function on the unitary
cut, which do not show up as poles of the S matrix. The
Low scattering equation was generalized for amplitudes with
primitives. The primitive-type CDD poles occur in systems
with repulsion. In the 3S1 and 1S0 nucleon-nucleon channels,
the CDD poles at M = 3203 MeV and M = 2916 MeV are
associated with the primitives at Mα = 2047 MeV and Mα =
2006 MeV, respectively. The model we used ensures that
the D function has the correct analytical properties on the
first Riemann sheet of the complex s plane and provides
the partial-wave amplitudes that satisfy the generalized Low
scattering equation.
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