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Fully self-consistent calculations of nuclear Schiff moments
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We calculate the Schiff moments of the nuclei 199Hg and 211Rn in completely self-consistent odd-nucleus mean-
field theory by modifying the Hartree-Fock-Bogoliubov code HFODD. We allow for arbitrary shape deformation
and include the effects of nucleon dipole moments alongside those of a pion-exchange nucleon-nucleon interaction
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calculations when the CP-violating interaction is of isovector character.
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I. INTRODUCTION

There are compelling reasons to believe in a source of
measurable charge-parity (CP) violation from outside the
standard model of particle physics. Supersymmetry and other
theories that lessen the hierarchy problem1 typically introduce
many new fields with CP-violating phases into Lagrangians.
If unsuppressed, such phases should be observable, now or in
the foreseeable future, and they are needed if the imbalance
between matter and antimatter in the universe is the result of
a CP asymmetry. In the standard model, CP violation is too
weak to be responsible [2].

As long as the CPT theorem holds, one can search for
time-reversal (T) violation in lieu of CP violation. One of
the best ways to observe T violation (in combination with
parity (P) violation) from beyond the standard model is by
measuring nonzero static electric dipole moments (EDMs) in
systems with nondegenerate ground states. Standard-model
CP violation is suppressed in flavor-conserving processes,
so an observed EDM anywhere near current limits would
imply new physics. Experimental groups have been steadily
lowering the upper limits on EDMs to the point that one
might reasonably expect an observation in the near future.
(Much of supersymmetry parameter space has already been
covered.) For now, the nonobservation of an EDM in the
diamagnetic atom 199Hg places tight upper limits on CP
violation, and measurements in other diamagnetic systems—
129Xe, 223,225Ra, and 223Rn—may someday do even better.

Whether these experiments eventually see a nonzero EDM
or just continue to set limits, their interpretation requires us to

1See, e.g., Ref. [1] for a short but clear statement of the problem.

understand the dependence of atomic EDMs on the strength
of CP violation at the fundamental level. Doing so involves
calculations at several scales. QCD determines the dependence
on fundamental physics of the neutron EDM and related
quantities such as effective P- and T-violating meson-nucleon
coupling constants. Nuclear physics then translates these
quantities into P- and T-violating nuclear moments, which in
turn contribute to atomic EDMs.

The role of nuclear physics in this chain is more subtle than
it appears at first glance because the atomic electrons screen
nuclear EDMs [3]. As a result, the nuclear quantity that plays
the largest role in inducing atomic EDMs is not the nuclear
dipole moment but rather the Schiff moment,

S ≡ 〈0| Sz |0〉M=J , (1)

that is, the ground-state expectation value (in the substate
that is fully polarized along the z axis) of the z component
of the nuclear Schiff operator. This vector operator is given
approximately by

S = Sch + Snucleon, (2)

where, to leading order in the fine-structure constant α,

Sch = e
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Here e is the charge of the proton, 〈r2〉ch is the mean squared
radius of the nuclear charge distribution, dj is the EDM of
nucleon j , and the omitted terms in Eq. (4) are smaller than
those included by about the square of the ratio of the proton
radius to the nuclear radius. The sum in Eq. (4) is over all
nucleons, whereas that in Eq. (3) is restricted to protons.

The two terms in Eq. (2) reflect the two ways in which
a nucleus can acquire Schiff moments. A P- and T-violating
nucleon-nucleon interaction generates a corresponding charge
distribution and a contribution to S from the operator Sch

in Eq. (3), and nucleon EDMs generate a contribution from
Snucleon in Eq. (4). Both contributions can be induced by
effective P- and T-violating pion-nucleon coupling constants:
a pion-exchange graph with one such coupling generates the
effective nucleon-nucleon interaction and a pion-loop graph
with one generates nucleon EDMs. The nucleon-nucleon
interaction is

VPT = g

8πmN

∑
i<j

{[
ḡ0(τ i · τ j ) − ḡ1

2

(
τ z
i + τ z

j
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+ ḡ2
(
3τ z

i τ z
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)]
(σ i − σ j )

− ḡ1

2

(
τ z
i − τ z

j

)
(σ i + σ j )

}
· ∇i

exp(−mπ |r i − rj |)
|r i − rj | ,

(5)

and the nucleon EDM operator (for nucleon j ) in the leading
chiral approximation2 is

dj = eg

4π2mN

ln
mN

mπ

(ḡ0 − ḡ2)σ j τ
z
j . (6)

In these two equations, h̄ = c = 1, mπ is the mass of the
pion, mN is that of the nucleon, τ z gives +1 when acting on a
neutron, g ≡ 13.5 is the strong πNN coupling constant, and the
ḡi are dimensionless isoscalar (i = 0), isovector (i = 1), and
isotensor (i = 2) P- and T-violating πNN coupling constants
(the signs of ḡ0 and ḡ1 are opposite those in Refs. [5,6]). These
last quantities, the ḡi , depend on the unknown fundamental
source of CP violation and so are primitive in our treatment.
A QCD calculation can in principle relate them to quantities
in extra-standard-model theories. Because VPT is extremely
weak and the nucleon EDM in Eq. (6) is extremely small, the
Schiff moment, to very high accuracy, is linear in the πNN
couplings ḡi . We write it as

S = (a0 + b) gḡ0 + a1 gḡ1 + (a2 − b) gḡ2. (7)

The ai specify the dependence of S on the P- and T-violating
interaction VPT , and b specifies its dependence on the nucleon
dipole moments dj . All relevant nuclear structure information
is encoded in these coefficients.

2The corrections to Eq. (6) are substantial and nucleon EDMs can
be calculated in other ways [4], but we assume here for simplicity
that the ḡ’s are the relevant low-energy CP-violating parameters.
The dependence of nuclear Schiff moments on the nucleon EDMs,
no matter what their source, can be extracted from our analysis by
dividing out the ḡ-dependent prefactor in Eq. (6).

The ai have been calculated before, with varying degrees of
sophistication, in nuclei used in or considered for experiments.
Except in a few nuclei with strong octupole deformation, all
prior calculations have proceeded in two steps: some kind of
mean-field calculation in which the polarizing effects of the
last (valence) nucleon were neglected, followed by an explicit
treatment of the correlations induced by the interaction of the
valence nucleon with the rest. Flambaum et al. [7], in the
first such calculation, used a phenomenological Wood-Saxon
potential as the mean field and allowed the valence-core
interaction to excite only noncollective one-particle, one-hole
configurations. Refs. [5] and [6] obtained the mean field
through an approximate Hartree-Fock (HF) calculation and
used a simple residual strong interaction and linear-response
theory [that is, the random-phase approximation (RPA)]
to include collective corrections to the simple excitations
considered in Ref. [7]. Finally, de Jesus and Engel [8] carried
out a self-consistent Skyrme-interaction-based calculation to
obtain the mean field and followed that with a diagrammatic
treatment (with the same Skyrme interaction) of most but not
all of the quasiparticle-RPA (QRPA) response generated by
the valence-core interaction.

In the work reported here, we modify the Hartree-Fock-
Bogoliubov (HFB) code HFODD [9] to carry out completely
self-consistent mean-field calculations directly in the nuclei
of interest. That is, we (1) treat VPT on the same foot-
ing as the strong interaction and (2) treat all the nucle-
ons, including the last, on the same footing in mean-field
theory.

These steps make our treatment essentially equivalent to
a fully self-consistent treatment of the even nucleus followed
by the self-consistent inclusion of all linear-response collec-
tivity induced by the valence-core interaction. Thus, unlike
Refs. [5,6], our calculation is completely self-consistent, and
unlike Ref. [8], it includes all core-polarization effects in
a unified way. In addition, our mean field can (and often
will) be deformed. Prior calculations in systems without
octupole deformation assumed spherical ground states. In
nuclei such as 199Hg, the quadrupole deformation may be large
enough to affect Schiff moments; the successful Möller-Nix
phenomenology [10] predicts deformation parameters β2 =
−0.122 and β4 = −0.032, values that are hardly negligible.
Finally, we project our states onto those with well-defined
angular momentum (after variation), going beyond the usual
rigid-rotor approximation. This step is essential in nuclei that
are only weakly deformed.

II. METHOD AND TESTS

We begin with a more precise statement of the relation
between the perturbative treatment of interactions within
linear-response theory, that is, the RPA or QRPA, and a
nonperturbative treatment in mean-field theory. Consider, for
example, an even-even nucleus with Z + N = A nucleons,
neglecting pairing temporarily to simplify the situation. It is not
hard to show [11,12] that the one-body density matrix obtained
from a HF calculation in the neighboring odd nucleus with one
more neutron is related to that obtained from a corresponding
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(much easier) calculation in the even nucleus by

ρA+1
a,b = ρA

a,b + ρv
a,b +

∑
c,d

RA
ab,cd hv

cd + · · · , (8)

where ρA+1 and ρA are density matrices (isoscalar or isovector)
for the odd and even nuclei, ρv is the density matrix associated
with the valence neutron in the first empty orbit produced by
the even-nucleus mean field, hv is the additional mean-field
Hamiltonian created by that valence nucleon, RA is the
zero-frequency RPA response function for the even-even core,
and the neglected terms are higher order in hv . Equation (8)
generalizes predictably when pairing is included via HFB
theory and the QRPA. When the interaction VPT is included,
it affects Schiff moments in nuclei with an even number of
protons only through the last term.

We can now more precisely characterize previous calcu-
lations, which were based on approximate representations of
the right-hand side of Eq. (8). References [5,6] used a sim-
ple Landau-Migdal strong interaction and approximate self-
consistency in determining the densities and RPA response
function RA but treated VPT without further approximation. De
Jesus and Engel [8] used full-fledged Skyrme interactions and
retained self-consistency everywhere but obtained hv and RA

by first neglecting VPT , then adding first-order corrections
through a series of diagrams, some of which were neglected.
Both calculations imposed spherical symmetry everywhere.
Here we calculate the left-hand side of Eq. (8) directly
in mean-field theory, without the intermediary of response
functions and with no approximations or imposed symmetries.
Of course, the Skyrme interactions we use are not perfect, but
they are the current state of the art.

Mean-field calculations in odd nuclei are notoriously tricky
[13]. Because the valence nucleon can polarize the rest, odd
systems are more likely than their even-even neighbors to have
complicated triaxial shapes; 129Xe, which has a tight limit on
its atomic EDM, is an example. Unless one projects triaxial
intrinsic states onto states with good angular momentum
before the mean-field variation, it is difficult to ensure that the
component with the correct angular momentum is a significant
part of the wave function. Moreover, triaxial systems are
often soft, meaning that the wave function corresponding
to the absolute minimum energy may not more significantly
represent the nuclear state than other wave functions with
only slightly higher energies. We therefore restrict ourselves
to axially symmetric states in which the spin aligns along the
symmetry axis; in such states, we can ensure a significant
component with a given J by selecting states for which the
intrinsic angular momentum z-projection K is equal to J . We
sometimes pay the price, because the desirable configurations
may not be the lowest ones and solutions may be marginally
unstable; we discuss those difficulties later.

To implement our procedure, we employ a modified
version of the state-of-the-art code HFODD (see Ref. [9]
and references therein), which uses a symmetry-unrestricted
three-dimensional harmonic-oscillator (HO) basis to carry out
Skyrme HF or HFB calculations. Our modification is to add
VPT to the Skyrme interaction, allowing the calculation of
Schiff moments. An initial step, reported in Ref. [14], was

to represent VPT as a sum of Gaussians (to ease calculation
in the HO basis) and evaluate its expectation value at the
end of the calculation in octupole-deformed nuclei. Here we
extend that scheme and incorporate it into the self-consistent
loop; the code evaluates the expectation value of VPT and the
corresponding mean fields, which are the new ingredient, at
every iteration. (We have actually coded the mean fields only
in the normal particle-hole mean channel; we deal with the
pairing field through a trick discussed later.) It then adds the P-
and T-violating mean fields to those coming from the Skryme
interaction, so that all forces are treated in the same way. The
resulting P- and T-violating polarization produces a nonzero
expectation value for the Schiff operator Sch

z in Eq. (3). To cal-
culate the expectation value of Snucleon

z , we simply use the HF
or HFB wave functions obtained without the addition of VPT .

To check the results, we also incorporate the direct part
of VPT in a completely different way. The direct P- and T-
violating mean field can be written3 as

vd
PT = g

8πmN

∫
d r ′ e−mπ |r−r ′|

|r − r ′| {[ḡ1 − (ḡ0 + 2ḡ2)τz]∇ · s1(r ′)

+ σ τz · [(ḡ0 + 2ḡ2)∇ρ1(r ′) − ḡ1∇ρ0(r ′)]}, (9)

where s1 is the isovector spin density (see the appendix
of Ref. [16], where the density is called s10, for the exact
definition), and ρ0, ρ1 are the usual isoscalar and isovector
number densities. This representation as the folding of a
Yukawa function with a source density is similar to the
representation of the Coulomb potential as the folding of the
function 1/|r − r ′| with the charge density. We therefore adapt
the existing Green-function-based routine for calculating the
direct Coulomb potential in HFODD to the evaluation of the
direct P- and T-violating mean field vd

PT .
Finally, to further check the self-consistent solution, we

note that before projection in an axially symmetric nucleus,
one should obtain the same Schiff moment to leading order
in an arbitrary constant λ by (a) solving self-consistent
field equations with H ≡ HSkyrme + λVPT and then evaluating
the expectation value of Sch

z /λ, (b) solving the mean-field
equations with H ≡ HSkyrme + λSch

z and then evaluating the
expectation value of VPT /λ, and (c) solving the mean-field
equations with H ≡ HSkyrme and then evaluating

∑
i

〈0| Sch
z |i〉RPA 〈i| VPT |0〉RPA

(E0 − Ei)
+ c.c., (10)

where the subscript RPA means that the transition matrix
elements are evaluated in RPA (or QRPA). Procedure (a)
defines the problem we are trying to solve. Procedure (b)
serves as a check and, moreover, is our primary procedure
in nuclei with pairing. The reason, as mentioned previously,
is that although we can evaluate the expectation value of
VPT (including the pairing parts), we cannot evaluate the
corresponding pairing field, so we cannot include all the effects
of pairing in procedure (a). Finally, regarding the RPA or
QRPA: although we cannot do an RPA or QRPA calculation
in a deformed or odd nucleus, we can use procedure (c) as a

3The term containing s1 was omitted in Ref. [15].
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TABLE I. HFODD and RPA results with the Skyrme interaction
SkM∗ for the coefficients ai , in e fm3, in the weak-valence-field
approximation (see text) in 57Ni and 209Pb. We have omitted exchange
terms in VPT and taken the zero-range limit of the interaction. In this
approximation a2 = 2a0.

a0 a1

57Ni HFODD −0.0222 −0.0536
RPA −0.0226 −0.0529

209Pb HFODD −0.0466 −0.1059
RPA −0.0507 −0.1048

test in a spherical nucleus. A full odd QRPA evaluation, even
there, would involve adding all the complicated diagrams in
Ref. [8], so we make our test in the approximation that the last
nucleon feels the strong mean-field from the other nucleons but
acts on them in turn only weakly (through VPT ). This makes
it sufficient to apply the QRPA to the even-even core.

To implement this “weak-valence-field” approximation, in
a closed-shell + 1 nucleus such as 57Ni, we first calculate the
self-consistent ground state in the even-even neighbor 56Ni
without including VPT in the Hamiltonian and then allow
the valence neutron to occupy the first empty neutron orbit.
We then calculate the P- and T-violating mean field that that
the neutron produces (restricting ourselves for simplicity to
the dominant direct part) by evaluating its contribution to vd

PT

in Eq. (9). We then use this mean field as an external P- and
T-violating source for the 56Ni core. The Schiff moment of 57Ni
in the weak-valence-field approximation is then the moment
of the A = 56 core induced by the external source.

We can implement the procedure in mean-field theory by
adding the external source vd

PT or Sch
z for 56Ni to HSkyrme as

in procedures (a) or (b) or in the RPA by substituting vd
PT for

VPT in procedure (c). The first two routes are straightforward
and should give identical results but the spherical RPA
requires a decomposition of vd

PT into spherical multipoles.
To make that simpler, we use the zero-range (infinite pion-
mass) approximation, which reduces the Yukawa function in
Eq. (9) to a δ function, when carrying out any of the three
procedures (a), (b), and (c). Even so, we can always expect
slight differences between the results of procedure (c) and
the others because of slight differences in the single-particle
spaces underlying the mean-field and RPA calculations. In the
former, we include single-particle HO basis states with up
to 22 h̄ω of excitation energy. In the latter, which we carry
out with the spherical HFB code HFBRAD [17] and the QRPA
code QRPASPH [18], we include single-particle spherical-box
states with energies up to 100 MeV. Despite the single-particle
differences, the results of the procedures (a) and (c), displayed
in Table I for the Skyrme interaction SkM∗ [19], are extremely
close.

The table also compares the results of procedures4 (b) and
(c) for 209Pb, again with SkM∗. In this heavy nucleus, we can

4In this nucleus, an accurate mean-field result requires dealing with
the center-of-mass shift that results from the fixed external source
vd

PT ; the task is easier in procedure (b) than in (a).
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FIG. 1. (Color online) The summed RPA contributions to the ai

in 57Ni, in the weak-valence-interaction approximation, as a function
of excited-state energy.

include orbits with up to only 12 h̄ω in HFODD, and while
the mean-field and RPA results for a1 agree very well, those
for a0 differ by about 10%. This small discrepancy is almost
certainly due to the limited HFODD model space. Overall, the
level of agreement, particularly in Ni where we are able to do
the best job, convinces us that both kinds of calculations are
essentially correct.

The weak-valence-field approximation is equivalent to
including only diagram A from Ref. [8] in the RPA-based
diagram sum that yields the Schiff moment. We should note
that our results for 209Pb are significantly different from those
for diagram A in the same nucleus given in the doctoral
dissertation on which Ref. [8] was based. We discuss possible
reasons for the discrepancy, which also exists in 199Hg, toward
the end of this article. For now, we simply note that accurate
RPA calculations require a more careful job than one might
think. Figure 1 shows the summed contributions of excited
RPA states in Eq. (10) to the ai . The coefficient a1 is nearly
constant after 50 MeV, but a0 continues to decrease even
at 80 MeV. Most RPA calculations do not go that high in
excitation energy, or if they do, they make approximations
that can alter results significantly.

III. RESULTS

We turn now to the full calculations in nuclei of interest
for experiments. We apply our mean-field techniques to 211Rn
and 199Hg. The first is one of the radon isotopes to be explored
at TRIUMF [20], and the second is the nucleus with the best
current limit on its Schiff moment. We use several Skyrme
interactions: SLy4 [21], SkM∗ [19], SV [22], and SIII [22].
The last of these may not be as trustworthy as the others;
Ref. [8] showed that the interaction was less able to reproduce
a related observable, the distribution of isoscalar E1 strength,
in even nuclei. In previous work, we have employed SkO’ [23].
We were not able to find an axially symmetric ground state in
199Hg with that interaction, however, and so do not use it
here.
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TABLE II. Results for coefficients ai and b, in e fm3, in 211Rn.

a0 a1 a2 b

SLy4 0.042 −0.018 0.071 0.016
SkM∗ 0.042 −0.028 0.078 0.015
SIII 0.034 −0.0004 0.064 0.015
Ref. [6] 0.0019 −0.061 0.053 –

The nucleus 211Rn is spherical, so the calculation there is
relatively straightforward. We start with an HFB calculation
with HSkyrme only. Since the ground state has Jπ = 1

2
−

, we

must block the lowest 	π = 1
2

−
level, which because of the

spherical shape is essentially the 3p1/2 orbit. (	 is the z

projection of the angular momentum in the intrinsic frame.)
We then obtain the coefficient b by simply evaluating the
expectation value of Snucleon

z /(gḡ0), with an arbitrary value
chosen for ḡ0 and ḡ2 set to zero. To obtain the coefficients ai ,
we follow procedure (a), successively setting each of the ḡi

to a small enough number that terms of second order in the
resulting Schiff moment are negligible and at the same time
setting the others ḡ’s to zero; the coefficient ai is then given
by the expectation value of Sch

z /(gḡi). The a’s (and b’s) for
several Skyrme interactions appear in Table II.

The three Skyrme interactions we use give similar results,
though the value of a1 produced by SIII is noticeably
suppressed. Our a0’s are somewhat larger than those reported
in Ref. [6], and our a1’s are smaller. The coefficient b in our
work is apparently less sensitive than the ai to the interaction
and is usually somewhat smaller. It is not small enough to be
neglected, however, as it has been in all prior work.

In 199Hg, the calculation is harder because the nucleus may
not be spherical and is almost certainly soft. The energy as a
function of deformation is probably very flat, and the energies
of several mean-field minima may not be very different. For
this reason, we do several calculations (extracting the ai in the
fashion described previously), some at deformed minima and
some at spherical minima. Another issue is that HFODD cannot
carry out angular-momentum projection if pairing is included.
We can either estimate the effects of projection or turn pairing
off and carry it out explicitly. We follow both courses here
and compare the results. We sometimes encounter the further
problem that the state with the correct ground-state quantum
numbers (	π = 1

2
−

) is not the lowest state in our calculation.
In a soft nucleus, such an occurrence is not totally surprising.

Finally, the inclusion of VPT causes some problems that
are not present without it. Although VPT is very weak, it
sometimes leads the HF state away from an axial shape
after many iterations, probably because our axially symmetric
solution is very slightly unstable against some kinds of
asymmetric deformation. This situation is often encountered
in HF calculations because the method can yield metastable
solutions, saddle points in the potential energy surface rather
than true minima. An arbitrarily small symmetry-breaking
term (like our VPT ) can then lead toward another, slightly lower
solution, away from axial symmetry. In our case, however, the
iterative procedure with VPT included converges for awhile,
maintaining axial symmetry and coming close to the perturbed

TABLE III. Results for coefficients ai (in e fm3) in 199Hg, with the
Skyrme interaction SLy4, in various approximations. The solution is
axially symmetric with β = −0.13 and an excitation energy for the
	π = 1

2

−
state of 0.97 MeV.

a0 a1 a2

One HF iteration with VPT 0.045 0.049 0.090
Full HF, no projection 0.039 −0.019 0.066
Full HF, projected 0.013 −0.006 0.022

metastable state before the weak instability leads it in a
different (triaxial) direction. We can therefore extract an axially
symmetric result from the relatively early iterations, during
which the solution apparently converges. Although we do not
have a true HF minimum here, we do obtain a kind of “most
nearly stable axially symmetric” solution, which is the best we
can do without the more difficult and possibly less meaningful
task of considering triaxial shapes for soft systems.

Table III displays our results for the interaction SLy4 in suc-
cessively better approximations. The first line shows the results
after including VPT for one Hartree-Fock iteration (starting
from the converged solution with VPT omitted). In this limit,
VPT can excite the core, but the excited nucleons do not further
interact before contributing to the Schiff moment; that is, no
core collectivity is included. A comparison of the first two
lines shows, in agreement with Refs. [5,6,8], that collectivity
has a large effect on the a’s. However, in contrast to those
investigations, we find that collectivity has a large enough
effect on a1 to change its sign. This change in sign appears in
our calculations with several other Skyrme interactions as well,
even for spherical minima. Its appearance there is surprising
because the diagrammatic calculation of Ref. [8] used the same
Skyrme interactions and essentially the same spherical-HFB
starting point5 and included much of the same collective
physics. We have already remarked, though, that where we can
check the QRPA results (in 209Pb) we do not agree with them.

Another surprising result is that projection reduces the
coefficients by a factor that is very close to three, the same
factor as in the rigid-rotor model. The reduction factor is nearly
three with other Skyrme interactions as well. The relatively
small deformation of 199Hg led us to expect a milder reduction.

What is unsurprising is that the ai are delicate and very hard
to predict ahead of time. Figure 2 shows the change in proton
density δρp caused by the inclusion alongside SLy4 of the ḡ1

term in VPT (that is, the other ḡ’s are set to zero). The integral
of this density difference over z and r⊥ ≡

√
x2 + y2, weighted

by (r2 − 5/3 〈r2〉ch)z, is what gives the intrinsic Schiff moment
(before projection). The oscillations are actually even wilder
than the figure shows; a deep trough is hidden behind large
peak at small r⊥. These oscillations make it hard to supply an
explanation for the sign and magnitude of a1.

We turn finally to the full results, displayed in Table IV,
from all our Skyrme interactions, in an HO basis containing
12 h̄ω of excitation energy. The top three lines give the results

5One difference is that the last neutron was in a canonical-basis
quasiparticle state in that work.
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FIG. 2. (Color online) The change in proton density induced by
the ḡ1 term in VPT , as a function of r⊥ ≡ √

x2 + y2 and z. The units
are arbitrary because of the arbitrariness in the constant ḡ1. Only 1/4
of the nuclear profile is shown; the density change is symmetric in r⊥
and antisymmetric in z. The densities were actually evaluated at 132

Gaussian integration points, a fact that explains the spikiness of the
plot.

of deformed HF calculations. (The calculation with SKM∗
does not give a convergent axially symmetric result.) All
the interactions underbind the nucleus; the measured binding
energy is 1573.19 MeV. With the interactions SLy4 and SV, the
ground state, as discussed previously, does not have the correct
quantum numbers, and we are forced to use an excited particle-
hole configuration that does. As also mentioned, the energy in
these cases eventually begins to diverge from our solution,
presumably because of a very weak triaxial instability. By
contrast, SIII gives the correct ground state and no long-term
divergence. After projection, all three calculations produce
similar coefficients a0 and a2, but a1 varies significantly, even
in sign. We are unable to project the one-body densities that
yield the b coefficient, so we take the reduction from the
unprojected value to be the same as that of the ai’s.

The middle two lines of Table IV show the results of HFB
calculations, in which pairing is included (and there are no
long-term divergences). The SLy4 solution is deformed, and

TABLE IV. Results for coefficients ai and b, in e fm3, in 199Hg.
The third column gives ground-state energy in mega-electron-volts,
the fourth the deformation, and the fifth the excitation energy (also
in mega-electron-volts) of the lowest configuration with the same
value of 	π as the experimental ground state. The first three lines
are in the HF approximation, and the next two are in the HFB
approximation. The last two lines report results of previous work,
with the numbers for Ref. [8] representing the average over several
interactions.

Egs β Eexc. a0 a1 a2 b

SLy4 −1561.42 −0.13 0.97 0.013 −0.006 0.022 0.003
SIII −1562.63 −0.11 0 0.012 0.005 0.016 0.004
SV −1556.43 −0.11 0.68 0.009 −0.0001 0.016 0.002

SLy4 −1560.21 −0.10 0.83 0.013 −0.006 0.024 0.007
SkM∗ −1564.03 0 0.82 0.041 −0.027 0.069 0.013

Ref. [5] – – – 0.0004 0.055 0.009 –
Ref. [8] – – – 0.007 0.071 0.018 –

as mentioned previously, we cannot project HFB states; we
therefore use the rigid rotor limit to obtain the projected
results in line 4. SkM∗ has a spherical minimum when
pairing is included, so no projection is necessary. The results
of that calculation are similar to the unprojected results
from deformed solutions. We conclude that the presence of
deformation, at least in our approach, significantly decreases
calculated Schiff moments.

We should note that we do not include theO(α2) corrections
to the Schiff moment (generating the local dipole moment
[24]). Work in simple models suggests that these corrections
to the ai are on the order of 25%, though they could be a larger
fraction if the lowest-order ai are suppressed.

Our 199Hg results have some significant differences from
those obtained previously. Those of the two most compre-
hensive calculations appear at the bottom of Table IV, with
the average of several calculations presented for Ref. [8].
Our values of a0 and a2 are in reasonable agreement with
those of Ref. [8], but, as already mentioned, those for a1 are
smaller in magnitude and sometimes have the opposite sign.
Deformation, of course, is one cause, but, as noted previously,
there is disagreement even with our spherical calculations. One
source of difference may be our treatment of core polarization,
which is more complete and self-consistent than that of the
earlier papers; the use of a canonical basis state for the last
neutron in Ref. [8] may be another. Finally, the disagreement
between our QRPA tests discussed previously and those in
the framework of Ref. [8] suggest the possibility of an error
in that calculation (which used an early version of QRPASPH

that no longer exists). Our many tests of the current approach
make it unlikely that our calculations contain outright errors.
The delicacy of a1 is noteworthy, however, both because of the
complicated spatial PT -odd density distribution (see Fig. 2)
and the sometimes marginally stable convergence to axially
symmetric solutions, a feature that is particularly pronounced
for that coefficient.

How much can we trust the physical approximations
underlying our results? The calculations presented here are
more sophisticated and inclusive than any yet attempted, but it
may very well be that still more sophistication is required. The
apparent softness of 199Hg implies that the true ground state is
best thought of as a superposition of many different mean-field
states, and a generator-coordinate-based approach [25] may
be required to adequately represent the mixing. Though
generator-coordinate calculations are no longer rare, they
have not, to our knowledge, been attempted yet in odd nuclei.
The future of EDM calculations for this kind of nucleus lies in
the generalization of codes like HFODD. We will need to move
beyond mean-field theory and ought to expect our current best
numbers to be noticeably revised when we do.
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