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The properties of the ground-state U spin = 3
2 baryon decuplet magnetic moments �−, �∗−, �∗−, and �−

and their ground-state spin- 1
2 cousins p, n, �, �+, �0, �−, �+, and �− have been studied for many years with a

modicum of success. The magnetic moments of many are yet to be determined. Of the decuplet baryons, only the
magnetic moment of the �− has been accurately determined. We calculate the magnetic moments of the physical
decuplet U spin = 3

2 quartet members without ascribing any specific form to their quark structure or intraquark
interactions.
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I. INTRODUCTION

The properties of the ground-state U spin = 3
2 baryon

decuplet magnetic moments �−, �∗−, �∗−, and �− along
with their ground-state spin- 1

2 cousins p, n, �, �+, �0,
�−, �+, and �− have been studied for many years with a
modicum of success. Although the masses (pole or otherwise)
and decay aspects and other physical observables of some of
these particles have been ascertained, the magnetic moments
of many are yet to be determined. For the spin = 3

2 baryon
decuplet, the experimental situation is poor—from the Particle
Data Group [1], only the magnetic moment of the �− has
been accurately determined. The reasons for this paucity of
data for the decuplet particle members are the very short
lifetimes owing to available strong interaction decay channels
and the existence of nearby particles with quantum numbers
that allow for configuration mixing. The �− is an exception
in that it is composed of three valence s quarks that make its
lifetime substantially longer (weak interaction decay) than any
of its decuplet partners, which have many more decay channels
available.

A number of theoretical models have been put forth over
the past few decades. In addition to the simplest SU (3)
model, seminal ones are the SU (6) models put forth by
Beg et al. [2] and Gerasimov [3]. An excellent source of
information on the aforementioned topics, references, and
other seminal models is the book by Lichtenberg [4]. Typically,
these models invoke the additivity hypothesis where a hadron
magnetic moment is given by the sum of its constituent quark
magnetic moments. More recently, a number of theoretical and
computational investigations involving the magnetic moments
of the �− and the �− and lattice quantum chromodynamics
(QCD) (quenched and unquenched, unphysical pion mass)
techniques have been used with apparent progress and show
promise [5–7]. A review that focuses on some theoretical and
experimental approaches to the study of specific processes
involving the �(1232) can be found in Ref. [8].

In this article the infinite momentum frame—in conjunction
with the fact that the four-vector electromagnetic current
j

µ
em obeys the equal time commutator [VK0 , j

µ
em] = 0 even
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in the presence of symmetry breaking—is used to calculate
the magnetic moments of the physical decuplet U spin = 3

2
quartet members without ascribing any specific form to their
quark structure or intraquark interactions [9–13].

II. ETCRS IN THE INFINITE MOMENTUM FRAME

In this article all equal-time commutation relations
(ETCRs) involve at most one current density, thus, problems
associated with Schwinger terms are avoided. ETCRs involve
the vector and axial-vector charge generators (the Vα and Aα

{α = π,K,D,F,B, . . . .}) of the symmetry groups of QCD
and can be derived from a simple model LQCD including
quark mass terms. However, they are valid even though these
symmetries are broken [9–16] and even when the Lagrangian
is not known or cannot be constructed. Some examples
(summation over the dummy index k is understood) of these
ETCRs or constraint algebras follow: [Vi, Vj ] = [Ai,Aj ] =
ifijkVk , and [Vi, Aj ] = ifijkAk .

Mathematically, we have the following: We introduce quark
spinor fields qα

i each with mass mi where i = 1, . . . , N

in the flavor SUF (N ) group, and α = 1, 2, 3 are the color
indices corresponding to the color SU (3) group. Then, we
have (suppressing color indices):

Va
µ(x) = iq̄i(x)(λa/2)ij γ

µqj (x) ≡ iq̄(λa/2)γ µq, (1)

Va(t) =
∫

d3x : q†(x)(λa/2)q(x):, (2)

∂µVa
µ(x) = iq̄i(mi − mj )(λa/2)ij q

j , (3)

Aa
µ = iq̄i(λa/2)ij γ

µγ5q
j ≡ iq̄(λa/2)γ µγ5q, (4)

Aa(t) =
∫

d3x : q†(x)(λa/2)γ5q(x):, (5)

∂µAa
µ(x) = iq̄i(mi + mj )(λa/2)ij γ5q

j , (6)

[Va(t), Vb(t)] = [Aa(t), Ab(t)] = ifabcVc(t), (7)

and

[Va(t), Ab(t)] = ifabcAc(t). (8)

In Eqs. (1)–(8), the λa , a = 1, 2, . . . , N2 − 1, satisfy the Lie
algebra,

[(λa/2)(t), (λb/2)(t)] = ifabc(λc/2), (9)
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where the fabc are structure constants of the flavor group
SUF (N ) (summation over the dummy index c is understood)
and : : denotes a normal product. We also have λ0 = √

2/3 I ,
I is the identity, and V0

µ(x) = iq̄i(x)(λ0/2)ij γ
µqj (x) is the

flavor singlet current. Note the following: (1) The vector
charges Va(t) are not conserved and are time dependent
(except when a = 3, 8, 15, 24, 35, and the λa are diagonal
corresponding to isospin, strangeness, charm, . . .); (2) The
axial-vector charges Aa(t) are conserved only when all
quark masses vanish; (3) The ETCR algebras represented by
Eqs. (1)–(8) are always valid even in the presence of symmetry
breaking—the algebras are the same as those satisfied by
the generators of unbroken SUF (N ); and (4) In the flavor
symmetry limit where mu = md = ms = · · · = mq , Eq. (3)
shows that ∂µVa

µ = 0 and thus Va
µ is conserved.

In terms of the axial-vector currents, Ai
µ, partially con-

served axial-vector current (PCAC) is expressed by the
equation, ∂µAi

µ(x) = mi
2fiφi(x), where φi(x) is the pseu-

doscalar field of the particle Pi , i = 1, 2, . . . , N2 − 1 in
flavor symmetry SUF (N ), and fi is defined by the expres-
sion (with our normalization)

√
(2π3)2p0〈0|Ai

µ(0)|Pi( �p)〉 =
ifip

µ with fi = fi(m2
i ). In terms of physical indices, we

have Aπ± µ = A1
µ ± iA2

µ, ∂µAπ+ µ(x) = mπ+ 2fπ+φπ+ (x),
∂µAπ0

µ(x) = (1/
√

2)mπ0
2fπ0φπ0 (x), where fπ+ = is the pion

decay constant.

III. INFINITE MOMENTUM FRAME ASYMPTOTIC
SUF(N) SYMMETRY

A fundamental part of the dynamical concept of asymptotic
SUF (N ) symmetry [9–12] is the behavior of the vector charge
Vα when acting on a physical state which has momentum �k
(|�k| → ∞), helicity λ, and SUF (N ) index α: The physical
annihilation operator aα(�k, λ) of a physical on-mass-shell
hadron maintains its linearity [including asymptotic SUF (N )
particle mixings] under flavor transformations generated by
the charge Vα but only in the limit |�k| → ∞. We note that
the expression |�k| → ∞ is completely synonymous with the
expression lim|�k|→∞. Thus, the Vα are generators of asymptotic
SUF (N ) and have no “leakage” terms but only in this limit.
See Eq. (13) below.

Consider the transformation (we suppress the time depen-
dence) of the physical annihilation operator aα(�k, λ) under
SUF (N ) in broken symmetry:

[Vi, aα(�k, λ)] = i
∑

β

uiαβ(�k, λ)aβ(�k, λ) + δuiαλ(�k), (10)

where α and β represent physical SUF (N ) indices, the co-

efficients uiαβ(�k, λ) = −[uiβα(�k, λ)]∗, aβ(�k, λ)| physical
0 〉 = 0.

Although the term δuiαλ(�k) = 0 in unbroken SUF (N ) sym-
metry, δuiαλ(�k) 	= 0 in broken SUF (N ) symmetry and is a
function of the creation operators a

†
β(�k, λ).

In exact unbroken SUF (N ), one writes instead,

[Vi, aj (�k, λ)] = ifijkak(�k, λ) for j = 1, 2, . . . , N2 − 1,

= 0 for j = 0, (11)

where aj (�k, λ) is a SUF (N ) representation annihilation opera-

tor, aj (�k, λ)| representation
0 〉 = 0, and its creation operator counter-

part produces states that belong to irreducible representations
of unbroken flavor SUF (N ). The dynamical assumption of
asymptotic SUF (N ) symmetry [9–12] then states that

δuiαλ(�k) → (|�k|)−(1+ε), (ε > 0), when |�k| → ∞, (12)

implying that

|α, �k, λ〉 =
∑

j

Cαj |j, �k, λ〉, when |�k| → ∞. (13)

The orthogonal matrix Cαj depends on physical SUF (N )
mixing parameters, is defined only in the ∞-momentum
frame, and can be constrained directly by the ETCRs without
introducing an ad hoc mixing angle matrix. |j, �k, λ〉 is a
SUF (N ) representation state whereas |α, �k, λ〉 is a physical

state [9–12]. All nonlinear terms vanish like |�k|−(1+ε)
, (ε > 0),

as |�k| → ∞, that is, δuiαλ(�k)|0〉 ∼ O(|�k|)−(1+ε)) → 0 as can
be shown by applying Eq. (10) to the physical vacuum.
It is in the ∞-momentum frame where one finds that the
physical annihilation operator aα(�k, λ) is related linearly to the
representation annihilation operator aj (�k, λ) via the orthogo-
nal mixing matrix Cαj (λ). In contrast to the representation
states |j, �k, λ〉 that belong to irreducible representations, the
states |α, �k, λ〉 do not. Rather, they are linear combinations
of representation states plus nonlinear corrective terms that
are best calculated in a frame where mass differences are
deemphasized such as the ∞-momentum frame. Thus, even
in severely broken SUF (N ) symmetry—such as SUF (4) or
SUF (5)— asymptotic SUF (N )-symmetry methods are useful.
When flavor symmetry is exact, which Lorentz frame one
uses to analyze current-algebraic sum rules does not matter
and is a matter of taste, whereas, when one must deal
with current-algebraic sum rules in broken symmetry, the
choice of frame takes on paramount importance because
one wishes to emphasize the calculation of leading order
contributions while simultaneously simplifying the calculation
of symmetry breaking corrections. The ∞-momentum frame
is especially suited for broken symmetry calculations because
mass differences are kinematically suppressed [9–13].

The physical vector charge VK0 may be written as
VK0 = V6 + iV7 and the physical electromagnetic cur-
rent j

µ
em(0) may be written (u, d, s, c, b, t quark sys-

tem) as j
µ
em(0) = V

µ

3 (0) + (1/
√

3)V µ

8 (0) − (2/3)1/2V
µ

15(0) +
(2/5)1/2V

µ

24(0) − (3/5)1/2V
µ

35(0) + (1
√

3)V µ

0 (0). One may ver-
ify that the commutation relation [VK0 , j

µ
em(0)] = 0 holds (i.e.,

the electromagnetic current is a U -spin singlet).

IV. THE RARITA-SCHWINGER SPINOR

For the on-mass shell JP = 3/2+ ground-state decu-
plet baryon B with mass mB , the Lorentz- covariant and
gauge-invariant electromagnetic current matrix element in
momentum space where the four-momentum vectors P ≡
p1 + p2, q ≡ p2 − p1 and λ1 and λ2 represent helicity is given
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by

〈B(p2, λ2)|jµ
em(0)|B(p1, λ1)〉

= e

(2π )3

√
m2

B

Et
BEs

B

ūα
B(p2, λ2)

[
�

µ
αβ

]
u

β

B(p1, λ1), (14)

�
µ
αβ = gαβ

{[
FB

1 (q2) + F2(q2)
]
γ µ − P µ

2mB

FB
2 (q2)

}

+ qαqβ

(2mB)2

{[
FB

3 (q2) + FB
4 (q2)

]
γ µ − P µ

2mB

FB
4 (q2)

}
,

(15)

where e = +√
4πα, α = the fine structure constant, the FB

i are
the four γ ∗�� form factors, and �

µ
αβ is written in a very useful

form using the Gordon identities. QB = charge of baryon
B in units of e, µB is the magnetic moment (measured in
nuclear magneton units µN = e/(2m), m = proton mass) of
baryon B, and:

FB
1 (0)e = QB, (16)

µB =
{[

FB
1 (0) + FB

2 (0)
] (

m

mB

) }
µN. (17)

The baryon Rarita-Schwinger [17] spinor u
µ

B(νB, θ, λ) with
helicity λ, three-momentum �p with angle θ referred to the
ẑ axis, energy E

p

B , and velocity parameter νB =
sinh−1(| �p|/mB) is given by

u
µ

B(νB, θ, λ) =
+ 1

2∑
m1=− 1

2

+1∑
m2=−1

〈1/2, 1, 3/2|m1,m2, λ〉

× uB(νB, θ,m1)εµ

B (νB, θ,m2), (18)

uB(νB, θ,m1)

=

⎛
⎜⎜⎜⎜⎜⎝

cosh
(

νB

2

)[
cos

(
θ
2

)
δm1,

1
2
− sin

(
θ
2

)
δm1,− 1

2

]
cosh

(
νB

2

)[
sin

(
θ
2

)
δm1,

1
2
+ cos

(
θ
2

)
δm1,− 1

2

]
sinh

(
νB

2

)[
cos

(
θ
2

)
δm1,

1
2
+ sin

(
θ
2

)
δm1,− 1

2

]
sinh

(
νB

2

)[
sin

(
θ
2

)
δm1,

1
2
− cos

(
θ
2

)
δm1,− 1

2

]

⎞
⎟⎟⎟⎟⎟⎠ , (19)

ε
µ

B (νB, θ,m2)

=

⎛
⎜⎜⎜⎜⎝

sinh(νB)δm2,0

− m2√
2

cos(θ )δ|m2|,1 + cosh(νB) sin(θ )δm2,0

− i√
2
δ|m2|,1

m2√
2

sin(θ )δ|m2|,1 + cosh(νB) cos(θ )δm2,0

⎞
⎟⎟⎟⎟⎠ . (20)

ε
µ

B (νB, θ,m2) is the baryon polarization (m2) four-vector,
uB(νB, θ,m1) is a Dirac spinor with helicity index m2, and
〈1/2, 1, 3/2|m1,m2, λ〉 is a Clebsh-Gordan coefficient where
our conventions are those of Rose [18]. Physical states
are normalized with 〈 �p′| �p〉 = δ3( �p′ − �p) and Dirac spinors
are normalized by ū(r)(p)u(s)(p) = δrs . Our conventions for
Dirac matrices are {γ µ, γ ν} = 2gµν with γ5 ≡ iγ 0γ 1γ 2γ 3,

where gµν = Diag (1,−1,−1,−1) [19]. The Ricci-Levi-
Civita tensor is defined by ε0123 = −ε0123 = 1 = ε123. As
usual, we use natural units where h̄ = c = 1.

Associated with baryon B are the four-momentum vectors
p1 (three-momentum �t (�t = tzẑ), energy Et

B) and p2 (three-
momentum �s at angle θ (0 � θ � π/2) with the ẑ axis, energy
Es

B), and we write

pσ
1 = tσ =

⎛
⎜⎜⎝

mB cosh(αB)
0
0

mB sinh(αB)

⎞
⎟⎟⎠ =

(
Et

B

�t

)
, (21)

pσ
2 = sσ =

⎛
⎜⎜⎝

mB cosh(βB)
mB sin(θ ) sinh(βB)

0
mB cos(θ ) sinh(βB)

⎞
⎟⎟⎠ =

(
Es

B

�s

)
. (22)

In Eqs. (21) and (22), we take sz = rtz, where
r (constant) � 1. In addition to obeying the Dirac equation—
thus making the Gordon identities very useful—the
Rarita-Schwinger spinors satisfy the subsidiary conditions
γµu

µ

B(p, λ) = pµu
µ

B(p, λ) = 0.

V. THE �− AND THE �− MAGNETIC MOMENT
RELATIONSHIP

To obtain the relationship between the �− and the �−
magnetic moments, we utilize the commutator [VK0 , j

µ
em(0)] =

0 inserted between the baryon pairs (〈�∗−sσ |,|�−tσ 〉),
(〈�∗−sσ |,|�∗−tσ 〉), and (〈�−sσ |,|�∗−tσ 〉) in the infinite mo-
mentum frame where each baryon has QB = −e, helicity
+3/2 and tz → ∞, and sz → ∞. The internal intermediate
states saturating the commutator belong to the ground-state
decuplet baryons with helicity +3/2, which has the effect of
restricting greatly the number of possible configuration mixing
contributions coming from 56 or spin-3/2 members of 70
excited states and other low-lying supermultiplets. Given that
caveat and noting that a vector charge does not change helicity
or momentum, then with our normalization we have

〈�∗−
sσ |VK0 |�−sσ 〉〈�−sσ |jµ

em|�−tσ 〉
− 〈�∗−

sσ |jµ
em|�∗−

tσ 〉〈�∗−
tσ |VK0 |�−tσ 〉 = 0, (23)

〈�∗−sσ |VK0 |�∗−
sσ 〉〈�∗−

sσ |jµ
em|�∗−

tσ 〉
− 〈�∗−

sσ |jµ
em|�∗−

tσ 〉〈�∗−
tσ |VK0 |�∗−

tσ 〉 = 0, (24)

〈�−sσ |VK0 |�∗−
sσ 〉〈�∗−

sσ |jµ
em|�∗−

tσ 〉
− 〈�−sσ |jµ

em|�−tσ 〉〈�−tσ |VK0 |�∗−
tσ 〉 = 0. (25)

Now, 〈�∗−
sσ |VK0 |�−sσ 〉 = 〈�∗−

tσ |VK0 |�−tσ 〉, etc., for
each of the baryon pairs considered previously. Indeed, for
exact flavor symmetry (or in broken symmetry in our model),
the quantity 〈�∗−

sσ |VK0 |�−sσ 〉 = √
3. Equations (23)–(25)

reduce to

〈�−sσ |jµ
em|�−tσ 〉 − 〈�∗−

sσ |jµ
em|�∗−

tσ 〉 = 0, (26)
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TABLE I. U spin = 3
2 baryon decuplet magnetic moment µ in units of µN .

Baryon This researcha Broken SUF (6)b CSTc Lattice QCDd Lattice QCDe

�− −1.34 ± 0.06 −2.92 ± 0.02 −2.70 −1.697 ± 0.065 −1.85 ± 0.06
�∗− −1.57 ± 0.09 −2.56 ± 0.01 −2.44 −1.697 ± 0.065 –
�∗− −1.79 ± 0.11 −2.20 ± 0.01 −2.23 −1.697 ± 0.065 –
�− −2.02 ± 0.05 −1.84 ± 0.02 −2.02 −1.697 ± 0.065 −1.93 ± 0.08

aµ�− is input. m�− = 1.22 ± 0.01 GeV/c is assumed.
bµp , µn, µ� are inputs; see Ref. [4].
cCovariant spectator theory (CST); see Ref. [5]. µp , µn, µ�− are inputs.
dLattice result from Ref. [6]. µp , µn, µ�− = µ�− = −µ�+ is assumed.
eLattice result from Ref. [7].

〈�∗−
sσ |jµ

em|�∗−
tσ 〉 − 〈�∗−

sσ |jµ
em|�∗−

tσ 〉 = 0, (27)

〈�∗−
sσ |jµ

em|�∗−
tσ 〉 − 〈�−sσ |jµ

em|�−tσ 〉 = 0. (28)

Equations (26)–(28) then imply that

〈�−sσ , λ|jµ
em(0)|�−tσ , λ〉 = 〈�−sσ , λ|jµ

em(0)|�−tσ , λ〉,
where tz → ∞, sz → ∞, and λ = helicity = +3/2.

(29)

Although Eq. (29) is reminiscent of what one obtains in
pure unbroken SUF (N ) symmetry with a U -spin singlet elec-
tromagnetic current, it is now obtained in broken symmetry.
With r (constant) � 1 thus ensuring no helicity reversal, we
now explicitly evaluate Eq. (29) with µ = 0 and θ = 0, which
implies that sx = 0 (collinear case) using Eqs. (14)–(22). We
obtain

lim
tz→+∞

sz→+∞

{
1

2
cosh

[
α�− − β�−

2

] (
2F�−

1

(
q2

�−
) + F�−

2

(
q2

�−
)

− F�−
2

(
q2

�−
)

cosh[α�− + β�− ]
)}

= lim
tz→+∞

sz→+∞

{
1

2
cosh

[
α�− − β�−

2

] (
2F�−

1

(
q2

�−
)

+ F�−
2

(
q2

�−
) − F�−

2

(
q2

�−
)

cosh [α�− + β�− ]
)}

. (30)

Taking the limits in Eq. (30) with sz = rtz [r (constant) � 1
and sx = 0] yields

F�−
2

(
q2

�−
) = m2

�−

m2
�−

F�−
2

(
q2

�−
)
. (31)

In deriving Eq. (31), we utilized that, in general, even though

|�s| and |�t | → +∞, q2
B is finite, and q2

B = − (1 − r)2

r
m2

B − s2
x

r
≡

−Q2
B .

q2
B |sx=0 = − (1 − r)2

r
m2

B, (32)

cosh

[
αB − βB

2

]
→ 1 + r

2
√

r
,

(33)

cosh[αB + βB] → 2rt2
z

m2
B

,

where B = �− or �−.
Setting r = 1 ⇒ q2

�− = q2
�− = 0, we obtain

F�−
1 (0) = F�−

1 (0) = −1,
(34)

F�−
2 (0) = m2

�−

m2
�−

F�−
2 (0).

µ�− =
{[

F�−
1 (0) + m2

�−

m2
�−

F�−
2 (0)

](
m

m�−

)}
µN

=
{[

−1 + m2
�−

m2
�−

F�−
2 (0)

] (
m

m�−

)}
µN. (35)

Experimentally [1], µ�− = (−2.02 ± 0.05)µN = {[−1 +
F�−

2 (0)](m/m�−)}µN and m�− = 1.6724 ± 0.0003 GeV/c,
whereas the value of m�− (pole or Breit-Wigner) is not es-
tablished. We take m�− = 1.22 ± 0.01 GeV/c and upon using
Eqs. (34) and (35), one obtains µ�− = (−1.34 ± 0.06)µN .
From Eqs. (26)–(29), one can also calculate the magnetic
moments of �∗−

and �∗−
. We summarize these results in

Table I.

VI. CONCLUSIONS

We have calculated the magnetic moments of the ground-
state physical decuplet U spin = 3

2 quartet members in-
cluding that of �− without ascribing any specific form to
their quark structure or intraquark interactions or assuming
SUF (N ) broken or unbroken symmetry or assuming an
effective lagrangian. The Particle Data Group [1] value µ�− =
(−2.02 ± 0.05)µN was used as input. Our results are compared
to some extant lattice QCD results, results from SUF (N )
models, and other theoretical models. In particular, we obtain
µ�− = (−1.34 ± 0.06)µN .
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