Medium-spin structure of ¹⁴⁵Cs

T. Rząca-Urban,¹ W. Urban,^{1,2} J. A. Pinston,³ G. S. Simpson,³ J. L. Durell,⁴ A. G. Smith,⁴ and I. Ahmad⁵

¹Faculty of Physics, University of Warsaw, ul. Hoża 69, PL-00681 Warsaw, Poland

²Institut Laue-Langevin, 6 rue J. Horowitz, F-38042 Grenoble, France

³Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National

Polytechnique de Grenoble, F-38026 Grenoble Cedex, France

⁴Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

⁵Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 24 July 2009; revised manuscript received 30 January 2010; published 6 July 2010)

Excited states in ¹⁴⁵Cs, populated following the spontaneous fission of ²⁴⁸Cm, were studied by means of prompt- γ spectroscopy, using the EUROGAM2 multidetector array. A new level scheme of ¹⁴⁵Cs was proposed. We identified a decoupled band corresponding to 1/2 [550] proton configuration and interpreted the ground-state band as a mixed configuration of 1/2 [440] and 3/2 [422] proton orbitals. Quasiparticle-rotor calculations performed for ¹⁴⁵Cs support such assignments. The electric dipole moment in ¹⁴⁵Cs, $D_0 = 0.013(4)$ efm, is smaller than in lighter Cs isotopes, which suggests that octupole correlations in Cs isotopes decrease at the neutron number N = 90, similarly as observed in the ¹⁴⁶Ba and ¹⁴⁷La isotones.

DOI: 10.1103/PhysRevC.82.017301

PACS number(s): 21.10.Pc, 21.10.Re, 23.20.Lv, 27.60.+j

Odd-A Cs nuclei were studied previously in our measurement of γ rays from fission of ²⁴⁸Cm [1] and by Hwang et al. [2] in fission of ²⁵²Cf. These works did not report on the level of octupole correlations in Cs. Such correlations are strong in the neighboring Ba nuclei [3,4] and, according to calculations [5], the neutron-rich Cs isotopes should have octupole deformation in their ground states. To determine the strength of octupole correlations in odd-A Cs isotopes, we performed a higher-statistics, ²⁴⁸Cm fission measurement [6] and found [7,8] parity-doublet-like structures in ¹⁴¹Cs and 143 Cs. However, the E1 transition rates in these nuclei appeared to be about an order of magnitude smaller than in Ba isotones. In contrast, B(E1) rates in ¹⁴²Xe [9] are as high as in 144 Ba [3,4], suggesting that octupole correlations in odd-Z nuclei in this region are lower than in even-Z nuclei. A possible explanation is "blocking" of the octupole-driving, $\Delta j = 3$ pair of proton orbitals $(d_{5/2}, h_{11/2})$, which are responsible for octupole correlations in this region. A similar effect was found in our recent study of 95 Y [10], where the $(p_{3/2}, g_{9/2}), \Delta j = 3$ proton pair is active.

Of two different theoretical predictions for Cs nuclei, one forecasts that octupole correlations increase at higher neutron number [11,12], while the other anticipates that at neutron number N = 90 the B(E1) rates may decrease because of a specific cancellation of an electric dipole moment at N = 90 [13,14]. The latter effect was observed in the neighboring ¹⁴⁶Ba, where B(E1) rates are an order of magnitude smaller than in ¹⁴⁴Ba [3,4]. In addition to octupole effects, there is also an onset of quadrupole deformation around N = 90 in this region. Therefore, it is not obvious how the structure of Cs isotopes with N > 88 will look. In this work we report on the study of ¹⁴⁵Cs and partially answer this question.

We studied excited states in ¹⁴⁵Cs using the data from a measurement of high-fold, γ coincidences following spontaneous fission of ²⁴⁸Cm, performed using the EUROGAM2

array [15]. For more information on the experiment and the data analysis see Ref. [6].

The data obtained in this work allowed the modification of the excitation scheme of ¹⁴⁵Cs. The new level scheme is shown in Fig. 1. In this scheme, we introduced a new ground-state transition of 55.5 keV, based on the observation of a new, 55.5-keV line, which is coincident with most of other lines in ¹⁴⁵Cs. Consequently, all excited levels reported in Ref. [1] were shifted upward by 55.5 keV. In Fig. 2, we show a γ -ray spectrum measured by a low-energy photon spectrometer (LEPS), which was doubly gated on the 192- and 325-keV lines of ¹⁴⁵Cs. The location of the 55.5-keV transition is supported further by the observation of a 144.2-keV decay from the 144.2-keV level.

A new decay branch of the 607.0-keV level (550.8-keV level in Ref. [1]) was found. In Fig. 2 there is a new line at 91.2 keV. Figure 3 shows a spectrum gated on the 88.7- and 91.2-keV lines, where a new line at 371.4 keV and other lines of ¹⁴⁵Cs are seen. We place the 91.2-keV transition above the 371.4-keV transition. Such an order is consistent with the observed branching ratios, but we cannot prove that the reverse order is not possible.

Fitting two Gaussian shapes to the 192-keV doublet in Fig. 2 provided energies of 191.0(2) keV and 192.0(2) keV. In Fig. 3 one observes a line at 191.0 keV. This indicates that the 191.0-keV line is above the 192.0-keV line in the excitation scheme. We also observe a new 389.5-keV transition in the ground-state band, two more transitions of 534.5 and 598.7 keV in the yrast cascade, and a new cascade of 290.8-, 297.8-, 447.8-, and 574.8-keV transitions. The new lines are shown in Fig. 4. Table I shows branching ratios for decays from the excited states of ¹⁴⁵Cs, as observed in this work.

The $3/2^+$ spin and parity of the ground state of 145 Cs were obtained with the atomic-beam magnetic-resonance technique, which indicated a dominant 3/2 [404] Nilsson configuration for this level [16,17]. In the LEPS spectrum gated on the

FIG. 1. Partial level scheme of $^{145}\mathrm{Cs}$ as obtained in the present work.

88.7- and 115.0-keV lines, shown in Fig. 5, there is the 55.5-keV line and the corresponding K_{α} and K_{β} x-ray lines of Cs. From the observed intensities of these lines, we obtained a conversion coefficient of $\alpha_K = 3.8(14)$ for the 55.5-keV line. In the error bar we included the uncertainty owing to the contribution from the conversion of the 155.8-keV line. The experimental value, compared to the theoretical α_K values of 0.94, 4.21, and 5.98 for E1, M1, and E2 multipolarities, respectively, favors an M1 + E2 multipolarity

FIG. 3. A γ -ray spectrum double gated on 88.7- and 91.0-keV lines in ¹⁴⁵Cs. Lines are labeled in keV. See the text for further explanations.

for the 55.5-keV transition. A similar analysis provides an $\alpha_K = 2.3(9)$ conversion coefficient for the 88.7-keV transition. The theoretical values are 0.26, 1.09, and 1.73 for *E*1, *M*1, and *E*2 multipolarities, respectively. Therefore, the experiment indicates an M1 + E2 multipolarity for the 88.7-keV transition.

We used a technique of $\gamma \gamma$ angular correlations described in more detail in Refs. [6,18] to show that the 191.0-keV transition has a quadrupole (Q) multipolarity, while the 192.0-keV transition is a dipole (D). Four two-dimensional $\gamma\gamma$ histograms, with angles of 90°, 60° (or 120°), 30° (or 150°) and 0° (or 180°) between the two γ rays in the cascade, respectively, were sorted. The peak intensities in these histograms, properly normalized, provided angular correlations for $\gamma\gamma$ cascades. Figure 6(a) shows angular correlations between the 191.0- and 192.0-keV lines. The data points, which represent intensities of the (191-192)-keV peak in angular-correlation histograms, are compared to the theoretical [18,19] correlations for the quadrupole-stretched dipole (QD1) cascade, the quadrupole-unstretched dipole (QD2) cascade, the quadrupole-quadrupole (QQ) cascade, and the stretcheddipole-stretched-dipole (DD) cascade. The experiment agrees well with the prediction for the QD1 cascade. To find which of the two lines, 191.0 or 192.0 keV, is a quadrupole and which is a dipole, we gated in the correlation histograms on the 325.3-keV line and fitted intensities of the lines in the

FIG. 2. LEPS spectrum double gated on the 192- and 325-keV γ lines of ¹⁴⁵Cs. Energies are labeled in keV. See text for further explanations.

FIG. 4. Double-gated γ -ray spectrum with the first gate on the 191-keV line and the second on the 115- and 156-keV lines. Lines in the spectrum are labeled in keV. See the text for further explanations.

TABLE I. Branching ratios for levels in the 145 Cs nucleus, as observed in this work.^a

E _{exc} (keV)	E_{γ} (keV)	I_{γ} (arb. units)	E _{exc} (keV)	E_{γ} (keV)	I_{γ} (arb. units)
144.3	144.2	100(12)	415	270.8	100(5)
	88.7	1780(70)		155.8	336(8)
259.2	203.9	100(6)	607.0	91.2	100(12)
	115.0	502(10)		192.0	730(50)

 ${}^{a}I_{\nu}$ values are given in arbitrary units; exc, excited state.

(191 + 192)-keV doublet. The resulting correlations for the (325.3-191.0)-keV cascade, shown in Fig. 6(b), agree with the QQ calculation, while the (325.3-192.0)-keV cascade is consistent with the QD1 calculation. The inset in Fig. 6(b) illustrates the quality of fitting the (191+192)-keV doublet.

The ¹⁴⁵Cs nucleus has larger deformation than lighter Cs isotopes [1]. In ^{141,143}Cs the positive-parity bands are of a decoupled character and the negative-parity levels, which are caused by octupole coupling, are elevated in energy (see Fig. 2 in Ref. [20]). In contrast, the positive-parity cascade in ¹⁴⁵Cs resembles a strongly coupled band. The negative-parity band most likely originates from the $h_{11/2}$ proton shell, which comes down in energy because of the onset of quadrupole deformation at N = 90. Such an assignment is supported by the alignment plot shown in Fig. 7. Using the spin assignments shown in Fig. 1 for the band on top of the 515.7-keV level, we obtain an aligned spin of $i = 5.5\hbar$ for this band, relative to the groundstate band of ¹⁴⁶Ba. This suggests that this band corresponds to the $\pi 1/2$ [550] proton subshell. Levels with spins 1/2, 3/2, and 5/2 of this band are elevated in energy and not populated in fission. We note that this band is similar to the analogous negative-parity band in the ¹⁴⁷La isotone [21].

The spin and parity assignment of $11/2^{-1}$ for the 607.0-keV level and the angular correlation shown in Fig. 6 indicate a spin 9/2 for the 415.0-keV member of the ground-state band. However, such an assignment is in conflict with usual "spin counting" in bands populated in fission, where a monotonic increase of spins with increasing excitation energy is commonly observed. Following this rule and applying a spin

FIG. 5. LEPS spectrum double gated on 88.7- and 115.0-keV γ -ray lines in ¹⁴⁵Cs. Energies are labeled in keV. See text for further explanations.

FIG. 6. Angular correlations between the 191.0-, 192.0-, and 325.3-keV lines of ¹⁴⁵Cs, as observed in this work. Theoretical correlations are for unmixed transitions. See text for further explanations.

of 3/2 for the ground state, one arrives at spin 11/2 for the 415.0-keV level. It is possible that the $\pi 1/2$ [420] and $\pi 3/2$ [422] configurations, which are very close to each other in ¹⁴⁵Cs [20], interact and produce a more complex ground-state band cascade, where spins do not increase regularly with excitation energy.

To obtain further insight into the structure of ¹⁴⁵Cs, we performed quasiparticle-rotor model calculations for this nucleus using the codes GAMPN, ASYRMO, and PROBAMO [22]. We used the deformation parameter $\epsilon_2 = 0.17$, in accordance with the predictions of Ref. [23], and the Coriolis attenuation parameter $\xi = 0.55$. Standard values for the κ and μ parameters of the *ls* and l^2 terms were used [24]. To calculate the γ -decay pattern, we used a collective g factor for the core of $g_R = Z/A$ and an effective value of the free neutron factor $g_s^{\text{eff}} = g_s^{\text{free}}$. More information on such calculations can be found in Refs. [25,26].

The results of the calculations are shown in Fig. 8. Calculated levels are normalized to the zero energy of the $3/2^+$ level, which has the dominant 3/2 [422] configuration. A good agreement between measured and calculated excitation energies for the negative-parity band in ¹⁴⁵Cs supports the $1/2^-$ [550] dominant proton configuration for the band starting at 515.7 keV.

Our calculations predict that the $1/2^+$ [420] and $3/2^+$ [422] proton configurations are close in energy to the ground state and, consequently, two $5/2^+$ levels will occur at low

FIG. 7. Aligned angular momenta, I_x , of the negative-parity band in ¹⁴⁵Cs and the ground-state band of ¹⁴⁶Ba. Data for ¹⁴⁶Ba are from Ref. [4].

FIG. 8. Experimental and calculated excitation energies in ¹⁴⁵Cs. See text for further explanation.

energy. Therefore, it is possible to assign a spin of $7/2^+$ to the 259.2-keV level and a spin of $9/2^+$ to the 415.0-keV level, in agreement with the angular correlation data of Fig. 6. In Ref. [1] a magnetic moment, $\mu = 0.95(15)\mu_N$, was estimated for the 259.2- and 415.0-keV levels (the 203.8- and 359.4-keV levels in Ref. [1]), which agrees with the magnetic moment calculated for the $3/2^+$ [422] configuration [5] and measured for the ground state of ¹⁴⁵Cs [17].

The spin of $1/2^+$ calculated for the ground state is in conflict with the experimental measurement reported in Ref. [17]. We note, though, that the present calculations were performed assuming a reflection-symmetric shape. It was found in Ref. [20] that in a reflection-asymmetric potential the order of the $3/2^+$ [422] and $1/2^+$ [420] is reversed by the octupole interaction (see Fig. 2(a) in Ref. [20]) and the $1/2^+$ [420] band is effectively elevated in energy. A small correction owing to octupole coupling would improve the agreement between experiment and calculations. Therefore, it is of interest to check the strength of octupole correlations in ¹⁴⁵Cs. According to the present spin and parity assignments, the 192.0-keV

FIG. 9. D_0 moments in the neutron-rich lanthanides. The new value for ¹⁴⁵Cs is shown as an open circle. Other values are drawn using data from Ref. [8]. Lines are drawn to guide the eye.

transition in ¹⁴⁵Cs has an *E*1 multipolarity while the 91.2-keV transition is a stretched *E*2. One may, therefore, estimate the electric-dipole moment for the 607.0-keV level from γ -ray branching of the two transitions using the rotational formula $D_0 = \sqrt{5B(E1)/16B(E2)}Q_0$. The B(E1)/B(E2) branching for the 607.0-keV level is $0.0050(8) \times 10^{-6}$ fm⁻². For the intrinsic electric-quadrupole moment we took $Q_0 = 3.3(7)$ b, an average of $Q_0 = 3.68(13)$ b for ¹⁴⁶Ba [27] and $Q_0 = 2.8(6)$ b for ¹⁴⁴Xe, extrapolated from Q_0 values for ^{140,142}Xe [9]. Using these values we obtained the intrinsic electric-dipole moment for ¹⁴⁵Cs of $D_0 = 0.013(4)$ efm.

The D_0 moment in ¹⁴⁵Cs is about two times smaller than in ¹⁴³Cs [8]. Figure 9 shows the D_0 values in neutron-rich lanthanides, including the new point for ¹⁴⁵Cs. It is possible that in ¹⁴⁵Cs there is a canceling of the D_0 moment similar to that observed in the ¹⁴⁶Ba and ¹⁴⁷La isotones [3,4,21]. Considering the tentative character of the D_0 value in ¹⁴⁵Cs, this proposition still needs to be confirmed.

The authors are indebted to the Office of Basic Energy Sciences, U.S. Department of Energy, for the use of ²⁴⁸Cm through the transplutonium element production facilities at the Oak Ridge National Laboratory.

- [1] T. Rząca-Urban et al., Phys. Lett. B 348, 336 (1995).
- [2] J. K. Hwang et al., Phys. Rev. C 57, 2250 (1998).
- [3] W. R. Phillips et al., Phys. Rev. Lett. 57, 3257 (1986).
- [4] W. Urban et al., Nucl. Phys. A 613, 107 (1997).
- [5] S. Ćwiok and W. Nazarewicz, Nucl. Phys. A 496, 367 (1989).
- [6] W. Urban et al., Z. Phys. A 358, 145 (1997).
- [7] W. Urban et al., in Proceedings of the International Conference on Fission and Neutron-Rich Nuclei, St. Andrews, Scotland, 1999, edited by J. Hamilton and W. R. Phillips (World Scientific, Singapore, 2000), pp. 136–143.
- [8] W. Urban et al., Phys. Rev. C 69, 017305 (2004).
- [9] W. Urban *et al.*, Eur. Phys. J. A 16, 303 (2003).
- [10] W. Urban et al., Phys. Rev. C 79, 044304 (2009).
- [11] W. Nazarewicz and S. L. Tabor, Phys. Rev. C 45, 2226 (1992).
- [12] V. Martin and L. M. Robledo, Phys. Rev. C 49, 188 (1994).

- [13] G. A. Leander et al., Nucl. Phys. A 453, 58 (1986).
- [14] P. A. Butler and W. Nazarewicz, Nucl. Phys. A 533, 249 (1991).
- [15] P. J. Nolan et al., Annu. Rev. Nucl. Part. Sci. 44, 561 (1994).
- [16] C. Ekstrom *et al.*, Phys. Scr. **19**, 516 (1979).
- [17] C. Thibault et al., Nucl. Phys. A 367, 1 (1981).
- [18] M. A. Jones et al., Rev. Sci. Instrum. 69, 4120 (1998).
- [19] W. Urban et al., Nucl. Instrum. Methods A 365, 596 (1995).
- [20] G. A. Leander et al., Phys. Lett. B 152, 284 (1985).
- [21] W. Urban et al., Phys. Rev. C 54, 945 (1996).
- [22] P. Semmes and I. Ragnarsson (unpublished).
- [23] P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995).
- [24] T. Bengtsson and I. Ragnarsson, Nucl. Phys. A 436, 14 (1985).
- [25] S. E. Larsson et al., Nucl. Phys. A 307, 189 (1978).
- [26] J. A. Pinston et al., Phys. Rev. C 74, 064304 (2006).
- [27] S. Raman et al., At. Data Nucl. Data Tables 36, 1 (1987).