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Equation of state of dense matter from a density dependent relativistic mean field model
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We calculate the equation of state (EOS) of dense matter using a relativistic mean field (RMF) model with
a density dependent coupling that is a slightly modified form of the original NL3 interaction. For nonuniform
nuclear matter we approximate the unit lattice as a spherical Wigner-Seitz cell, wherein the meson mean fields
and nucleon Dirac wave functions are solved fully self-consistently. We also calculate uniform nuclear matter
for a wide range of temperatures, densities, and proton fractions, and match them to nonuniform matter as the
density decreases. The calculations took over 6000 CPU days in Indiana University’s supercomputer clusters.
We tabulate the resulting EOS at over 107,000 grid points in the proton fraction range YP = 0 to 0.56. For the
temperature range T = 0.16 to 15.8 MeV, we cover the density range nB = 10−4 to 1.6 fm−3; and for the higher
temperature range T = 15.8 to 80 MeV, we cover the larger density range nB = 10−8 to 1.6 fm−3. In the future
we plan to study low density, low temperature (T < 15.8 MeV), nuclear matter using a Virial expansion, and we
will match the low-density and high-density results to generate a complete EOS table for use in astrophysical
simulations of supernova and neutron star mergers.
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I. INTRODUCTION

The equation of state (EOS) for hot, dense matter in
massive stars relates energy and pressure to temperature,
density, and composition. It has been a long-standing problem
to understand the EOS at both subnuclear and supranuclear
density, to which great efforts were devoted, from laboratory
heavy ion collision experiments [1], computer simulations of
supernova [2,3], and theoretical many-body calculations [4].
The EOS of hot, dense matter in supernovae (SN) and neutron
star (NS) mergers encompass multiscale physics. Temperature
can vary from 0 to as high as 100 MeV, exciting nuclei,
nucleon, and possibly pion and other degrees of freedom.
The density can vary from ≈104 to 1015 g · cm−3, where
matter can be in gas, liquid, or solid phases. The proton
fraction can vary from 0 to 0.6, from extremely neutron
rich matter to proton rich matter. These very large parameter
ranges make construction of a full EOS table difficult. It is
necessary to employ different approximations for different
parameter ranges. As a result, there exist only two realistic
EOS tables that are in widespread use for astrophysical
simulations, the Lattimer-Swesty (L-S) EOS [5] that uses a
compressible liquid drop model with a Skyrme force, and the
H. Shen, Toki, Oyamatsu, and Sumiyoshi (S-S) EOS [6,7] that
uses the Thomas-Fermi and variational approximations with
a relativistic mean field (RMF) model. We plan to generate
a complete EOS, employing RMF calculations for matter at
intermediate and high density as described in this article. In
the future we plan to use the Virial expansion of a nonideal
gas to describe matter at low density. These two parts will be
matched together and we will generate a thermodynamically
consistent EOS over the full range of parameters. Finally,

*gshen@indiana.edu
†horowit@indiana.edu
‡steige@indiana.edu

we will generate additional EOS’s from RMF models with
different high-density symmetry energies. This will allow
one to correlate features of astrophysical simulations with
properties of the symmetry energy assumed for the EOS.

There are still large uncertainties in the EOS at supranuclear
densities. The density dependence of the symmetry energy
dS/dnB is poorly known and strongly influences the stiffness
of the EOS. It can be constrained from measurements of
NS radii and masses [8], precision determination of the
neutron rms radius in 208Pb [9], and also heavy ion collision
experiments [1]. A stiff EOS (high pressure) at high density
gives larger NS radii, while a stiff EOS at normal and low
density favors a larger neutron radius in 208Pb [10]. The elliptic
and transverse flow observables in heavy ion collisions are
sensitive to the isospin dependence of mean fields and to the
EOS at densities up to a few times nuclear saturation density.
Many nuclear many-body models fall into two categories, the
nonrelativistic Skyrme models (see, for example, Ref. [11] for
a review) and RMF models [12]. The parameters in these mod-
els are usually fitted to nuclear properties at normal nuclear
densities, afterward they are extrapolated to study supranuclear
matter. The L-S EOS uses a Skyrme model featuring a
relatively soft EOS and the S-S EOS uses the RMF interaction
TM1 that features a stiffer EOS. Since the symmetry energy
is not well constrained, it is important to explore the effects of
different symmetry energies on the EOS and SN simulations.

In this article, we use an RMF model for nonuniform
matter at intermediate density and uniform matter at high
density. Low-density pure neutron matter is analogous to a
unitary gas [13], where the neutron-neutron scattering length
is much larger than both the effective range and the average
interparticle spacing. To better describe neutron-rich matter at
low density, we use a density dependent scalar meson-nucleon
coupling. At high density, the model reduces to the normal
RMF parameter set NL3. The unit lattice of nonuniform
nuclear matter is conveniently approximated by a spherical

0556-2813/2010/82(1)/015806(9) 015806-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.82.015806


G. SHEN, C. J. HOROWITZ, AND S. TEIGE PHYSICAL REVIEW C 82, 015806 (2010)

Wigner-Seitz (W-S) cell. The meson mean fields and nucleon
Dirac wave functions inside the Wigner-Seitz cell are solved
fully self-consistently. This is unlike the S-S EOS that used
Thomas-Fermi and variational approximations and the L-S
EOS that used a simple liquid drop model. The size of the
W-S cell is found by minimization of the free energy per
nucleon. The W-S approximation provides a framework to
incorporate the best known microscopic nuclear physics [14].
The nuclear shell structure effects are included automatically
and it is already possible for some effects of complex nuclear
pasta states to be included in spherical calculations in the form
of shell states [15]. Full three-dimensional W-S calculations, in
principle, can incorporate various pasta shapes [16,17], which
will make the transition to uniform matter more smooth. How-
ever, this will demand much larger computational resources.
In this work we use the spherical W-S approximation.

Our RMF calculations can accurately describe the radial
shape of large neutron rich nuclei including the expected
neutron rich skin. In contrast, the original L-S EOS is based on
a very simple liquid drop model of nuclear structure that may
incorrectly describe the neutron skin. Alternatively, the S-S
EOS is based on a Thomas-Fermi approximation that neglects
shell effects. These are included in our Hartree calculations.
Furthermore, the variational forms for the densities assumed
by S-S may be a poor approximation for large proton numbers
where the Coulomb repulsion is large. Instead, our exact
solutions of the radial mean field equations allow richer density
distributions including shell states with central depressions
[15]. These differences in densities may be important for
neutrino interactions in supernovae. Finally, our calculations
correctly reproduce the unitary gas limit for a low-density
neutron gas while both the L-S and S-S EOS reduce incorrectly
to the energy of free neutrons.

One can demand that any EOS be consistent with, possibly
model dependent interpretations of, observations of neutron
stars. For example, Klahn et al. proposed a series of tests that
an EOS should satisfy to be consistent with observations [18].
They demanded that any reliable nuclear EOS be able to
reproduce the recently reported high pulsar mass of 2.1 ±
0.2 M� for PSR J0751 + 1807 [19]. However, this observation
may have been retracted [20]. Furthermore, Klahn et al.
required the EOS to reproduce a large binding energy for Pulsar
B in J0737-3039. However, this conclusion can be sensitive to
assumptions about the system such as the amount of mass
loss. Klahn et al. went on to demand that the EOS not allow
direct URCA cooling of neutron stars of mass 1 to 1.5 M�. We
consider a more conservative approach. While many stars cool
slowly, observations do suggest that at least some stars have
enhanced cooling. Unfortunately, observations do not directly
constrain the mass that may separate enhanced from normal
cooling. Indeed, there is little direct observational evidence
that more massive stars cool more quickly, although this is a
theoretical prejudice.

One can also use laboratory data to constrain the EOS.
The neutron skin thickness of a heavy nucleus constrains the
density dependence of the symmetry energy. Furthermore,
there are many measurements of the skin thickness with
a variety of strongly interacting probes. However, there

may be important model dependence from strong interaction
uncertainties. For example, (3He, t) measurements of spin
dipole strength were used to extract neutron skin thicknesses
in Sn isotopes [21]. For these measurements, the spin dipole
strength was assumed to be proportional to the measured cross
section, and the proportionality constant was arbitrarily fixed
to reproduce the skin thickness of 120Sn as predicted by an old
Hartree-Fock calculation [22]. Presumably, if a different skin
thickness in 120Sn is fit, one will also get different answers for
the skin thickness in other isotopes.

This situation may soon change. The Lead Radius Experi-
ment (PREX) at Jefferson Laboratory is using parity-violating
electron scattering to measure the neutron skin thickness in
208Pb [9]. Parity violation is a sensitive probe of neutrons
because the weak charge of a neutron is much larger than that
of a proton. Furthermore, this electro-weak reaction may have
much smaller strong interaction uncertainties. Data taking for
PREX should be completed by June 2010.

Instead of trying to determine, ahead of time, the best EOS
to satisfy existing observational constraints, we adopt what
we hope will be a more robust approach. We are calculating
a number of EOS’s based on different effective interactions.
In this article we present first results for the NL3 interaction
with a symmetry energy that is large at high densities. In
later work we will present EOS’s with softer high-density
symmetry energies. These different EOS will allow one to
correlate features of astrophysical simulations with properties
of the EOS. Then one can draw conclusions based on combined
information from laboratory experiments and astronomical
observations.

In this article we focus on nucleon degrees of freedom.
Hyperons can play a role at high densities, see. for example,
Ref. [23]. However, the contribution of hyperons can depend
on uncertain hyperon interactions. In addition, there can be
pion or kaon condensates or a variety of quark matter phases.
See, for example, the review by Page and Reddy [4]. Chiral
symmetry restoration and the softening of pionic or kaonic
modes can be important. Finally, thermal pions and pion
interactions should be very important at high temperatures.
All of these effects may increase the uncertainties in the EOS.

We tabulate the EOS for intermediate and high-density
nuclear matter over the range of temperatures T , densities
nB , and proton fractions YP given in Table I and described in
Sec. IV. We calculate the free energy of nonuniform matter
for 17,021 points, and the free energy of uniform matter for
90,478 points in T , nB , and YP space. This took 6000 CPU
days on Indiana University’s supercomputer clusters.

The article is organized as follows. In Sec. II the density
dependent RMF model is explained in detail. In Sec. III

TABLE I. Range of temperatures T , densities nB , and proton
fractions YP in the EOS table.

Parameter Low T High T Total #

log10(T) [MeV] −0.8 to 1.2 1.2 to 1.9 32
log10(nB ) [fm−3] −4.0 to 0.2 −8.0 to 0.2 43, 83
YP 0,0.05 to 0.56 0,0.05 to 0.56 53
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we describe the RMF parameters that we use including a
density dependent coupling. We describe the computational
methodology for our large computer runs in Sec. IV. Section V
shows results for RMF calculations, including the free energy
and the nucleon density distributions in the nonuniform W-S
cells. Finally, Sec. VI presents a summary of our results and
gives an outlook for future work.

II. FORMALISM

We now describe the mean field formalism that we use
for nonuniform matter in Sec. II A and for uniform matter in
Sec. II B.

A. Nonuniform nuclear matter in Wigner-Seitz approximation

The formalism for relativistic mean field theory was
reviewed in previous articles, see, e.g., Ref. [12]. To better
describe neutron rich matter at low density we introduce a
density dependent coupling between the scalar meson and the
nucleon as described in Sec. III. We note that many previous
studies of density dependent RMF models mainly focused on
better descriptions of nuclear matter at supranuclear density
(see, for example, Refs. [24,25]). In this section we focus on
low-density neutron rich matter.

The basic ansatz of the RMF theory is a Lagrangian density
where nucleons interact via the exchange of sigma (σ ), omega
(ωµ), and rho (ρµ) mesons, and also photons (Aµ)

L = ψ

[
iγ µ∂µ − m − �σσ − gωγ µωµ − gργ

µ�τ · �ρµ

− eγ µ 1 + τ3

2
Aµ

]
ψ + 1

2
∂µσ∂µσ

− 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4 − 1

4
ωµνωµν

+ 1

2
m2

ωωµωµ + 1

4
c3(ωµωµ)2 − 1

4
�ρµν · �ρµν

+ 1

2
m2

ρ �ρµ · �ρµ − 1

4
AµνAµν. (1)

We note that �σ = �σ (n) (n ≡ √
jµjµ and jµ is the nucleonic

current) is the density dependent coupling between the sigma
meson and the nucleon. Here the field tensors of the vector
mesons and the electromagnetic field take the following
forms:

ωµν = ∂µων − ∂νωµ, Aµν = ∂µAν − ∂νAµ,
(2)

�ρµν = ∂µ�ρν − ∂ν �ρµ − gρ �ρµ × �ρν
.

In charge neutral nuclear matter composed of neutrons, n,
protons, p, and electrons, e, there is equal number of electrons
and protons. Electrons can be treated as a uniform Fermi gas at
high densities.1 They contribute to the Coulomb energy of the
npe matter and serve as one source of the Coulomb potential.

1It needs electron density >106 g/cm3, which is easily surmounted
in the regime of mean field results.

The variational principle leads to the following equations
of motion

[α · p + V (r) + β(m + S(r))]ψi = εiψi, (3)

for the nucleon spinors, with vector and scalar potentials

V (r) = β

{
gω/ωµ + gρ �τ · �/ρµ + e

(1 + τ3)

2
/Aµ + R

}
,

S(r) = �σσ, (4)

where

R = γ µjµ

n

∂�σ

∂n
ρsσ, (5)

is the rearrangement term due to the density dependent
coupling between the sigma meson and the nucleon, and ρs is
the scalar density of nucleons to be defined below.

The EOS’s for the mesons and photons are(
m2

σ − ∇2
)
σ = −�σρs − g2σ

2 − g3σ
3,(

m2
ω − ∇2)ωµ = gωjµ − c3ω

µ(ωνων),
(6)(

m2
ρ − ∇2) �ρµ = gρ

�jµ,

−∇2Aµ = e
(
jµ
p − jµ

e

)
,

where the electrons are included as a source of Coulomb
potential. The nucleon spinors provide the relevant source
terms

ρs =
∑

i

ψiψini, jµ =
∑

i

ψiγ
µψini,

(7)
�jµ =

∑
i

ψiγ
µ�τψini, jµ

p =
∑

i

ψiγ
µ 1 + τ3

2
ψini.

At finite temperature, the Fermi-Dirac statistics imply the
occupations ni of protons and neutrons are

ni = 1

eβ(εi−µ) + 1
, (8)

where µ is the chemical potential for a neutron (proton). In the
calculation, we include all levels with gi · ni > 10−2, where
gi is the degeneracy of the level.

Since the systems under consideration have temperatures
of, at most, tens of MeV, we neglect the contribution of negative
energy states, (i.e., the so-called no sea approximation). In a
spherical nucleus, there are no currents in the nucleus and the
spatial vector components of ωµ, �ρµ, and Aµ vanish. One is
left with the timelike components, ω0, �ρ0, and A0. Charge
conservation guarantees that only the third-component of the
isovector ρ0,3 field survives. The previous nonlinear equations
are solved by iteration within the context of the mean field
approximation whereby the meson field operators are replaced
by their expectation values.

The spherical Wigner-Seitz approximation is used to
describe nonuniform matter. One W-S cell has one nucleus. In
this approximation it is important to include lattice Coulomb
corrections between neighboring W-S cells. The detailed
treatments we use were discussed in a previous article [15]
and we will not repeat them here.

We solve for the meson mean fields and the nucleon Dirac
wave functions self-consistently inside a W-S cell of radius
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Rc, for a given baryon density nB , proton fraction YP , and
temperature T . In our RMF model nucleons (proton and
neutron) are the only baryons. The nucleon number inside
the W-S cell is A = 4πR3

c nB/3 and the proton number is
Z = YP A. The internal energy of a W-S cell, including the
approximate lattice Coulomb energy correction, is

Eb = Enucleon + Eσ + Eρ + Eω + ECoul − mA,

=
∑

i

εini −
∫

d3rj0(r)
∂�σ

∂j0
ρs(r)σ (r)

− 1

2

∫
d3r

{
�σσρs(r) + 1

3
g2σ

3 + 1

2
g3σ

4

}
,

− 1

2

∫
d3rgρρ0,3j0,3(r)

− 1

2

∫
d3r

{
gωω0 j0(r) − 1

2
c3ω

4
0

}

− e

2

∫
(ρp + ρe)A0(r) d3r + dw − mA, (9)

where dw = 0.0065620Z2/a is the approximate Coulomb
correction for a body-centered cubic (bcc) lattice [26], and
a3 = VW−S is the volume of the W-S cell.

The nucleon contribution to the entropy is given by the
usual formula

Sb = −kB

∑
i

gi[ni ln(ni) + (1 − ni)ln(1 − ni)], (10)

where ni is given in Eq. (8). With Eqs. (9) and (10), it is easy to
obtain the nucleon contribution to the free energy per nucleon
F ,

F = Fb/A = (Eb − T Sb)/A. (11)

B. Uniform nuclear matter

To make the article self-contained, we give the formulas
for uniform matter in the RMF model. As we show in the
following, at high temperatures or high densities the matter
is uniform. We include antinucleon terms that make a small
contribution at very high temperatures.

The energy density of uniform nuclear matter is

ε =
∑

i=N,P

εi
kin + 1

2

[
m2

σ σ 2 + m2
ωω2

0 + m2
ρρ

2
0,3

]

+ 1

3
g2σ

3 + 1

4
g3σ

4 + 3

4
c3ω

4
0, (12)

where

εi
kin = 2

(2π )3

∫
d3kE∗(k)[nk(T ) + n̄k(T )], (13)

with effective mass m∗ = m + �σσ , and E∗(k) = √
k2 + m∗2.

The occupation probabilities for particles nk(T ) and

antiparticles n̄k(T ) are

nk(T )

= 1

exp
(
E∗(k) + gωω0 + gρτ 3ρ0,3 + ∂�σ

∂n
ρsσ − µ

)
/T + 1

,

(14)

n̄k(T )

= 1

exp
(
E∗(k) − gωω0 − gρτ 3ρ0,3 − ∂�σ

∂n
ρsσ + µ

)
/T + 1

.

(15)

The pressure of uniform nuclear matter is

P =
∑

i=N,P

P i
kin − 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4

+ ∂�σ

∂n
ρsσn + 1

2
m2

ωω2
0 + 1

4
c3ω

4
0 + 1

2
m2

ρρ
2
0,3, (16)

where

P i
kin = 2

3(2π )3

∫
d3k

k2

√
k2 + m∗2

[nk(T ) + n̄k(T )]. (17)

The entropy density of uniform nuclear matter is

s = − 2kB

(2π )3

∫
d3k[nk(T )ln nk(T )

+ (1 − nk(T ))ln (1 − nk(T )) + n̄k(T )ln n̄k(T )

+ (1 − n̄k(T ))ln (1 − n̄k(T ))]. (18)

Using Eqs. (12) and (18) one can obtain the free energy
density per nucleon for uniform matter

F = (ε − T s)/nB. (19)

III. PARAMETER SET WITH DENSITY
DEPENDENT COUPLING

In this work we use the NL3 effective interaction [27] that
was successful in reproducing the ground state properties of
stable nuclei and the saturation properties of symmetric nuclear
matter. The values of the parameters in the NL3 effective
interaction are listed in Table II.

As is well known, the mean field approach for pure neutron
matter is problematic at low densities because long-range
correlations are important. Neutron matter at low density is
very close to a unitary gas [13] since the scattering length
is much larger than the interparticle spacing, which is also
larger than the effective range of the nuclear interaction.
To describe neutron matter phenomenologically in the RMF
framework, without losing its success for the properties of

TABLE II. NL3 effective interaction. The nucleon masses are
M = 939 MeV for both protons and neutrons and c3 = 0 in Eq. (1).

�0
σ gω gρ g2 g3 mσ mω mρ

(fm−1) (MeV) (MeV) (MeV)

10.217 12.868 4.474 −10.431 −28.885 508.194 782.5 763
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FIG. 1. (Color online) Energy of pure neutron matter at T = 0.
The red curve is from the original NL3 set. The black curve is for
NL3 with a density dependent σ -N coupling �σ as in Eq. (20). The
blue dashed line is the energy of a unitary gas, see Eq. (21).

nuclear matter, we introduce a density dependent scalar meson-
nucleon coupling

�σ =
{

�0
σ , n > n0

�0
σ

1+α

[(
n+n0

2n

) 1
6 + α

]
, n � n0.

(20)

The two free parameters n0 and α are determined by matching
the energy of neutron matter to that of a unitary gas at zero
temperature EU [28],

EU = ξ · 3

5

k2
F

2m
� 0.44 · 3

5

k2
F

2m
, (21)

where kF is the neutron Fermi momentum. The best fitted
values are n0 = 5 × 10−3 fm−3 and α = 1.2.

In Fig. 1, the energy of pure neutron matter at T = 0 is
shown for the original NL3 set, the modified NL3 set with a
density dependent σ -N coupling as in Eq. (20), and the unitary
gas calculated by Eq. (21). The unitary gas gives lower energy
than the original NL3 result by about 0.2 MeV per particle
due to the strong S-wave attractive interactions. This energy
difference is very relevant for matching a Virial expansion to
the mean field calculations since the Virial expansion includes
the long-range two-body neutron-neutron attractive interaction
[29,30] while the normal mean field calculation does not.
In the density range shown in the figure, NL3 also gives a
lower energy than the TM1 or FSUGold [31] RMF parameter
sets. However, the density dependent NL3 can fit the unitary
gas result by tuning the coupling strength in the attractive
scalar meson channel. Therefore, the density dependent NL3
set describes successfully the properties of both neutron rich
matter and nuclear matter. In the following, when we refer to
the NL3 set, we mean the density dependent NL3 set unless
otherwise specified.

IV. COMPUTATIONAL METHODOLOGY

In this section we describe our strategy for evaluating the
EOS. We calculate the EOS for the following partitioning of
T , nB , and YP parameter space, see Table I:

(i) We use a step of 0.2 in log10(T/[MeV]) for
log10(T/[MeV]) from −0.8 to 0, a step of 0.1
for log10(T/[MeV]) from 0 to 1.1 and a step of 0.05
for log10(T/[MeV]) above 1.1. We have a total of 32
points for T from 0.16 to 80 MeV.

(ii) For temperatures T below 15.8 MeV (where matter can
be nonuniform) we use a step of 0.1 in log10(nB/[fm−3])
for log10(nB/[fm−3]) from -4.0 to 0.2. We have a total
of 43 points for nB from 10−4 to 1.6 fm−3.

(iii) For temperatures T above 15.8 MeV (where matter is
uniform) we use a step of 0.1 in log10(nB/[fm−3]) for
log10(nB/[fm−3]) from −8.0 to 0.2. We have a total of
83 points for nB from 10−8 to 1.6 fm−3.

(iv) We use a step of 0.01 in proton fraction YP for YP from
0.05 to 0.56. We also include YP = 0.0. This gives a
total of 53 points for YP from 0.0 to 0.56.

This partitioning gives a total of 40,248 points in the
nonuniform Hartree region. However for matter at higher
temperatures, but still T < 15.8 MeV, and/or lower proton
fractions, Hartree results give higher free energies than the
corresponding results for uniform matter. By roughly estimat-
ing the phase boundary, and keeping enough points to cross the
transition density (see Sec. V) we calculate the free energy for
a reduced number of points in the nonuniform Hartree region(
see Sec. II A), which includes a total of 17,021 points. We also
calculate free energies for uniform nuclear matter at a total of
90,478 points (see Sec. II B).

The most time is spent evaluating (temperature T , proton
fraction YP , and density nB) points in the nonuniform Hartree
mean field region. For each point we need to minimize the
free energy of the W-S cell with respect to the cell radius,
which typically requires evaluation at 40 to 100 cell radii.
This minimization can be complicated by the existence of
local minima. For each cell size, we need to solve the mean
fields self-consistently. We already developed the code for this
minimization (see Ref. [15]), which is slightly modified in this
work to accommodate the density dependent coupling in the
RMF.

The mean fields provide potentials for the individual
nucleons in the W-S cell that obey the Dirac equation.
The Dirac equation is solved by a fourth-order Runge-Kutta
method with shooting techniques. For nuclear matter at finite
temperature, there can be hundreds of nucleons that populate
thousands of levels according to Fermi-Dirac statistics. For
each level, we need to solve the Dirac equation. The potentials
for the nucleons in the Dirac Eq. (4) are various meson mean
fields that obey the extended Klein-Gordon (K-G) equation.
The source terms for the K-G equations are provided by the
various nucleon density terms in Eq. (7). Given the nucleon
density terms, the K-G equations are solved by a Green’s
function method, which updates the meson mean fields. The
updated mean fields can now be used to solve the nuclear levels
and nucleon densities again. This process is repeated until full
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self-consistency is achieved in both the mean fields and the
nuclear levels.

Computationally, the problem to be solved is embarrass-
ingly parallel because each point of density, temperature, and
proton fraction is independent of the others. A total number
of ∼17,000 independent tasks must be run, where each task
calculates the required quantities at a single point in the phase
space. Unfortunately, the run time on an individual task varies
from a few minutes to more than 24 hours, depending on the
number of iterated cell radii and the number of nucleon energy
levels included.

Each point in the phase space was mapped to a unique
integer that we refer to as the job index. A file, runlist, was pre-
pared with a list of job indexes for the whole phase space, and a
single character (A = available, R = running, r = Re-running,
C = complete, T = time-limited, and F = failed) that gives the
status of calculations for that job index. An Message Passing
Interface (MPI) parallel wrapper code manages the running of
the many requested tasks. Typically, one parallel job requests a
set of compute cores (usually 256). Each MPI rank, using a sin-
gle CPU core, is assigned one job index corresponding to one
point in the phase space and it evaluates the required quantities.

Initially, rank zero of the MPI job

(i) locks the job listing file runlist,
(ii) reads runlist until a list of available tasks is filled,

(iii) closes runlist and releases the lock, and
(iv) passes a job index to each MPI rank and begins the

calculation for that job index.

When the calculation completes (or time-limits or fails)
for a given MPI rank, the status character for the job index
in runlist is modified appropriately. The now available MPI
rank will search runlist for the next available task and the
calculation restarts for the new job index. Since completion
occurs asynchronously file locking is not used for this part of
the process.

A simple batch job runs through the points in the phase
space. A wall clock limit (48 hours) larger than the average
run time is used. Each rank of the MPI job can run a series
of points via the previous procedure, efficiently using each
available core for the requested wall clock period. One job per
core is running when the wall clock limit is reached. These
jobs are identified by being left in the “R” state after the
batch job completes. Using this scheme we achieved an 85%
efficiency in CPU usage. Specifically, 85% of all jobs ended
in the “C” state rather than the “T” or “R” state. After the
runlist is searched once, the remaining jobs have an “R” or
“T” state. Then these remaining jobs are resubmitted via the
MPI wrapper code, requesting a longer time limit (typically
seven days) but fewer CPU cores. This procedure allows us to
calculate >99% of the points in the runlist file.

V. RESULTS

In this section we discuss our results for various regions
of the parameter space. First, the uniform matter EOS at zero
temperature is presented. Second, we discuss the free energy
per nucleon for mean field calculations of nonuniform matter.
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FIG. 2. (Color online) Energy of uniform matter at zero tem-
perature with different proton fractions, YP = 0, 0.1, 0.2, 0.3, 0.4,
and 0.5.

Finally, we show the density distributions of neutrons and
protons inside the W-S cells.

A. Uniform matter at zero temperature

Figure 2 shows the EOS of uniform matter at zero
temperature with different proton fractions YP = 0, 0.1, 0.2,
0.3, 0.4, and 0.5. The solid curves are for the NL3 parameter
set, which is used in our RMF calculations. The dashed curves
show results for the TM1 interaction, which is used in the
EOS obtained by H. Shen et al. [7]. The two sets agree to a
great extent for densities below 0.2 ∼ 0.25 fm−3, depending
the value of YP . Above these densities, NL3 gives a much
stiffer EOS for uniform matter. This serves as one motivation
for our choice of the NL3 parameters: to explore the EOS with
a stiffer symmetry energy.

B. Free energy and phase boundaries

In Fig.3, the free energy per nucleon F/A is shown as
a function of density nB at T = 1, 3.16, 6.31, and 10 MeV.
At intermediate densities, F/A is calculated from Eq. (11)
for W-S cells using Hartree mean field calculations. At high
densities, F/A is calculated from Eq. (19) for uniform matter.
The transition (as the density grows) is found at the density
where uniform matter gives a lower free energy. In each panel,
the (red) solid curves give the transition densities to uniform
matter. The transition densities increase as the proton fraction
grows. Nonuniform matter can exist until higher densities in
more symmetric nuclear matter. At a density around 0.16 fm−3,
there is always a minimum in the free energy per nucleon, as
long as the proton fraction is not too small and the temperature
not too high. This is the manifestation of saturation density in
nuclear matter.

C. Density distributions inside Wigner-Seitz cells

The Hartree mean field calculation provides detailed wave
functions for nucleons in the nonuniform phase. In our W-S
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FIG. 3. (Color online) Free energy per nucleon of nuclear matter at different temperature and proton fractions.

approximation at intermediate densities, we find a “spherical
pasta” phase where the proton density distribution forms a
shell state with a reduced density in the center. This reduces the
large Coulomb repulsion between protons and was discussed
in Ref. [15]. In this section we discuss density distributions
inside the W-S cells, both for normal nuclei and for these shell
states.

In Fig. 4, neutron and proton distributions, inside the
W-S cell, are shown for four different baryon densi-
ties, with T = 1 MeV and YP = 0.1. At very low density
nB = 0.002 fm−3, the Hartree calculation has a minimum for
Z = 39 protons and A = 390 nucleons. Most of the neutrons
are located within 10 fm of the cell center, although the
W-S cell radius is around 31 fm. A small fraction of the
neutrons extend to the edge of the cell since this is an extremely
neutron rich system. As the density rises to 0.02 fm−3, the
W-S cell has Z = 42, A = 420, and the neutron density at
large r becomes much greater. The W-S cell radius drops to
17.5 fm because the lattice becomes more closely packed as
the density increases. At a density of 0.05 fm−3, the W-S cell
has Z = 413 and A = 4130 and forms a shell state with both
inside and outside surfaces. This was discussed in our earlier
article [15]. As a result, the W-S cell radius become larger. At
the higher density of 0.063 fm−3, the system becomes uniform.

In Fig. 5, the distribution of neutrons and protons are shown
for nB = 0.020 fm−3 and proton fraction YP = 0.3. At low
temperature T = 1 MeV, where Z = 85, A = 282, the density
distributions are similar to those for normal isolated nuclei.
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FIG. 4. (Color online) Density distribution of neutrons and
protons inside the W-S cell for four different baryon densities at
T = 1 MeV and proton fraction YP = 0.1.
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FIG. 5. (Color online) Density distribution of neutrons and
protons inside the W-S cell for four different temperatures with
nB = 0.020 fm−3 and proton fraction YP = 0.3.

As the temperature rises to 3.16 and 6.31 MeV, the size of
the W-S cell remains nearly fixed, but the neutron density
increases with temperature at large radius. This is due to the
excitation of states with a high angular momentum and/or a
large main quantum number as the temperature rises. When
the temperature rises to 10 MeV, the proton density also rises at
large r , accompanied by an increase of the W-S cell size, with
Z = 123, A = 410. At even higher temperature, the nucleus
melts and uniform matter appears.

Similar to Fig. 5 but at higher nB = 0.050 fm−3 and proton
fraction YP = 0.45, the density distribution of neutrons and
protons are shown for four different temperatures in Fig. 6.
Here a shell state exists up to high temperatures. At low
temperatures T = 1, 3.16 MeV, Z = 1315, A = 2922 and the
shell state has inside and outside voids. As the temperature
rises, nucleons populate both the inside and outside voids
due to thermal excitations. Finally, the size of the shell state
shrinks at high temperature so that Z = 648, A = 1440 at
T = 10 MeV.

VI. SUMMARY AND OUTLOOK

In this article we present large-scale relativistic mean
field calculations for nuclear matter at intermediate and high
densities. We use a density dependent modification of the
NL3 interaction in a spherical Wigner-Seitz approximation.
Nuclear shell effects are included. We calculate the free energy,
and tabulate the resulting equation of state at over 107,000
grid points in the proton fraction range YP = 0 to 0.56. For
low temperatures T = 0.16 to 15.8 MeV we calculate for the
density range nB = 10−4 to 1.6 fm−3. For high temperatures
T = 15.8 to 80 MeV, where the matter is uniform, we calculate
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FIG. 6. (Color online) Density distribution of neutrons and
protons inside the W-S cell for four different temperatures at nB =
0.050 fm−3 and proton fraction YP = 0.45.

for the larger density range nB = 10−8 to 1.6 fm−3. These
calculations took over 6000 CPU days.

We solve for the nucleon Dirac wave functions and meson
mean fields self-consistently. This allows us to study how the
distribution of neutrons and protons inside a Wigner-Seitz cell
evolve with density and temperature. We find a large variety
of possible sizes and shapes for these distributions.

This article provides part of our results for an EOS, which
will cover a broad range of temperatures, densities, and proton
fractions. In the future, we plan to study low-density nuclear
matter using a Virial expansion for a nonideal gas consisting
of nucleons and thousands of species of nuclei. Then, we
will generate a complete thermodynamically consistent EOS
by matching the low-density and higher-density results. This
EOS avoids the Thomas-Fermi and variational approximations
of the H. Shen et al. EOS and is exact in the low-density limit. It
can be used in supernova and neutron star merger simulations.
Finally, in future work we will generate EOS’s using other
modern RMF interactions such as FSUGold [31].
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