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Transport parameters in neutron stars from in-medium N N cross sections
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We present a numerical study of shear viscosity and thermal conductivity of symmetric nuclear matter, pure
neutron matter, and β-stable nuclear matter, in the framework of the Brueckner theory. The calculation of
in-medium cross sections and nucleon effective masses is performed with a consistent two- and three-body
interaction. The investigation covers a wide baryon density range as needed in the applications to neutron stars.
The results for the transport coefficients in β-stable nuclear matter are used to make preliminary predictions on
the damping time scales of nonradial modes in neutron stars.
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I. INTRODUCTION

Neutron stars are a unique laboratory for studying the
equation of state of nuclear matter at high density and isospin
asymmetry, beyond the ranges typical of heavy-ion collisions
and nuclei far from stability. But the observation data are
still far from uniquely constraining the properties of exotic
states of nuclear matter. The detection of gravitational waves
could push forward the field of neutron star physics. As
the gravitational waves drive the instability of neutron star
oscillations, including nonradial modes, the possible damping
mechanisms have to be investigated to justify the existence
of rapidly rotating stars. Good candidates are the viscosity
and the thermal conductivity of the neutron star constituents.
The important role that these parameters can play is the main
reason for the uninterrupted interest in the transport theory
of dense matter over the past three decades [1]. Microscopic
models of nuclear matter (i.e., based on bare interactions)
have been faced with the interpretation of the equilibrium
properties of neutron stars, such as their structure [2] and the
onset of superfluidity [3]. The same theoretical models have
been also applied to calculate effective mass [4] and medium
renormalized nucleon-nucleon (NN ) cross sections [5], both
extensively used in the transport-model simulations of heavy-
ion collisions. But only recently were these two quantities
redirected to describe the transport properties of nuclear
matter. These quantities are in fact the main ingredients for
calculating the viscosity and thermal conductivity coefficients
in neutron stars. The extension of such calculations to regimes
of high density and isospin, needed in the study of neutron
matter cores, together with the interpretation of their inner
structure, is a main challenge for current microscopic theories
of nuclear matter.

So far all calculations based on microscopic many-body
approaches with realistic interactions have shown that the
medium effects result in a noticeable suppression of the
NN cross sections σNN [5] and, as a consequence, in an
enhancement of both shear viscosity and thermal conductivity.
Calculations in dense nuclear matter have been performed in
the T -matrix approach [6], in the correlated basis function
(CBF) approach [7], and in the Brueckner-Hartree-Fock (BHF)
approximation [8]. Calculations of the transport coefficients

in β-equilibrium nuclear matter have been performed with
the equation of state (EoS) of asymmetric nuclear matter
from the variational approach [9,10], and from the CBF
approach [11]. Despite the overall agreement on the medium
effects, different approaches could give different predictions
for transport parameters in β-equilibrium nuclear matter
since they differ from each other in the isospin dependence,
which becomes more and more visible at higher density. The
results should be insensitive to the choice of the two-body
potential because all realistic potentials used in the micro-
scopic calculations are accommodated on the experimental
NN scattering phase shifts. But a dependence is expected
on the three-body force, especially at high density, where
its influence on the EoS is dominant. Therefore, it seems
interesting to compute the shear viscosity and the thermal
conductivity of nuclear matter, especially β-stable nuclear
matter, in a wide range of densities needed for the study
of the neutron star core. This will be done within the BHF
approximation. The latter embodies, within a unified meson-
exchange model framework, two- and three-body forces. The
meson parameters of the two-body realistic interaction (the
Bonn B [12] in our case), which fit the experimental NN

scattering phase shifts in vacuum, are also adopted to describe
the three-body force [13]. In this paper the numerical results
will be tested, within the simple model of a constant-density
neutron star, on the calculation of the dissipation time scales
to be compared with the time scale of emitting gravitational
radiations.

II. TRANSPORT PARAMETERS

The transport parameters of Fermi liquids were derived by
Abrikosov and Khalatnikov (AK) from the Landau kinetic
equations for a multicomponent system [14],

∂fi

∂t
+ {fi, εp} =

∑
k

Iik, (1)

where fi(�r, �p) is the quasiparticle distribution of the com-
ponent i, εp is the quasiparticle energy, and Iik is the
collision integral between particles of components i and k.
From the linearization of the kinetic equations, the shear
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viscosity η and thermal conductivity κ can be extracted in
the AK approximation. The exact expressions, obtained by
Brooker and Sykes after revisiting the resolution of the kinetic
equations [15,16], are written as follows:

ηT 2 = 1
20ρv2

F W (ρ)C(λ), (2)

κT = 1
12v2

F pF W (ρ)H (µ), (3)

where

W−1(ρ) = 1

2εF

∫ 4εF

0
dE

∫ 2π

0

dθ

2π

1√
1 − E/4εF

σ (E, θ ),

(4)

with ρ the density, vF = pF /m∗ the Fermi velocity, and m∗
the effective mass. and where C(λ) and H (µ) are correction
factors corresponding to the exact solution (for details see
Refs. [15,16]). The key quantity is the in-medium cross
section, here expressed in terms of the energy E in the
laboratory frame and the scattering angle θ in the center-
of-mass frame. The upper limit of the energy integration in
the average cross section is four times the Fermi energy of a
free Fermi gas, εF = p2

F /2m, owing to the approximation of
restricting the nucleon excitations around the Fermi surface.
As described in the following, the in-medium cross sections
are calculated within the Brueckner theory.

III. IN-MEDIUM CROSS SECTIONS FROM THE
BRUECKNER THEORY

In the interior of a neutron star the hadron density can reach
values several times the nuclear matter saturation density,
so that the nucleon-nucleon (NN ) collisions are expected
to be deeply affected by the surrounding medium and the
corresponding cross sections can be quite different from those
in free space. There are two main medium effects. First,
the NN scattering amplitude is dominated by the S-wave
components of the effective interaction so that a flattening of
the angular distribution is expected in comparison with the free
cross section, which, in the center-of-mass frame, is peaked in
the forward and backward directions. Second, the level density
in the entrance and exit channels gets reduced by the strong
medium renormalization of the effective mass.

Both effects can be well described in the framework of the
self-consistent Brueckner theory. In the past few years the latter
has made a remarkable step forward by means of the three-
body force, introduced not only to reproduce the empirical
saturation properties of nuclear matter but also to extend the
calculations to high density. The Brueckner theory with two-
and three-body forces is described elsewhere [17,18]. Here we
simply give a brief review of the BHF approximation, adopted
for the present calculations. The starting point is the reaction G

matrix, which satisfies the Brueckner-Bethe-Goldstone (BBG)
equation,

G(ω) = vNNv + vNN

∑
k1k2

|k1k2〉Qk1,k2〈k1k2|
ω − εk1 − εk2

G(ω), (5)

where ki ≡ (�ki, σi, τi) denotes the single-particle (s.p.) mo-
mentum, the z component of spin and isospin, respectively,
and ω is the starting energy. The G matrix, the Pauli operator
Q, and the s.p. energies εk = k2/2m + Uk depend separately
on the neutron and proton densities. The interaction υNN given
by

vNN = V bare
2 + V eff

3 , (6)

where V bare
2 is the bare two-body force and V eff

3 is the three-
body force averaged on the third particle as follows:

〈�r1�r2|V eff
3 (T )|�r ′

1 �r ′
2 〉

= 1

4
Tr

∑
n

∫
d�r3d�r ′

3 φ∗
n(�r ′

3 )[1 − η(r ′
13)][1 − η(r ′

23)]

×W3(�r ′
1 �r ′

2 �r ′
3 |�r1�r2�r3)φn(r3)[1 − η(r13)][1 − η(r23)]. (7)

Since the defect function η(r) [where 1 − η(r) is the
correlated two-body wave function] is directly determined by
the solution of the BBG equation [17], V eff

3 must be calculated
self-consistently with the G matrix and the s.p. potential Uk

on the basis of the self-consistent BBG equations. It is clear
from Eq. (7) that the effective force rising from the three-body
force in the nuclear medium is density dependent via the defect
function. A detailed description and justification of the method
can be found in Refs. [17,18].

In the present calculations the Bonn B potential was adopted
as V bare

2 [12]. Besides being a realistic interaction fitting the
experimental NN scattering phase shifts, it has the advantage
of being built up in terms of meson exchange as is the
three-body force. Therefore the choice of the same meson
parameters, that is, masses, coupling constants, and cutoffs,
provides a unified treatment of two- and three-body forces
as mentioned before. Details and results with this interaction
are presented in Ref. [13]. In Fig. 1(a) the equations of
state of pure neutron matter (PNM) and symmetric nuclear
matter (SNM) are plotted. The EoS from the correlated basis
theory (CBT) [7] and variational chain summation (VCS)
approach [19] are also plotted for a comparison; these will be
useful for our subsequent discussion of transport parameters.
A strong deviation from the Brueckner calculation can be
easily observed at increasing density; this is much more
sizable for the symmetry energy plotted in Fig. 1(b). The
symmetry energy affects the neutron star transport properties,
because it essentially determines the isospin composition of
the core.

In the Brueckner theory the in-medium NN cross section
is obtained by replacing the T matrix with the G matrix and
the in-vacuum level density with the in-medium one. This
definition is supported by the property of the G matrix to
reduce to the T matrix in the zero-density limit, as can be seen
from BBG equation [Eq. (5)].

In the case of pure neutron matter the neutron-neutron cross
section in the center-of-mass frame is written as

σnn(E, θ ) = m∗2

16π2h̄4

∑
SSzS ′

z

∣∣GS
SzS ′

z
(θ ) + (−1)SGS

SzS ′
z
(π − θ )

∣∣2 ·

(8)
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FIG. 1. (Color online) (a) Energy per
particle in pure neutron matter and sym-
metric nuclear matter. (b) Symmetry en-
ergy, calculated as the difference between
the neutron and the symmetric nuclear
matter energies. The diamonds represent
the results obtained using the correlated-
base function (CBF) approximation with
Fermi gas states [7]; the dashed lines
represent the results obtained using the
variational chain summation (VCS) [19].

The prefactor is the square of the level density at the
Fermi energy, where in the AK approximation mainly particle
transitions are assumed to occur. The medium renormalization
of the nucleon mass to values much less than the unit, as
shown in Fig. 2, reduces the level density with respect to
the free Fermi gas value. As a consequence, the in-medium
cross section also gets reduced. The additional medium effect,
which is incorporated in the G matrix, is due to Pauli
blocking, which prevents the particles from scattering into
occupied states. In Fig. 3(a) the in-medium neutron-neutron
cross section at the laboratory energy E = 100 MeV, obtained
from Eq. (8), is compared to the corresponding free one. The
forward and backward angles are sizably suppressed because
the low momentum transfer transitions are forbidden by the
Pauli principle, so that the differential cross section becomes
more and more isotropic at increasing density. In addition,
its magnitude is reduced; this is a common feature of all
predictions based on microscopic approaches. In all curves
the angular distribution is symmetric around 90◦, since the
cross section section is antisymmetrized for identical particles.
In Fig. 3(b) the neutron-neutron cross section in various
baryon environments is reported. It is worth noticing that it
is completely isotropic in β-stable matter.

FIG. 2. (Color online) Density dependence of the neutron effec-
tive mass in pure neutron matter (solid line) and symmetric nuclear
matter (dashed line). Proton (dotted line) and neutron (dot-dashed
line) effective masses for beta-stable nuclear matter are also plotted.

In nuclear matter, besides neutron-neutron scattering,
neutron-proton scattering must be considered. In this case the
cross section is

σnp(E, θ ) = m∗2

16π2h̄4

∑
SSzS ′

z

∣∣GS
SzS ′

z
(θ )

∣∣2· (9)

In Fig. 3(c) the corresponding cross sections are depicted
for symmetric nuclear matter and β-stable matter. A common
feature to all cases is the medium suppression, but a difference
is to be noticed in the angular distribution. The enhancement
in the backward direction of σnp is a signature of the
anisotropic behavior of the tensor force in the SD partial wave
of the angular momentum expansion, giving the dominant
contribution to the neutron-proton interaction [20,21].

In the core of neutron stars the neutron and proton composi-
tion is determined by the condition of equilibrium with leptons
(electrons and muons), by assuming total charge neutrality.
Thus for a given total baryonic density the proton and neutron
fractions are determined by the chemical equilibrium condition

µn − µp = 4βEsym = µe, (10)

where µn, µp, and µe are the chemical potential of neutrons,
protons, and electrons (with muons omitted for simplicity),
respectively. The electron chemical potential is determined by
the charge neutrality with protons, by assuming the electrons
to form a free Fermi gas. The crucial property is the density
dependence of the symmetry energy, which determines the
imbalance between proton and neutron fractions. In general a
nuclear system in such a state is strongly isospin asymmetric.
As a consequence, the calculations of the transport coefficients
must be extended to asymmetric nuclear matter. Equation (9)
for the neutron-proton cross section is to be replaced by the
following one:

σnp(E, θ ) = 1

16π2h̄4

(
2m∗

nm
∗
p

m∗
n + m∗

p

)2 ∑
SSzS ′

z

∣∣GS
SzS ′

z
(θ )

∣∣2
. (11)

For small asymmetries the isospin effect on the “reduced”
effective mass is of the order of β2, because m∗

n ≈ m∗
0 + βm

and m∗
p ≈ m∗

0 − βm, where m∗
0 is the effective mass [20,22]

in symmetric nuclear matter.
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FIG. 3. (Color online) (a) Neutron-neutron differential cross sections in pure neutron matter. (b) Neutron-neutron differential cross section
in pure neutron matter, symmetric, and β-stable nuclear matter. (c) Neutron-proton differential cross section in pure neutron matter, symmetric
nuclear matter, and β-stable nuclear matter. The free cross section is also plotted for comparison.

IV. NUMERICAL RESULTS AND COMPARISON WITH
OTHER CALCULATIONS

The shear viscosity η versus density was calculated for
the three different nuclear matter configurations considered
(i.e., neutron matter, symmetric nuclear matter, and β-stable
asymmetric nuclear matter). In Fig. 4(a) the neutron and proton
viscosities from free and in-medium cross sections are plotted
versus density in the case of β-stable nuclear matter. At low
total density the difference between neutrons and protons is
about three orders of magnitude because the proton fraction
is quite small, but it reduces to only one order of magnitude
at high density where the proton fraction becomes 30% of the
total density. As expected, both viscosities, corresponding to
free and in-medium cross section, are increasing with density,
and the medium enhancement turns out to be quite large
indeed. In Fig. 4(b) the neutron viscosity in pure neutron,
symmetric nuclear, and β-stable matter is plotted and the
medium effects are also emphasized by the comparison with
the free case. The medium effect is a strong enhancement of η,
mainly as a consequence of the reduction of the level density,
more pronounced for β-stable matter and less for symmetric
nuclear matter. Comparing neutron matter and β-stable matter,
we see that the values are very close to each other in the
low-density range, where β-stable matter is essentially made
of neutrons, then they deviate for the increasing weight of

the proton fraction, according to the β-stability condition [see
Fig. 3 and Eq. (10)].

Figure 4(c) shows the comparison among various micro-
scopic calculations. The data from Benhar and Carbone [11],
available up to a maximum range 0.3 fm−3, differ from
the present calculation for the different neutron-to-proton
composition of β-stable nuclear matter. In that case the proton
fraction, at the same total density, is larger, as a consequence
of a larger symmetry energy (curve CBF in Fig. 1), and thus
the influence on the neutron viscosity by the neutron-proton
cross section turns out to be bigger. The data from Shternin and
Yakovlev [10] were obtained from the constant effective mass
approximation (m∗/m = 0.8 in the plot), which is not viable
for the effective mass gradual quenching at higher density.
The result is that the neutron viscosity is underestimated and it
turns out to be smaller than the electron viscosity. The opposite
happens in the present as well as the Benhar and Carbone
calculation, as shown in Fig. 4(c). Therefore the electron
viscosity would definitely be immaterial in the study of the
energy dissipation.

The thermal conductivity κ was also calculated according
to Eq. (3). The results for the various nuclear matter configura-
tions are reported in Fig. 5. Again the medium corrections are
emphasized by plotting the κ values obtained with in-vacuum
and in-medium cross sections. In Fig. 5(b) the present results
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FIG. 4. (Color online) Shear viscosity from the Brueckner theory. (a) Neutron and proton shear viscosity in β-stable nuclear matter.
(b) Neutron viscosity in all considered states. (c) Comparison of the Brueckner neutron viscosity with other calculations (see text) and with the
electron viscosity, in β-stable nuclear matter.

are compared with the two aforementioned models [7]. To
assess the extent of variations one must take into account that
in this case the scale is quite different from that of Fig. 4(c).
In any case the good agreement among the different models
for pure neutron conductivity confirms that the deviations can
only be traced to the different isospin dependence.

The transport parameters, viscosity and thermal conduc-
tivity, calculated for β-stable nuclear matter can be used to
determine the respective time scales of energy dissipation,
τV and τT . This requires integration of η(ρ) and κ(ρ)
weighted with the density profile ρ(r) of a given neutron
star configuration. The latter can be obtained by solving the
Tolman-Oppenheimer-Volkov (TOV) equation with a given
equation of state of nuclear matter. Simplified expressions

for the time scales governing the energy dissipation from
nonradial oscillations can be derived for a quasiuniform
density model [23]:

τ−1
V = (l − 1)(2l + 1)

η

ρR2
, (12)

τ−1
T = 0.0034

l3(2l + 1)

l − 1

κT

Gρ2R4
, (13)

where R is the radius of the star and ρ is the density
calculated as the ratio between the mass M and the volume
4πR3/3. The parameter l is the angular momentum of the
nonradial oscillation Ylm (where in the following we consider
l = m = 2). As discussed in Ref. [23], Eqs. (12) and (13)
underestimate the values for the transport parameters within

FIG. 5. (Color online) (a) Thermal conductivity from the Brueckner theory in all considered states. (b) Comparison of the thermal
conductivity in pure neutron matter between the BHF approximation and two other recent calculations (see text).
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TABLE I. Nonlinear mode (l = m = 2) damping time scale for
energy dissipation induced by neutron viscosity in neutron stars.

M/M� R(Km) ρ(g/cm3) × 1014 tv(s)

0.8 12.8 1.8 1865
1.4 12.5 3.4 1680
1.8 12.2 4.7 883
2.3 11.0 8.25 317

a factor about 10, because the constant-mass approximation
smoothes out their increase at higher densities. In Table I
the damping time scales of Y22 nonradial modes are reported
for a number of neutron star mass-radius configurations. The
neutron star configurations are taken from Ref. [24], where
the TOV equation was solved by using the equation of state
derived from the same BHF approximation as for the in-
medium cross sections. The low-temperature results show that,
within the aforementioned uncertainty of the constant-mass
approximation, the time scale for energy dissipation induced
by the neutron shear viscosity could be of the same order
of magnitude as the time scale associated with gravitational
waves (10–100 s), at least at high density. The proton
contribution is much less important, since the proton partial
density is much less than the total density. In other words the
instability driven by gravitation radiation could be prevented
by the shear viscosity dissipation in cold neutron stars. To
confirm such a statement, a more accurate calculation is to be
performed by means of the viscosity integration weighted with
the neutron star density profiles ρ(r), 0 � r � R. In contrast,
the high-temperature time scales are too large by several orders
of magnitude (τV ≈ 1013–1014 s, at T = 3 × 1011 K) and no
help can be expected from superfluidity since the critical
temperature is much less than the newborn star temperature.

The energy dissipation induced by thermal conductivity τT

can be calculated from Eq. (12) for a nonradial mode l = 2.
At temperature T = 106 K it is about 103τV and it increases
at higher temperature. Therefore its effect on the damping can
be neglected, in agreement with other calculations [23].

V. CONCLUSIONS

The transport parameters, shear viscosity and thermal
conductivity, of neutron stars have been calculated in the
framework of the BHF approximation with two- and three-
body forces. Both forces are described, in a unified treatment,
by the one-boson exchange model with the meson parameters
of the realistic Bonn B potential. In the Brueckner theory
the in-medium NN cross sections are calculated by replacing
the in-vacuum scattering amplitude with the G matrix and the
nucleon bare mass with the effective mass. The in-medium
strong effective mass renormalization, which affects the level
density in the entrance and exit channels, is mainly responsible
for the strong deviation of the in-medium NN scattering cross
sections from the scattering in free space. The main result
is a remarkable enhancement of the transport coefficients.
This effect had been well known for several decades, but
only recent ab initio calculations provide reliable quantitative

estimates in domains of nuclear matter that do not benefit
from direct empirical constraints. The underlying many-body
approaches, in fact, are based on realistic NN interactions
without free parameters, and they are able to calculate on
the same footing both the equation of state of nuclear matter
determining the composition of neutron stars as well as the
transport property parameters determining the neutron star
cooling and the damping of collective motions.

The calculation of the transport parameters was first
performed for pure neutron matter and symmetric nuclear
matter, and was then extended to β-stable nuclear matter for
the sake of application to neutron stars. The calculation covers
a wide density range, as needed for the study of neutron
star cores. The numerical results are compared with other
recent ab initio calculations. Concerning the shear viscosity,
the BHF prediction is such that the neutrons give a contribution
larger than the electrons, in contrast to the Shternin and
Yakovlev calculation [10], where the constant effective mass
approximation is adopted. However, the different density
dependence of the symmetry energy is responsible for the
different shear viscosity obtained by Benhar and Carbone [11]
in β-stable configurations.

A preliminary estimate of time scales of nonradial mode
damping shows that only in cold stars are the dissipation
times from viscosity comparable to the gravitational radiation
time, whereas the effect of thermal conduction is negligible.
But these results should be confirmed by more accurate
calculations beyond the constant-density approximation. Such
calculations are on the way.

To interpret the spin and thermal evolution, the neutron stars
have been assumed to be in a superfluid state, which could
deeply influence their transport properties as well. But the
recent calculations of the neutron-neutron and proton-proton
gaps indicate that the proton 1S0 pairing is present only in
a restricted region of low density, where the proton fraction
in β equilibrium with neutrons is quite small [25], and the
high-density neutron gap from the channel 3PF2 is so small
that it could be easily suppressed by even weak polarization
effects [26]. Despite this theoretical uncertainty, the onset of
superfluidity is supported by the phenomenology, and its role
in the damping of collective modes should be clarified.

For the application of the transport properties to neutron
stars, one should also include strange components in the
β-stable nuclear matter. In fact the strange particle fractions
increase with density in the inner core, where they can
contribute up to 20% of the total baryonic matter [27]. In
the case of hybrid stars quark matter can compete with
baryons; therefore the contribution to transport properties of
quarks must be considered with a consistent treatment of
the hadron-to-quark transition [24]. The last two research
issues, superfluidity and transport properties of nonnucleonic
components, are presently under investigation.
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