
PHYSICAL REVIEW C 82, 015207 (2010)

Neutron observables from inclusive lepton scattering on nuclei
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We analyze new data from Thomas Jefferson National Accelerator Facility (JLab) for inclusive electron
scattering on various targets. Computed and measured total inclusive cross sections in the range 0.3 � x � 0.95
show reasonable agreement on a logarithmic scale for all targets. However, closer inspection of the quasielastic
components reveals serious discrepancies. European Muon Collaboration (EMC) ratios with conceivably smaller
systematic errors fare the same. As a consequence, the new data do not enable the extraction of the magnetic form
factor Gn

M and the structure function F n
2 of the neutron, although the application of exactly the same analysis

to older data had been successful. We incorporate in the above analysis older CLAS Collaboration data on F
2H
2 .

Removal of some scattered points from those makes it appear possible to obtain the desired neutron information.
We compare our results with others from alternative sources. Special attention is paid to the A = 3 isodoublet
cross sections and EMC ratios. Present data exist only for 3He, but the available input in combination with charge
symmetry enables computations for 3H. Their average is the computed isoscalar part and is compared with the
empirical modification of 3He EMC ratios toward a fictitious A = 3 isosinglet.
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I. INTRODUCTION

Nearly a decade has passed since the publication of Thomas
Jefferson National Accelerator Facility (JLab) experiment
E89-008, describing inclusive scattering of electrons on vari-
ous targets [1,2]. Those extended older SLAC data on 2H and
He isotopes [3] and later ones for beam energies E � 3.6 GeV
on 2H, 4He, and several medium and heavy targets [4]. A
similar experiment in 1999 used E = 4.05 GeV electrons [5].

In the JLab experiments E03-102 and E02-90, 5.76 GeV
unpolarized electrons were scattered over angles θ =
18◦, 22◦, 26◦, 32◦, 40◦, and 50◦. Total inclusive cross sections
covering wide kinematics have been measured for targets 2H,
3,4He, 9Be, C, Al, and Cu. From this extensive data bank, only
the European Muon Collaboration (EMC) ratios µ

3,4He, µBe,
and µC for one scattering angle θ = 40◦ and limited kinematics
have been published until now [6]. In addition, cross section
data over the entire measured kinematic range and for all
targets have been made available [7]. We also mention data
taken with an E = 5.0 GeV beam, the analysis of which has
not yet been completed [8].

In order to define notation, we start with the total cross
section per nucleon for inclusive scattering of unpolarized
electrons, reduced by the Mott cross section σM . For given
beam energy E, scattering angle θ , and energy loss ν, one has

KA(x,Q2, θ ) = d2σA(E; θ, ν)

d�dν

/
σM (E; θ, ν)

= 2xM

Q2
FA

2 (x,Q2) + 2

M
FA

1 (x,Q2)tan2(θ/2).

(1.1)

FA
1,2(x,Q2) above are nuclear structure functions (SFs), which

depend on the squared four-momentum transfer q2 = −Q2 =
−(|q|2 − ν2) and the Bjorken variable 0 � x = Q2/2Mν �
MA/M ≈ A with M the nucleon mass.

Several approaches have been proposed for an analysis of
inclusive cross sections in the plane-wave impulse approxi-

mation (PWIA), or the same with some final-state interaction
(FSI) distortions [9,10]. We report here on an analysis based on
a previously tested nonperturbative Gersch-Rodriguez-Smith
(GRS) approach [11,12]. Our application also covers the entire
corpus of new data (ND) beyond the restricted targets and
kinematics of the published material reported in Refs. [6,7].
To those we add an analysis of 2H CLAS (CL) data [13].
Except for the treatment of the A = 3 targets, the method of
analysis for the new data is identical to that previously applied
to the older data (OD). We therefore shall not detail steps but
mention references instead.

We adhere in the following to a generalized convolution,
linking FA

k and F
p,n

k (see, for instance, Ref. [11]),

FA
k (x,Q2) =

∫ A

x

dz

z2−k

[
f A

p (z,Q2)ZF
p

k

(
x

z
,Q2

)

+ f A
n (z,Q2)NFn

k

(
x

z
,Q2

)] /
A. (1.2)

≈
∫ A

x

dz

z2−k
f A(z,Q2)

[
ZF

p

k

(
x

z
,Q2

)

+ NFn
k

(
x

z
,Q2

)] /
A. (1.3)

The f A here are SFs for a fictitious nucleus composed of point
particles which cannot be excited, irrespective of the value of
Q2 [14]. Alternatively, one interprets f as a kind of generalized
distribution function of the centers of interacting nucleons in
a target.

The functions f A for finite Q2 can be calculated exactly
only for the lightest nuclei and have otherwise to be modeled
[11]. In the PWIA the above norm can be shown to be 1. The
same is expected for any bona fide distribution function. We
shall return to this point in detail.

In virtually all previous applications one did not distinguish
between distribution functions f A

p,n, which are different for p

and n. However, in a treatment of the lightest odd nuclei, their
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difference may matter and a proper treatment ought to use
Eq. (1.2).

Equations (1.2) and (1.3) feature nucleon SFs F
p,n

k , which
in general are off their mass shell. However, in the region
of our main Q2 � (2.5–3.0) GeV2, those effects may be
neglected, and the same holds for the mixing of nucleon
SFs in the proper expression for FA

2 [15,16]. Since the data
do not reach the deepest inelastic range x � 0.2, screening
effects may also be disregarded [17]. For Q2 � 3.0 GeV2, for
which (pseudo)resonance structure is not yet extinguished,
we shall use F

p

2 from Ref. [18], while for larger Q2 we
rely on a parametrization of the resonance-averaged F

p

2 [19].
References to Fn

2 can be found in [11].
It is convenient to decompose the nucleon SFs FN

k in
Eq. (1.2) into parts, describing the absorption of a virtual
photon, either exciting the absorbing N into hadrons (partons)
or not (γ ∗ + N → N ). The amplitudes for the latter vanish
except for x = 1, in which case those may be expressed
as standard combinations of electromagnetic form factors
(FFs). A similar division applies to nuclear SFs. Denoting
by [G̃N ]2 = [Z(Gp)2 + N (Gn)2]/A the (Z,N )-weighted av-
erage of the squared nucleon FFs, one finds from Eq. (1.3)
their nuclear analogs [η = Q2/(4M2)]

F
A,NE
1 (x,Q2) = f PN,A(x,Q2)

2

[
G̃N

M (Q2)
]2

, (1.4)

F
A,NE
2 (x,Q2) = xf PN,A(x,Q2)

[
G̃N

E (Q2)
]2 + η

[
G̃N

M (Q2)
]2

1 + η
.

(1.5)

Nuclear inelastic (NI) processes dominate in general, but
occasionally one needs to include the above quasielastic parts
(NE).

In inclusive spectra one distinguishes the following kine-
matic regions:

(i) Deepest inelastic scattering for x � 0.2, with charac-
teristic (anti)screening effects.

(ii) The NI-dominated deep inelastic scattering (DIS)
region, 0.2 � x � xr (Q2) with xr (Q2) ≈ [(M2

R −
M2)/Q2 + 1]−1, with the Bjorken x for resonance
excitation.

(iii) The NI-NE interference region for xr (Q2) � x � 0.85–
0.95.

(iv) The quasielastic (QE) region around the quasielastic
peak (QEP), 0.95 � x � 1.05, dominated by NE pro-
cesses, and only weakly perturbed by NI tails, provided
Q2 � (4–5) GeV2.

(v) The deep quasielastic (DQE) region, x � 1.05, domi-
nated by NE processes. Cross sections there are very
small in comparison with those in regions (i)–(iv) and
again are for not too high Q2, only weakly perturbed
by inelastic tails.

In the following, all measured total cross sections, whether
published as EMC ratios of the above in a limited kinematic
range, or as yet unpublished results for the entire measured
kinematic ranges [6,7], will be referred to as “data.”

This paper is organized as follows. We first report in
Sec. II A on general features of total inclusive cross sections,

which we illustrate by a few examples for isosinglet targets.
From a comparison of experimental and computed total cross
sections over the larger part of the kinematic x range 0.35 �
x � 0.95, we conclude that in the DIS region NI components
are apparently reliably computed.

For increasing x toward the QE region, NE components
grow, start to compete with NI, and for not too large Q2,
finally overtake them. We show that around the QEP and in
both wings, theory and data for NE components applied to ND
almost never agree.

Particular attention is paid to the A = 3 isodoublet, where
we distinguish between p and n as struck nucleons (Sec. II B).
Section II C deals with EMC ratios derived from the material
in Secs. II A and II B. Since in the only publication thus far the
prime interest is a sample of EMC ratios for the lightest nuclei
in the classical EMC region xdata

min � x � 0.9, a comparison
with computed results, including for 3He, is limited to those.

In Sec. III we focus on the QE region and try to extract
the reduced magnetic FF αn = Gn

M/(µnGd ) (Gd ). We apply
a previously formulated criterion, which has to be satisfied
before one can attempt an extraction. For ND it appears
virtually never fulfilled.

As an alternative source, we include in Sec. III the CLAS
data for F

2H
2 [13]. If a few manifestly scattered data points in

the QE region are removed, the above-mentioned criterion is
satisfactorily met by the CLAS data, which we endowed with
(2–3)% systematic errors. We shall show that the extracted
averaged reduced neutron magnetic FFs αn agree with the OD
results.

In Sec. IV we exploit the same CL data in order to
extract the neutron SF Fn

2 along lines used in the past [20].
In the concluding section we discuss both theoretical and
experimental aspects of the extraction of n properties from
inclusive cross sections.

II. CROSS SECTIONS AND DERIVED OBSERVABLES

A. Total inclusive cross sections

Total inclusive cross sections are usually computed from
forms like Eq. (1.3), with f A(x,Q2) in some approxima-
tion, for instance the PWIA (or the distorted-wave inpulse
approximation), or on the light cone. Below we adhere to
a nonperturbative GRS theory, which we have exploited over
years [11,12]. Obviously, starting from one given Hamiltonian,
different approaches evaluated to sufficiently high order in suit-
able expansion coefficients should ultimately tend to the same
final results [21]. Our choice of the GRS approach is only mo-
tivated by, in general, better convergence of low-order terms.

We start with an outline of the derivation for fp = fn,
referring for details to Refs. [11,12] and [22]. In Eq. (2.8)
of the last reference we mentioned and discussed the GRS
expansion

φ(q, yG) =
∑

n

(
M

q

)n

φn(yG) (2.1)

of a related function φ(q, yG) of q = |�q|, the three-momentum
along the z axis, and of a relativistic generalization of the
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nonrelativistic West scaling variable [23] (η = Q2/4M2)

yG = y∞
G

(
1 − 1 − x

2(A − 1)(1 + x2/η)

)
,

y∞
G = M

(1 + x2/η)1/2
(1 − x).

y∞
G is the West variable for an infinitely heavy recoiling

spectator. We now abbreviate yG by y.
In the following we retain only the two lowest-order terms

in the GRS series (2.1),

φA;GRS(q, y) ≈ φA;(0)(q, y) + (M/q)φA;(1)(q, y). (2.2)

The lowest-order term is expressed by means of the single-
hole spectral function of the target (SPFT) S(E, k) [Ref. [22],
Eq. (2.9)] and the second term describes the dominant FSI.

The appearance of SPFTs in expressions for the lowest-
order SF is common to all approaches. Those are mainly
distinguished by the definition or choice of the fourth com-
ponent of the missing four-momentum. For instance, in the
GRS theory the latter is determined by the requirement that
the ejected N and the spectator shall, to equal measure, be
off their mass shells [23]. Its contribution ˜φ(0) is detailed in
Ref. [12], Eqs. (66) and (67).

The next-order GRS term for the usually dominant FSI
reads [cf. Ref. [22], Eq. (2.17a)]

(M/q)φA;(1)(y, q)

= (M/q)
∫ ∞

0

ds

2π
eisy

∫ ∫
d�r1d�r2ρ

A
2 (�r1, �r2; �r ′

1, �r2)

× [iχ̃A
q (�b, z; s)], (2.3)

and contains two components. The first is a two-particle
density matrix ρ2, not diagonal in one coordinate, which
in principle may be obtained from the product of two A-
particle ground-state wave functions, integrating out A − 2
coordinates. For A > 4 one usually makes a shortcut, using an
interpolating approximation [11]

ρA
2 (�r1, �r2; �r ′

1, �r2) ≈ ρA
1 (r1)ρA

1 (r2)

(
ρA

1 (r1, r
′
1)

ρA
1 (r1)

)

×
√

gA(|�r1 − �r2|)gA(|�r ′
1 − �r2|), (2.4)

where ρA
1 (1, 1) = ρA

1 (1) and gA are the single-particle density
and the pair-distribution function. Using the Negele-Vautherin
ansatz [24], the nondiagonal single-particle density ρA

1 (�r1, �r ′
1)

is computed from

YA(s) ≡ ρA
1 (�r1, �r ′

1)

ρA
1 (r1)

≈
∫

d3k

(2π )3
ei�k·�snA(k)

= 1

2π2s

∫ ∞

0
dk k sin(ks)nA(k). (2.5)

nA(k) is the single-particle momentum distribution, obtained
by integrating the SPFT over the missing energy E,

nA(k) =
∫ ∞

0
dE SA(k,E) (2.6)

The second factor in the integrand in (2.3) is an off-shell phase
factor χ̃q(�b, z; s) in terms of the relative coordinates �r1 − �r2 =

(�b, z); �s ≡ �r1 − �r ′
1 = (�q/|q|s). The appended q ≈ | �p + �q|

is approximately the laboratory momentum of the nucleon,
which absorbed the virtual photon, before a FSI scattering
from another N occurs.

In Ref. [22], Eqs. (2.17b)–(2.21b), we discuss the approxi-
mation

iχ̃q(�b, z) ≈ θ (z)[θ (s − z) − sδ(s − z)]
q(b), (2.7)

with the standard on-shell profile function 
(1)
q (b) =

−(σ tot
q /2)(1 − iτq)Aq(b). It is related to the diffractive elastic

NN scattering amplitude f NN
q , with τq = Refq/Imfq and

Aq(b) = [Qq(0)]2/4π ]e−(bQ
(0)
q )2/4. With np and pp data of

quite different quality, one usually takes an average of the
relevant np and pp cross sections [11].

Next one transforms the representative terms φ(q, yG) in
the GRS expansion (2.2) by means of a Jacobian

JA(x,Q2) = |∂yA/∂x| ≈ M

(
1 + x/η

(1 + x2/η)3/2

)

×
∣∣∣∣1 − (1 − x)(2 + 3x/2η − x2/η)

2(A − 1)(1 + x/η)(1 + x2/η)

∣∣∣∣ (2.8)

to the distribution function f A in the x,Q2 variables,

φA(q, y) → f A(x,Q2)

= JA(x,Q2)φA(q(x,Q2), yA(x,Q2)). (2.9)

By means of those distribution functions f A one computes
the SFs FA

k (x,Q2) in Eq. (1.3), and in particular the inelastic
parts NIcalc [11,25]. The elastic NE components are expressed
in terms of FFs and the computed distribution functions
f A(z,Q2) as in Eqs. (1.4) and (1.5). Their sum defines total
cross sections

σA,tot = NIcalc + NEFF. (2.10)

We applied this to all E03-102 and E02-90 total cross section
data.

In view of the fact that only a restricted part of the measured
ND have been published, we first display in Figs. 1(a)–1(d)
and 2(a)–2(d) a sample of I = 0 targets, namely, 2H(θ =
18◦, 22◦, 26◦, 32◦) and C (θ = 26◦, 32◦, 40◦, 50◦). These are
shown as heavy lines, to be distinguished from heavy dots for
data, first shown without error bars.

With the exception of remnants of resonance excitations
of the lightest nuclei at low θ (i.e., low Q2), the examples of
smooth data shown are typical for all targets A � 12 at similar
kinematics.

A cursory glance at the logarithms of the above total cross
sections shows reasonable agreement for each scattering angle
and target, in particular for the smallest x measured. This holds
down to the approach to the resonance region, where NIcalc 	
NE. The read-off agreement thus provides evidence that the
calculated NI components in the DIS region are basically
correct. In contrast, when we move to the QE and DQE regions,
growing discrepancies occur in very small cross sections. In
order to understand the nature of the above discrepancies, we
separately consider NE and NI components.
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FIG. 1. (Color online) σ tot for inclusive scattering of E = 5.76 GeV electrons on 2H; (a)–(d) are for θ = 18◦, 22◦, 26◦, and 32◦. Heavy
dots are data without error bars. Small dots (blue) and thin line (green) are NIcalc and NEFF, Eqs. (1.3), (1.4), and (1.5). Heavy line (red) is their
sum. Crosses are NEextr = data – NIcalc, Eq. (2.11). Missing crosses indicate data � NIcalc.

FIG. 2. (Color online) As Fig. 1 for C. (a)–(d) are for θ = 26◦, 32◦, 40◦, and 50◦.
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In addition to the computed NEFF, Eqs. (1.4) and (1.5), we
define

NEextr = data − NIcalc. (2.11)

Clearly, the semiempirical NEextr will show the scatter present
in the data, while NEFF in σA,tot, Eq. (2.10), is a smooth
function of x, f A, and FFs. For perfect data and theory the
NE values from Eqs. (1.5) and (2.11) should coincide.

The expression NEFF in the single-photon exchange (SPE),
Eq. (1.5), uses among other things G

p

E . The primary dis-
crepancy is in the ratio γ = µpG

p

E/G
p

M , once measured in a
Rosenbluth separation, and then by polarization transfer [26].
It has led to calculations of two-photon exchange (TPE)
corrections on an isolated p [27,28]. Those have been shown
to reduce the discrepancy mentioned above.

The above TPE corrections have been parametrized in the
functional form of a SPE part, which enables the sum SPE +
TPE to be considered as an effective SPE [28]. All results in
the following use that input. Their effect on a single bound p

appears to change σA for “bare” SPE by less than 1%. There
also exist TPE corrections involving two nucleons, and so on,
but their contributions have as yet not been determined.

We return to Figs. 1(a)–1(d) and 2(a)–2(d), where we
display NIcalc (light dots) and NEFF (light drawn lines), as well
as their calculated sum σA,tot. Crosses in these figures represent
NEextr, Eq. (2.11), and these are seen to differ considerably
from NEFF. Missing crosses indicate that NIcalc locally exceeds
data.

For growing x, NE contributions increasingly compete with
NI and eventually dominate, and we thus focus on the QE
region. Although on a logarithmic scale a small number of
points in the QE regions may occasionally seem to be close to
the dotted lines, actual discrepancies come to the fore on linear
plots for NEPP together with NEextr. The latter now include
total error bars, where we added to statistical errors (2–3)%
estimates for systematic ones. Figures 3(a)–3(d) are samples
for 2H(18,40) and C(18,40). Discrepancies appear to grow
with both A and Q2 and are occasionally quite erratic. Clearly
the ND cross sections and the results of standard computations
are at odds.

This is not the case for the analysis of the OD, using the
same code. We illustrate this by a comparison with Figs. 4(a)–
4(c) for σ

2H(E = 4.045 GeV; θ = 15◦, 30◦, 55◦), taken from
Ref. [25]. The logarithmic scale and Bjorken value on the
vertical and horizontal scales, as well as symbols and curves,
correspond to those in Figs. 1 and 2. We added dashed curves
for empirical inelastic NI parts, which cause NEPP ≈ NEextr. In
the critical region between the QEP and the (first) resonance,
NIemp exceeds NIcomp by less than 15%. It is obvious that in
the QE region OD and computed results agree far better than
is the case for the ND. We shall return to this issue in the
Discussion.

B. The A = 3 isodoublet

Among the ND are also the first results for 3He after the
old SLAC data [3]. Those are of particular interest, since 3He
is the lightest stable odd nucleus with a large relative nucleon

excess. Approximate charge symmetry invites a simultaneous
study of 3He and 3H, although for the latter there are as yet no
data.

We thus separately treat N = p, n and start with the lowest-
order term φA;(0), given in Ref. [22], Eq. (2.9) [or equivalently
Eqs. (66) and (67) in Ref. [12]]. This clearly demands
knowledge of SPFTs SA=3

N for the ejected nucleon N = p, n.
In those one distinguishes between a two-body continuum and
the 2H spectator state. The latter occurs only if IA=3

3 = IN
3 for

the three components of the isospins.
Using ψA=2

n for spectator states with separation energy
EA=2

n , one writes for the SPFT and momentum distribution
nA=3(k) = ∫

Emin
dE, SA=3(k,E) of an A = 3 nucleus,

SIA=3
3 (k,E) =

∑
j 
=2H

∣∣〈�IA=3
3

0

∣∣�IA=2
3

j 
=2H ∗ �k; IN
3

〉∣∣2 + δ
(
E − EA=2

j=2H

)

+ δ
(
IA=3

3 , IN
3

)∣∣〈�IA=3
3

0

∣∣�2H ∗ �k; IN
3

〉∣∣2

× δ(E + B2H) (2.12)

nIA=3
3 (k) =

∑
j 
=2H

∣∣〈�IA=3
3

0

∣∣�IA=2
3

j 
=2H ∗ �k; IN
3

〉∣∣2

+ δ
(
IA=3

3 , IN
3

)∣∣〈�IA=3
3

0

∣∣�2H ∗ �k; IN
3

〉∣∣2
, (2.13)

with B2H the binding energy of 2H. One then derives the
corresponding lowest-order A = 3 distribution functions (β =
Mν/q; ξ = E/M + x − 1)

f
IA=3

3 ;(0)
N (x,Q2)

= J (3)(x,Q2)

4π2

[
θ (x − 1)

∫ ∞

0
dE

∫ ∞

βξ

dk kS
IA=3

3
N (k,E)

+ θ (1 − x) ∗
(∫ ∞

M(1−x)
dE

∫ ∞

βξ

dk kS
IA=3

3
N (k,E)

+
∫ M(1−x)

0
dE

∫ ∞

−βξ

dk kS
IA=3

3
N (k,E)

)]

+ δ
(
IA=3

3 , IN
3

) ∫ ∞

|y|
dk knA=3

N ;2H(k), (2.14)

with y = limE→−B2H
(βξ ). J (3)(x,Q2) above is the Jacobian

Eq. (2.8) and

nA=3
N ;2H(k) =

∫ ∞

0
dE S

IA=3
3

N (k,E)δ(E + B2H), (2.15)

the 2H component of the A = 3 momentum distribution.
Regarding the dominant FSI term, Eq. (2.3), one distin-

guishes as before between a nucleon “1” that is a p or an n. In
the evaluation the following assumptions will be made:

(i) p and n number densities ρ1 [29] are equal in either
3He or 3H, but not in both species.

(ii) As to single p and n momentum distributions, we
computed n

3He
p,n (k) from the generalization Eq. (2.13)

of (2.4) and found small differences for single p and n

components.
(iii) In the generalization of Eq. (2.4) we assume gnn(|�r1 −

�r2|) = gpp(|�r1 − �r2|) and gpn(|�r1 − �r2|) = gnp
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FIG. 3. (a),(b) Linear plots of the QE parts of the total inclusive cross section of E = 5.76 GeV electrons on 2H, for θ = 18◦ and 40◦.
(c),(d) Same for C. Legend as for Fig. 1. In addition, drawn lines are NEFF, Eqs. (1.3) and (1.4). Filled circles are data with total error bars.

(|�r1 − �r2|), which change Eq. (2.3) into

ρ
IA=3

3
2 (1, 2; 1′2) → 1/3[ρ2(�r1,p, �r2,p; �r ′

1;p, �r2,p)

+ ρ2(�r1,p, �r2,n; �r ′
1,p, �r2,n)

+ ρ2(�r1,n, �r2,p; �r ′
1,n, �r2,p)]IA=3

3

≈ 1/3[Y (s)ρ1(�r1)ρ1(�r2)]IA=3
3

[2
√

gpn(r)gpn(|�r − �s|)

+
√

gpp(r)gpp(|�r − �s|)]. (2.16)

The functions gpp and gpn have been taken from
Ref. [16]. Neglecting the small differences in the single-

N momentum distributions n
IA=3

3
N , the points (i)–(iii)

leave no N dependence: φA;(1) depends only on IA=3
3 .

Next we replace �r1, �r2 by relative and center-of-mass system
(CMS) coordinates �r, �R and perform the R integration in (2.3),

T (�b, z) =
∫

d3 Rρ1(| �R + �r/2|)ρ1(| �R − �r/2|), (2.17)

which leaves one angular and one radial integration in the
expression for φ̃(1). Consequently, Y in Eq. (2.16) appears as
a factor in

∫
d �RρA

2 (1, 2; 1′, 2) → 1

3
YA(s)T A(b, z)G(�b, z; s), (2.18)

with G a combination of pair-distribution functions in (2.16).
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FIG. 4. (Color online) As Fig. 1 for E = 4.045 GeV. (a)–(c) are for θ = 15◦, 30◦, and 45◦. In addition to the legend for Fig. 1, dashed
curves (blue) are for NIemp, leading to NEFF ≈ NEextr scale from [25].

Finally, using approximation (2.7) for the phase, the FSI
contribution (2.3) becomes

φA=3;(1)(q, y)

= 1

3
Re

∫ ∞

0
ds eisyY (s)

∫ ∞

0
db b

×
(∫ s

0
dz [T (b, z)G(b, z; s)] − sT (b, s)G(b, s; s)

)
,

(2.19)

where six-dimensional integrals in Eq. (2.3) are reduced to
two-dimensional ones. Again, Eq. (2.6) in Ref. [22] produces
the corresponding f A=3;(1)(x,Q2). We checked that f FSI;(1) �
f (0), but did retain the FSI term f (1) in all calculations.

We now reach the crucial input, which is the outcome
of extensive calculations for various SPFTs S

3He, performed
by Kievsky et al. [30]. Those employed the following NN

interactions:

(i) purely two-body NN forces (B2; AV18 [31]), neglect-
ing Vcoul.

(ii) the same as (i), including VCoul.
(iii) the same as (ii) with an additional 3N force (B2 + B3;

AV18 UR9 [32]).

The list above does not refer to 3H. All items were intended
as input for 3He calculations but clearly only (ii) and (iii)
are realistic options with different levels of sophistication. In
contrast, option (i) lacks VCoul between protons, that is, the
most obvious and dominant charge-symmetry-breaking part,
and is therefore not suited for 3H calculations. However, in the
absence of other parts, the missing VCoul turns the Hamiltonian
for (i) to the the charge-symmetric one corresponding to (ii),
that is, for 3H.

However, option (i) is for a 3He Hamiltonian which lacks
Coulomb forces between the protons. Thus, disregarding ad-
ditional charge-symmetry-breaking effect, option (i) describes
the isopartner 3H. In particular for the basic distribution
functions one has the following relations for the isopartners:

f
3H
n = f

3He(no Coul)
p ; f

3H
p = f

3He(no Coul)
n (2.20)

015207-7



A. S. RINAT AND M. F. TARAGIN PHYSICAL REVIEW C 82, 015207 (2010)

FIG. 5. Distribution functions f
3He
p,n (x,Q2). (a) and (b) are for Q2 = 2.5 and 7.5 GeV2. Drawn lines, dashes, and dots correspond to

B2(0 + 1), B2(0), and B2 + B3(0 + 1) interactions. (c) is fp(x, Q2 = 5.0 GeV2), using B2(0 + 1).

Using Eq. (1.3) one has for the SFs

F
3He
2 (x,Q2) =

∫ 3

x

dz
1

3

[
2f

3He
p (z,Q2)Fp

2

(
x

z
,Q2

)

+ f
3He
n (z,Q2)Fn

2

(
x

z
,Q2

)]
(2.21)

and either form

F
3H
2 (x,Q2) =

∫ 3

x

dz
1

3

[
f

3H
p (z,Q2)Fp

2

(
x

z
,Q2

)

+ 2f
3H
n (z,Q2)Fn

2

(
x

z
,Q2

)]
(2.22)

=
∫ 3

x

dz
1

3

[
f

3He(no Coul)
n (z,Q2)Fp

2

(
x

z
,Q2

)

+ 2f
3He(no Coul)
p (z,Q2)Fn

2

(
x

z
,Q2

)]
.

(2.23)

Next we compare the above considerations with some results.
Figures 5(a) and 5(b) show for Q2 = 2.5 and 7.5 GeV2,
respectively, the distribution functions f

3He
p,n (x,Q2), Eq. (2.8).

The solid, dashed, and dotted lines correspond to interactions
B2(0), B2(0 + 1), and B2 + B3(0 + 1), where the numbers in-
dicate the order of terms retained. Since FSI terms are retained,
results for B2(0) serve only to indicate the relative importance
of the two terms. Figure 5(c) compares f A=3,I3

p (x,Q2 = 5),
Eq. (2.20), to which we shall return in Sec. II C.

At this point we need to mention that, for any Q2, the norm
of the lowest-order term Nx = ∫ 3

0 dx f A=3;(0)
p,n (x,Q2) = 1. A

more extensive discussion can be found in the Appendix.
These A = 3 distribution functions follow a standard

pattern for all light A [33]: for increasing Q2 the peak of
f A=3 increases and the width shrinks correspondingly. For
instance, for Q2 increasing from 2.5 to 10.0 GeV2, the B2 p

peaks increase from 4.041 to 5.394 and the n peaks from 3.483
to 4.648. Peak values for B2 + B3 are ≈4% lower than for B2
and are correspondingly wider. Also, for the same Q2 these
are intermediate between the values for 2H and 4He.

Figure 6 displays computed SFs F
3He
2 for fixed θ = 40◦

and variable Q2(x, θ ), using Eqs. (2.21) with B2 or B2 + B3
interactions. The results for those are practically indistinguish-
able from and quite close to the SF sextracted using data and
R ≈ 0.36/Q2 for the ratio of inclusive scattering of virtual
longitudinal and transverse photons. The lower curve in Fig. 6
is for F

3H
2 , Eq. (2.23): with no data, there is no extracted

parallel. One notices, however, the sizable difference between
predictions for the members of the isodoublet.

Figures 7(a) and 7(b) present on a linear scale data and
computed inclusive cross sections on 3He for θ = 18◦, 40◦.
Cross sections for θ = 40◦ for 3He using either B2 or B2 + B3
interactions are in good agreement with data. This outcome
should be compared with the same for other targets shown in
Fig. 1 on a logarithmic scale, and the same for the QE range
in Fig. 2 on a linear scale. The rather poor fit for 3He, θ = 18◦
is in striking contrast with the fit for θ = 40◦, in spite of the
use of the same underlying analysis. We cannot forward any
theoretical explanation.
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FIG. 6. Computed and extracted F
3He
2 (θ = 40◦) for B2 + B3

interactions. Lower curve is for F
3H
2 (θ = 40◦).

C. EMC ratios

At least some difficulties in understanding the new total
cross section data may be caused by unknown systematic
errors, the size of which can only be estimated. Since 2H is
among the targets, some of those errors may cancel in the EMC
ratios µA = FA

2 /F
2H
2 . For that reason alone is it of interest to

compare measured with computed ratios.
The new EMC data are for a few discrete θ and thus not

for fixed Q2. Although the resulting Q2 dependence is mild, it
should be borne in mind that, for instance, for the chosen angle
θ = 40◦, data on the released or measured additional x ranges
cover 2.80 � Q2 (GeV2) � 6.12, which is not an insignificant
variation in µ(Q2). The published data are for xdata

min � x � 0.9,
xdata

min ≈ 0.35 [6], and correspond to what occasionally is called
the “classical” EMC range. Within that range the variation of
Q2 has less spread and causes less than 1% variations in EMC
ratios.

Measured µ
4He and µ

12C [6] have a somewhat smaller
slope than older data, in particular for 4He (see, for instance,
Ref. [34]). In Figs. 8(a) and 8(b) we compare the new data with
previously computed GRS results for Q2 = 3.5, 5.0 GeV2 [33]
and for additional Q2, close to the above-mentioned binned
ones. The agreement is reasonable.

We also mention a prediction, based on the Q2 inde-
pendence of F

p,2H
2 (x ≈ 0.20,Q2) [19]. Since all distribution

functions f A are negligible for x � 0.4, one may replace the
lower integration limit in the expression (2.1) for FA

2 by 0.
Then, using unitarity, that is, N [f A] ≈ N [f A;(0)] = 1, all
FA

2 (x ≈ 0.20,Q2) computed by Eq. (1.3) are predicted to be
roughly independent of Q2 as well as of A. Consequently,
EMC ratios µA(x,Q2) ought to intercept the x axis at a
value µA(x ≈ 0.2,Q2) ≈ 1 [33]. This holds when only one
distribution function is involved, that is, for I = 0 nuclei,
or when an averaged f A is sufficiently accurate in all other
cases.

The actual crossover µA,2H = 1 for most nuclei (and for
several µA,A′

) is xco ≈ (0.2–0.3), whereas the intercept of the
I = 0 ND seems to occur for somewhat higher x ≈ 0.33 [6].

Again we discuss separately the case of the A = 3 isodou-
blet with different fp and fn. In the previous section we
presented results for computed SFs and cross sections for the
A = 3 doublet, using various input options. For completeness
we add for 3He the “standard” extraction of its SF from
cross section data. Although this exists for several options,
we report only on computed results for B2 + B3 interactions

and calculated EMC ratios as FA
2 /F

(2)H
2 or σA/σ (2)H.

As discussed above, we need option (i) in Sec. II B for 3He
with no VCoul, in order to compute the the SF for the isopartner
3H. Data are much desired [35,36], but it will take years before
those will become available and can be confronted with F

3H
k

calculated, for instance, from Eq. (2.23) (cf. also [16,36,37]).
In Fig. 9(a) we show three curves for µA=3;F2 (θ = 40◦)

from ratios of SFs. The top and bottom ones are for 3He and
3H, while the middle one, for half their sum, is the computed
I = 0 part of either member of the isodoublet. One notices
the widely different behavior of the two ratios: In the classical
EMC region, µ

3He > 1, has a positive x slope and shows no
minimum for medium x. In contrast µ

3H < 1, has a negative
x slope and an unexpectedly deep minimum for x ≈ 0.7. The
isosinglet part has positive slope, crosses 1 at x ≈ 0.8, and has
no visible minimum.

Figure 9(b) shows µA=3;σ (θ = 40◦), but now as ratios of
cross sections, which are seen to differ from the results in
Fig. 9(a): µ

3He � 1 for x � 0.85 and has a maximum for x ≈
0.75. In contrast µ

3H < 1, has negative x-slope and shows
a shallow minimum for x ≈ (0.6–0.7). Essentially the same
holds for the isoscalar part, but the 3He part there pushes the
I = 0 part an amount ≈0.1 upward on the µ scale.

FIG. 7. (a),(b) Computed total inclusive cross sections on 3He for θ = 18◦, 40◦. Data with error bars are from [7].

015207-9



A. S. RINAT AND M. F. TARAGIN PHYSICAL REVIEW C 82, 015207 (2010)

FIG. 8. EMC data µ
4He(x � 1.0, θ = 40◦) (a) and same for C (b) [6], and computed results for fixed Q2 = 3.5, 5.0 GeV2.

The empty circles in Fig. 9(b) are the data of Seely et al.

[6] for 3He from ratios of bona fide cross sections, although
they are called by the authors “raw data” [empty circles in
Fig. 9(b)]. Comparison with the upper drawn curve shows
rough agreement. In contrast to a genuine calculation of the
isoscalar part (dashed curve), the above-mentioned authors
modify the above “raw data” in a standard fashion, which does
not require information on 3H. This leads to a fictitious I = 0
nucleus with N = Z = A/2 amounting to

f A(Z,N)
p,n ≈ f A(Z = N ) ≈ f A

(
A

2
,
A

2

)
. (2.24)

This is considered to be a model for the EMC ratio of an even
nucleus with I 
= 0 and instructive, even for interpolation to
A = 3 [6].

The results hardly change when θ runs over the entire
measured range, and this holds in particular for their I3

dependence. One should keep in mind that the EMC effect,
small in any case, is the deviation from 1 of the ratio of small
numbers. That effect becomes even smaller when going to
the lightest nuclei, increasing its precarious sensitivity. In this
relation we recall the I spin dependence in Fig. 5(c) of the
p distribution function in the isodoublet, assuming isospin
symmetry after correcting for VCoul. The two may well be
related.

III. THE MAGNETIC FF OF THE NEUTRON
AND CLAS DATA

In the previous sections, we encountered clear discrepancies
between the NE components in the ND and OD results
in the QE regions of total inclusive cross sections. Their
description requires the dominant reduced n magnetic FF
αn = GM

n /[µnGd ] in the QE region. In the following we recall
attempts to isolate and to extract αn.

At this point we remark that on the one hand the entities
Gn

M (and Fn
k considered in the following section) are needed

to determine the total SFs FA and the inclusive (reduced) cross
sections σA. However, one wishes to extract those from QE
data. The procedure is to use some starting values in the
input, compare the output until self-consistency is reached,
and compare the outcome with the starting values.

The expressions (1.4) and (1.5) locate two functions with
pronounced peaks for x ≈ 1. Those are the NE parts of
the reduced cross section KA;NE(x,Q2; E, x), Eqs. (1.1)
and (2.11), and the linking distribution function f A(x,Q2),
functions of five and three variables, respectively.

In appears that their ratio KA;NE/f A is primarily a function
of Q2 with only weak additional dependence on x, θ, E, and
A. As suggested in the past, we turn this into a criterion, to be
satisfied by candidates xl for extraction.

For sufficiently accurate and smooth data one tries to locate
a continuous x range in the QE region for which the above

FIG. 9. µA=3;F2 (θ = 40◦) from ratios of SFs F2 (a) for 3He and 3H (solid line and long dashes), and from ratios of cross sections (b). Short
dashes as for the isoscalar components. In (b) empty and full circles are direct data for 3He and manipulated ones for a fictitious isoscalar
A = 3 nucleus, respectively [6].
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FIG. 10. (Color online) Data with error bars for SF F
2H
2 (x, Q2) from CL data (filled circles) [13]. (a) and (b) are for Q2 = 3.275

and 4.175 GeV2. Legend as in Fig. 1.

ratio does not vary by more than a prescribed amount, say,
10%. If such a range is available, one finds [cf. Eq. (4.3) in
Ref. [25]]

αn|µn| =
(

2MKA,NE/[vf Gd ] − B2/η

1 + tan2(θ/2)/v
− (αpµp)2

)1/2

,

(3.1)

where the Q dependence is implicit. Here, Gd is the
standard dipole FF, v = x2/2(1 + η), βN = GN

E /Gd, αN =
GN

M/[µNGd ], and B2 = β2
p + β2

n . Equation (3.1) generalizes
for fn 
= fp as

N

A
fn[αnµn]2 + Z

A
fp[αpµp]2

= MKA;NE
/
vG2

d − [
Zfpβ2

p

/
(Aη) + Nfnβ

2
n

]
1 + tan2(θ/2)/v

. (3.2)

αn(Q2) is of course only a function of Q2, but because of
imperfect data and theory the algorithm produces an inherent,
weak dependence on the chosen points x. Whereas there
is no physical meaning to individual x-dependent results,
it is natural to define the extracted αn(Q2) ≡ 〈αn(Q2)〉 =
〈αn(x; Q2)〉x as an appropriate average over the selected
x range. For all previously investigated OD the above criterion
is met for a suitable number of continuous x points (see the
table in Ref. [25]). As to ND, only for 2H(θ � 32◦) could we
find two or three such points. However, those points appear
to produce through Eq. (3.1) a value for αn far from the OD
results for similar Q2.

Like the material discussed in Secs. I and II, this also
indicates that in the QE region the new and old data sets
do not match. We emphasize two points, relevant for OD.
One is the very applicability of the suggested analysis for OD
data, in contrast to the same for ND. Moreover, different sets
with approximately the same Q2 produce essentially the same
αn(Q2), providing evidence for internal consistency [25].

As a last resource we invoke the CLAS Collaboration data
on F

2H
2 , which have not been subjected to a similar analysis

before. These are available for a dense net of Q2 (�Q2 =
0.05 GeV2), which for each Q2 cover a wide and dense x range
(�x = 0.009) [13]. We apply the above-mentioned criterion
regarding the K/f ratio to those data and look for continuous x

ranges around the QEP for θ = 18◦, 22◦, 26◦, and 32◦, which

approximately correspond to Q2 ≈ 2.50, 3.275, 4.175, and
5.175 GeV2. Regrettably, CL data do not extend to larger Q2,
covering θ = 40◦ and 50◦ in ND.

Further, for the CL data one cannot, strictly speaking, apply
the above criterion for a continuous x range in every data
set. However, a representative number of candidate x points
remains after removal of at most one or two points per set,
for which the observed scatter of neighboring points exceeds
10%. The extracted 〈αn(Q2)〉 appears to match the OD results.

We first show in Figs. 10(a) and 10(b), in much the same
way as in Figs. 1 and 2, the components NI

2H,calc, NE
2H,FF,

and NE
2H,extr for two of the above four data sets with Q2 =

3.275 and 4.175 GeV2. Whereas this depiction is clearly useful
around the QEP, some disagreement between the two NE
representations grows toward the inelastic wing of the QE
peak. It is similar in size and shape as for OD [25], but not
anywhere as disastrous as for the above-mentioned ND.

In Table I we entered F
2H
2 for the above four angles over

a range of x and correspondingly varying Q2 values. In the
last three columns we compare (i) the values extracted from
the ND, assuming the standard transverse to longitudinal ratio
R ≈ 0.36/Q2; (ii) the same computed from Eq. (1.3); and
(iii) the CL data for F

2H
2 . Differences seem largest around the

QEP and occasionally switch sign. No similarly large aber-
rations are apparent in the analysis of linear plots of the OD.

Table II contains the reduced magnetic FF αCL
n from the

CLAS data, Q2, the range, and the number of chosen x points.
Column 4 states the averaged 〈αn(Q2)〉 with the error of the
mean. To the statistical errors we added in quadrature estimated
2% systematic ones.

In Fig. 11 we assemble αn(Q2) as extracted from the OD and
CL data for four values Q2 = 2.501, 3.275, 4.175, and 5.175
GeV2, together with a previously extracted parametrization,
Eq. (5.4), Ref. [25]. For completeness we added to the above all
αn with Q2 � 2.5 GeV2 [25], extracted from OD. The CL and
old data sets produce essentially the same results and trend.

Figure 11 displays 〈αn(Q2)〉, extracted from the CL data for
closely spaced Q2 around the four values above. While these
vary by (0.5–1.0)% in going from one Q2 bin to a neighboring
one, entries within each bin show larger variations within a
standard deviation of 〈αn(Q2)〉.

In Fig. 11 we also entered αn(Q2), recently extracted
from the cross section ratio 2H(e, e′n)p/2H(e, e′p)n for
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TABLE I. Values of F
2H
2 (x, Q2), extracted and computed from ND, and the same from CL [44] for a chosen x range (columns 1). Column

2 gives Q2(x, θ ) for that x range and θ = 18◦, 22◦, (θ = 32◦, 40◦). Columns 3, 4, and 5 are for ND F
2H,extr
2 , F

2H,calc
2 , and F

2H,CL
2 for given x

and the above two pairs of angles. Empty entries correspond to missing data.

x Q2(18◦) F
2H;R
2 (18◦) F

2H;calc
2 (18◦) F

2H;CL
2 (18◦) Q2(26◦) F

2H;R
2 (26◦) F

2H;calc
2 (26◦) F

2H;CL
2 (26◦)

0.5 2.03 0.153 0.154 0.156
0.6 2.17 0.0985 0.102 0.105 3.31 0.0884 0.0910 0.0094
0.7 2.28 0.0555 0.0530 0.0559 3.56 0.0522 0.0542 0.0556
0.8 2.36 0.0387 0.0333 0.0464 3.79 0.0241 0.0238 0.0272
0.9 2.43 0.0225 0.0200 0.0171 3.98 0.0109 0.0108 0.0126
1.0 2.51 0.0344 0.0369 0.0406 4.15 0.0110 0.0123 0.0129
1.1 2.56 0.0086 0.0112 0.0097 4.29 0.0022 0.0026 0.0022

x Q2(32◦) F
2H;R
2 (32◦) F

2H;calc
2 (32◦) F

2H;CL
2 (32◦) Q2(40◦) F

2H;R
2 (40◦) F

2H;calc
2 (40◦) F

2H;CL
2 (40◦)

0.4 3.37 0.184 0.174 0.187
0.5 4.02 0.125 0.124 0.128
0.6 3.95 0.0801 0.0810 0.0775 4.59 0.0740 0.0750 0.0785
0.7 4.33 0.0471 0.0480 0.0450 5.09 0.0404 0.0415 0.0442
0.8 4.66 0.0204 0.0210 0.0225 5.58 0.0186 0.0182 0.0212
0.9 4.95 0.0089 0.0083 0.0096 5.99 0.0065 0.0058 0.0088
1.0 5.23 0.0055 0.0064 0.0053 6.39 0.0034 0.0035 0.0035

Q2 = (1.0–4.8) GeV2. Each FF point has been measured with
an error less than 3%, but again, for Q2 � 2.5 GeV2, and most
obviously for Q2 � 3.4 GeV2, the scatter between adjacent
points is often far larger. The results (Fig. 5 in Ref. [38]) are
reproduced in Fig. 11 together with those of Ref. [39].

We conclude this section by mentioning a recent calculation
of space- and timelike nucleon FFs using a light-front
framework [40]. Whereas spacelike p FFs are well reproduced,
the computed αn shows a maximum, which diminishes toward
0 for large Q2. That result disagrees considerably with those

TABLE II. αn extracted from inclusive scattering on 2H [44].
Column 1 gives the group of values of Q2, around Q2 = 2.50,
3.34, 4.15, and 5.24 GeV2, which correspond to the values Q2(θ =
18◦, 22◦, 26◦, 32◦; x = 1) Columns 2 and 3 are the x range of points
around the QEP and the number of selected points n. The last column
gives the average over the given x range of 〈αn(Q)〉, the reduced
magnetic FF of the n, and the error of the mean.

Q2 (GeV)2 x interval n 〈αn〉 ± δαn

2.425 0.9235–1.0405 12 1.0005 ± 0.0334
2.475 0.9235–1.0405 12 0.9837 ± 0.0310
2.525 0.9235–1.0315 12 1.0020 ± 0.0294
2.575 0.9235–1.0315 10 1.0488 ± 0.0324
3.275 0.9415–1.0225 9 0.9752 ± 0.0344
3.325 0.9595–1.0225 6 0.9917 ± 0.0475
3.375 0.9325–1.0225 7 0.9720 ± 0.0448
4.075 0.9685–1.0675 9 0.9822 ± 0.0430
4.125 0.9775–1.0855 9 0.9614 ± 0.0497
4.175 0.9685–1.0855 11 0.9415 ± 0.0354
4.225 0.9775–1.0765 8 0.9804 ± 0.0309
5.075 0.9865–1.0675 6 0.9237 ± 0.0593
5.175 0.9685–1.0585 6 0.9001 ± 0.0350
5.275 0.9865–1.0765 5 0.8753 ± 0.0625
5.375 0.9685–1.1035 7 0.9145 ± 0.0378

displayed in Fig. 11, where the almost coincident extractions
from the CLAS Collaboration data and the OD produce a
continuous decrease, which persists out to Q2 ≈ 10 GeV2.

IV. EXTRACTION OF Fn
2 FROM CLAS DATA

The neutron SF Fn
2 complements information from F

p

2 on
the valence quark distribution functions uv and dv in the N :
Its knowledge is a minimal requirement to disentangle the
two distributions. Lacking reliable information on Fn

2 , one
occasionally invokes the SU(6) result [Fn

2 /F
p

2 ]SU(6) = 3/5,
which amounts to uv = 2dv . Alternatively, one uses the
“primitive” choice Fn

2 = 2F
2H
2 − F

p

2 , the reliability of which
is restricted to x � 0.35.

FIG. 11. Averaged reduced neutron magnetic αn (Table II). On
the curve for OD filled circles are results from CL (Sec. III), crosses
from Lung [39], and diamonds for all results from Table I in Ref. [25]
for Q2 � 2.5 GeV2. Open circles are from a 2H(e, e′n)p/2H(e, e′p)n
experiment (Fig. 4, Ref. [38]).
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It is clearly desirable to have empirical information on Fn
2

along with F
p,2H
2 for x � 0.3 in order to determine N parton

distributions. With no free n target available, one has to extract
Fn

2 from bound neutrons. The preferred target has been 2H, for
which the nuclear information is simplest and most accurately
known, but the literature also describes the extraction of Fn

2
from future precision data on the SFs for 3He and 3H (e.g.,
Refs. [16,36,37]) and heavier targets [20].

Several extraction methods have been proposed in the past.
For instance, an approximate inversion of Eq. (1.3) requires
reliable data points on FA

2 , and preferably for several targets.
Previously we found that data were barely sufficient to extract
Fn

2 from a single binned Q̄2 = (3.5–4.0) GeV2. We summarize
the steps of the procedure followed [20], which will also be
exploited here.

(i) Assume C(x,Q2) ≡ Fn
k (x,Q2)/Fp

k (x,Q2) to be inde-
pendent of k.

(ii) Assume C(0) = 1, as implied by a finite Gottfried sum∫ 1
0 dx[Fp

2 (x,Q)2 − Fn
2 (x,Q2)]/x.

(iii) Assume the validity for x � 0.30–0.35 of the “primi-
tive” approximation F

2H
2 = [Fp

2 + Fn
2 ]/2, that is, C =

2F
2H
2 /F

p

2 − 1. In practice we use p,2 H data for two
points, chosen to be x = 0.15, 0.25. The information
(ii) and (iii) mainly determines the decrease of C(x,Q2)
from 1 for x increasing from 0 to about x � 0.6.

(iv) A last step is a chosen parametrization for C(x,Q2) =∑
k�0 dk(Q2)(1 − x)k . For k = 3, (ii) and (iii) leave one

parameter to be determined, and the natural candidate
is C(1,Q2) = d0(Q2) = 1 − ∑

k�1 dk(Q2).

A remark on C(1) is in order here. Both SFs F
p,n

2 (x,Q2)
vanish for finite Q2 beyond the lowest inelastic pion production
threshold at xπ thr(Q2) ≈ 1/

[
2Mµπ/Q2 + 1

]
, and the NI

continuum is therefore isolated from the elastic peak at x = 1.

The SFs of the latter are given by Eqs. (1.4) and (1.5) in terms
of FFs. Neglecting Gn

E , one finds (typos in Ref. [20] have been
corrected below)

lim
x→1

CFF(x,Q2) =
(

µnαn(Q2)

µpαp(Q2)

)2 [
1 + 4M2

Q2

(γ (Q2)

µp

)2
]−1

(4.1)

with

γ (Q2) = µpG
p

E(Q2)

G
p

M (Q2)
,

αn(Q2)

αp(Q2)
= Gn

M (Q2)/µn

G
p

M (Q2)/µp

. (4.2)

C was then determined by a least-squares fit for the sum
∑xM

xm

and not point by point in x. Naturally, any parametrization of
C, and in particular (iv) above, ascribes values to C in the
unphysical region 1 � x � xr (Q2).

The extracted parameter d0(Q2) = C(1,Q2) fairly
rapidly reaches a plateau for increasing Q2. Since
limx→1 F

p,n;NI
2 (x,Q2) = 0, it is not surprising to find that val-

ues for C(x � 1,Q2) on the plateau, that is, the extrapolation
from the adjacent nonphysical region to the largest x > xthr,
and ultimately to x = 1, depends sensitively on the upper limit
taken in the x sum above. Thus, for xM = 0.75 and increasing
Q2 in the range 4 � Q2 (GeV2) � 10, the extracted C(1,Q2)
decreases from 0.38 to 0.27, while CFF(1,Q2), Eq. (1.5),
barely decreases form 0.38 to 0.37. For a slightly larger
xM = 0.80, C(1,Q2) decreases from 0.34 to 0.25 over a much
narrower Q2 interval than for xM = 0.75.

The procedure has been checked by a recalculation of
F

2H
2 , using the extracted Fn

2 in Eq. (1.3): The initial F
2H
2

appears accurately reproduced. Figures 12(a) and 12(b) show
C

2H(x,Q2) as well as F
p,n

2 for Q2 = 2.5, 7.5 GeV2 and
xM = 0.75. Although there is an influence on C for x = 1,
one can only barely distinguish between C(x � 0.85,Q2),
computed for either xM = 0.75 or 0.80.

Alternative attempts have been made in the past in order
to obtain Fn

2 , all of which use a 2H target. One, for instance,
replaces the distribution function f PN,2H in Eq. (1.3) by a
momentum distribution or some generalization of the latter,
and uses it to “smear” nucleon SFs [41]. From the difference
〈Fn

2 〉f = F
2H
2 − 〈Fp

2 〉f , featuring folded or smeared SFs, the
“bare” Fn

2 has to be deconvoluted. An iteration method has
recently been tested on the Mainz Data Collection (MAID)
parametrization for FN

2 [42]. The reported success may in part
be due to the fact that the procedure, as well as the parametrized
input, imply the use of a smooth average. Application to real
data with non-negligible fluctuations may well run into the dif-
ficulties discussed above. We also mention an extraction of Fn

2

from essentially the impulse approximation for f PN ;2H, using

FIG. 12. Extracted C(x, Q2) for xM = 0.75 (short dashes) and F
p,n

2 (x,Q2 = 2.5 GeV2) (solid and dashed curves). (a) and (b) are for
Q2 = 2.5 and 7.5 GeV2.
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the parameterized ratio F
2H
2 /F

p

2 , Fp

2 and the 2H wave function
[43]. Most published C(x,Q2) follow the same trend for
x � 0.75 and are primarily distinguished by the extrapolated
C(x = 1).

Finally, we recall the extraction of the leading twist

moments of F
p,2H
2 from the CL data. By means of a convolution

like Eq. (1.3), those are subsequently used to construct parallel
twist moments for n [44]. This analysis enables a proper
definition of averaged αn. No inversion leading to Fn

2 (x,Q2)
has been reported there.

V. DISCUSSION AND CONCLUSIONS

It has been our goal to describe the Jlab experiments E103-
102 and E02-90 on inclusive electron scattering from various
targets, specifically for total cross sections and EMC ratios
[6]. Subsequently we tried to extract from those the (reduced)
magnetic FF αn(Q2) and the SF Fn

2 (x,Q2) of a neutron bound
in a nucleus. These are, respectively, the dominant part of the
NE component in the QE region and a vital component of the
inelastic part of the total cross section.

For the ND, we also used the GRS approach, which
has previously been applied to all older experimental in-
formation [25]. Only minor changes in theoretical elements
have been applied since; for instance, the inclusion of
two-photon exchange corrections to the electric FF of the
proton.

We first mention that the most reliable results from the OD
were obtained in the DIS region, where inclusive scattering
is entirely inelastic. For the smallest x we found agreement
with data, not rarely to within (2–3)%. For increasing x,
strongly decreasing NI parts have to be accurately known in
order to isolate with precision the NE parts dominating the
QE region [25]. For medium x between the “elastic tails”
of (pseudo)resonances and their peaks, disagreements appear,
which are reflected in the difference between the extracted and
computed NE components.

A possible cause of the above disagreements could be
uncertainties in the proton SF. We checked that a mild
relative change of NI, which grows to ≈ 15% in the NE/NI
interference region, and again decreases toward the higher
NI resonances, brings about agreement. Such an uncertainty
in the parametrization of F

p

2 in the required Q2 region
apparently hardly affects the quality of the extracted F

p

2
[18].

Next we considered the extraction of the n magnetic FF
from data in the QE region. We utilized a previously formulated
criterion for such an extraction, which requires a continuous
set of eligible x points for which the ratio of the x-dependent
reduced total cross section and the computed distribution
function falls within predetermined limits. The criterion could
be satisfied for all old data sets, which moreover showed
consistency: The same αn resulted from different data sets
with overlapping Q2 values.

From new precision data one expects agreement of at
least the same quality. Using exactly the same program
as before, we analyzed all measured data, of which only
a fraction has been published. The major results are as

follows.

(i) Even in the DIS region, the best agreement is not
better than (5–6)%, and not infrequently of both
signs.

(ii) Measured EMC ratios for light isoscalar nu-
clei approximately agree with previous data and
calculations.

(iii) The same seems to hold for model-independent features
for x ≈ 0.20.

(iv) It is virtually impossible in any QE region to satisfy our
criterion on candidate x points for the extraction of αn.
As a rule NE values obtained as the difference between
data and computed NI components do not match NE
values computed from FFs anywhere. The required
changes in NI parts leading to a match by far exceed
the moderate ones described in Ref. [25].

At this point we mention a suggestion to integrate the
QE peak over some x interval and to extract αn in this
way [45]. We doubt whether the suggested procedure can pro-
duce reliable averages for locally varying relative systematic
errors.

The only alternative material that we could use in the
above analysis are the CLAS Collaboration data on 2H [13],
which have apparently not been analyzed before. From those
we could extract both αn and Fn

2 and the former essentially
matched older results.

Particular attention has been paid to the A = 3 isodoublet.
Many years after the first data were taken, the new experiments
contain information on 3He, while theory has also much
advanced. Most significantly there are available results on
exact calculations of the A = 3 single p, n spectral functions
for several NN interactions. Those underlie the calculation
of the dominant contribution of the separate p, n distribution
functions in both 3He and 3H, with the latter using charge
symmetry when VCoul is neglected. We thus calculated for
the GRS theory the SFs of 3He and 3H and inclusive cross
sections.

We started with σ 3He for all six measured angles and
found only crude agreement for the lower angles, but good
correspondence for the largest ones, in particular for θ = 40◦.
Since we used one and the same theory for all, theory cannot
be blamed for the striking dissimilarity.

Next we computed the two EMC ratios µA=3(θ = 40◦) and
their isoscalar mean, once as ratios of F2 and then alternatively
from cross sections. The data for 3He in the classical EMC
region hover around 1 and do not show a minimum around
x ≈ 0.5–0.6. About the same is predicted by theory.

The results are quite different for 3H, for which theory
predicts a more standard behavior with µ � 1 and a shallow
minimum. Lack of data prevent a comparison with the
theoretical outcome. However, one may discuss the computed
isoscalar part, which resembles a standard EMC ratio with a
growing negative slope for decreasing A from A = 12 down
to 2H. The slope of the isovector part µA=3;I=0(θ = 40◦) lies
between those for 4He and 2H.

As to raw data, in a standard procedure one estimates µA for
nuclei with a nucleon excess, replacing that EMC ratio by one
for a fictitious isobar with Z = N = A/2. The published data
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for the isoscalar part of 3He agree quite well with the computed
ones. It should be clear that theory computes a real result,
while the data relate to a somewhat dubious extrapolation to
the lowest I 
= 0 nucleus.

We return to the enigmatic outcome for several nonisolated
ND. Since the same tools were used before, the most extreme
conclusion could be incompatibility of the old and new sets.
A milder judgment blames systematic errors. We included
those as a fixed estimated percentage, but it is clear from
the scatter of neighboring accurate points that more than
average systematic errors are required in order to bring about
agreement.

We also emphasize that all cross section data sets are
reported to have normalization uncertainties in the range
(2.2–2.7)% [7]. Those may cause some of the observed
discrepancies, but not those between inclusive cross sections
on 3He for θ = 18◦ and 40◦ in similar data sets.

One may raise the question of whether a fundamental
parton description might significantly modify results based on
the hadronic representation used. Only recently has attention
been redrawn to two old communications regarding a QCD
treatment of nuclear SFs in the single-gluon-exchange PWIA
approximation. That approach leads to a generalized convo-
lution of distribution functions much like Eq. (1.3), with a
simple correspondence between the featured quantities in the
two representations [46,47].

This approach can actually be extended beyond single gluon
exchange, and one shows that at least some higher-order QCD
corrections can still be accommodated in a convolution [48].
In fact, formally the same expression (1.3) holds in both a
hadronic and a QCD representation for FA, provided one
reinterprets f A,PN in the latter as the distribution function of
(centers of) nucleons in the target. It is not likely that there are
significant QCD contributions that cannot be accommodated
in a convolution. At the end of Sec. II we recalled and actually
compared EMC ratios calculated in the hadron and in a parton
representation.

The availability of planned Rosenbluth-separated data
naturally simplifies the analysis, but will probably not resolve
the exposed problems, as long as the scatter of neighboring
points is much larger than the accuracy of each point. For
instance, αn extracted from Eq. (3.1) will remain sensitive to
the input.

Use of the the same analyzing tools as before indicates
that the new JLab data do not confirm previous conclusions,
and, related to this, one cannot extract statistically significant
information on the neutron, in contrast to the apparent success
previously obtained from the OD. A resolution of this difficulty
is clearly highly desirable.
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APPENDIX

We start with a QCD prediction for the lowest moment
M0(Q2) = ∫ 1

0 dx F
p

2 (x,Q2) = 0.1471 of a nuclear SF in the
Bjorken limit with Nf = 6 contributing flavors. For any
nuclear target a similar moment can be computed, given
a parton representation of FA

2 . For several A and finite
Q2 = (2.5–10.0) GeV2, we found values up to 5%–6% lower
than for a p [49].

We now add the moments of the computed F
3
He

2 to
previously reported results for 〈N〉, 2H, 4He, C, and Fe in
Table I, Ref. [49]. For low Q2 ≈ 2.5 GeV2 the moment of 3He
is 16% higher than for a p. That moment rapidly decreases
with increasing Q2 and becomes 0.1476 for Q2 = 10 GeV2,
close to the Bjorken limit. That for 3H is substantially closer
to the previously computed moments of other light and
medium-weight targets. As Fig. 5 illustrates, this is because
of the differences of fp,n and of each distribution function for
3He and 3H. This also causes the differences in the predicted
EMC ratios µA=3.

We return to f A in Eqs. (2.2) and (2.3), which we termed
the SF of a fictitious nucleus composed of a point nucleus or,
alternatively, a distribution function for the centers of nucleons
in a nucleus. QCD is clearly not applicable to these artifacts,
no matter how high Q2 is. Their norm N , very close to 1,
differs from MA

0 of physical nuclei.
In Sec. II B we mentioned that, for either choice of NN

interaction B2 or B2 + B3, the norm of the lowest-order part
Nx(Q2) = ∫ 3

0 dxf (0);A=3
p,n (x,Q2) equals 1 within a few parts

per mille: More precisely, for Q2 = (2.5–10.0) GeV2, Nx has
a minute slope ≈ 0.0024/GeV2. The same holds for Ny(q) =∫ qmax

−q/2 dy φ(0)(q, y).

For finite Q2 the deviations of the norm from 1 and the
minute slope of those deviations as a function of Q2 are not
due to numerical inaccuracies. We note that a total disregard
of the missing energy and momentum yields f (x,Q2) =
δ(x − 1).

It is interesting to observe that the relevant missing energies
appear restricted to −|B2H| � E/M � 0.012, a range that
dominates the underlying SPFT SA=3

p,n (k,E) (negative values
occur only for a 2H spectator). To a less extreme extent
the same holds for the missing momentum: k/M � 0.2.
Reinstatement of finite small missing energies and momenta
produces distribution functions with finite Q2-dependent
widths.

This paper emphasizes A = 3 nuclei, but several points
hold for general A. For 2H a norm of 1 is trivial, but a
similar observation can and has been made for 4He, for which
the underlying SPFT is fairly accurately known [22]. For
heavier nuclei with models for ρA

2 [see Ref. [22], Eqs. (9)
and (10)], the norm N (f ), when necessary, has been adjusted
to 1.

Finally, the discussion holds for the lowest-order part
f (0). For the reasons mentioned, it is not evident that,
when FSI contributions are included, one should apply a
small renormalization correction, owing to the relatively
small f A=3;(1) � f A=3;(0). We have not done so in our
calculations.
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