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Contribution of the spin-1 diquark to the nucleon’s g1 structure function
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This is the final installment of a series of work that we have done in the context of the meson cloud model
that investigates F2 and g1 structure functions. In our previous work on g1 structure function, we showed that
having a spin-0 quark-diquark for the nucleon core along with both pseudoscalar and vector meson clouds was
not sufficient to reproduce experimental observation(s) consistently. For the F2 structure function, we found that
both superposition of a spin-0 diquark and a spin-1 diquark in the nucleon core along with pseudoscalar and
vector meson clouds are needed to reproduce the observed F2(x) and the Gottfried sum rule (GSR) violation.
Therefore, in the present work, we consider the contribution of a spin-1 diquark in the nucleon core to the g1

structure function. The calculation is performed in the light-cone frame. The dressed nucleon is assumed to be a
superposition of the bare nucleon plus virtual light-cone Fock states of baryon-meson pairs. For the bare nucleon,
we consider different quark-diquark configurations along with the possibility that there is no diquark inside the
nucleon. The initial distributions are evolved. The final results are compared with experimental results and other
theoretical predictions.
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I. INTRODUCTION

The meson cloud model (MCM) has been used extensively
for both polarized and unpolarized nucleon structures. It all
started with Sullivan’s original work in 1972 [1], which pointed
out the significance of the pionic structure of the nucleon
in high-energy processes. Sullivan examined the role of the
one-pion exchange in deep inelastic scattering from nucleons.
Being the lightest meson, the pion is expected to play a
dominant role in the nucleon structure. However, this does
not exclude the contribution of other mesons to the nucleon
structure. Therefore, the mesonic structure of the nucleon, or
the so-called the meson cloud, can have contributions not only
from the pion but from other members of the pseudoscalar
and vector mesons octets. Since the 1990s, both unpolarized
[2,4–6,8–30] and polarized [31–39] nucleon structures have
been investigated using the MCM.

Since late 1980s, there has been a flurry of activity
investigating the spin structure of the nucleon. Measurements
by the European Muon Collaboration (EMC) started it all
by indicating that only a small fraction of the proton spin
is carried by the spin of the quarks [40,41]. Because this
was in disagreement with the quark model predictions, a
model that had great success in describing the gross features
of the nucleon, the EMC result caused quite a stir in the
particle physics community. This resulted in the “proton
spin crisis” and a considerable amount of both theoretical
and experimental investigations of the nucleon spin. Since
then, literally hundreds of papers have been published on this
subject. On the experimental side, the original experiment by
EMC at CERN was followed by experiments conducted by
the Spin Muon Collaboration (SMC) [42–50], the Stanford
Linear Accelerator Center (SLAC) [51–62], the HERMES
collaboration at Deutsches Elektronen-Synchrotron (DESY)
[63–66], and the Jefferson Lab [67–72]. Among other things,
these experiments have confirmed the original EMC result, the
Bjorken sum rule (BSR) [73,74] but have shown the violation

of the Ellis-Jaffe sum rule (EJSR) [75] and what appears to be
a large negative strange quark polarization.

The objective of the theoretical work is to find the
contribution of different sources, that is, quarks, gluons, and
orbital motion of the partons, to the spin of the proton. In the
late 1980s, Altarelli and Ross [76] and Carlitz, Collins, and
Mueller [77] suggested that there is a hard gluonic contribution
to the first moment of the g1 structure function of the proton.
Others followed up on this suggestion [78–80]. The objective
was to see whether a positive gluon polarization exists, since
this would explain the large negative sea polarization and the
rather small contribution of the quarks to the spin of the proton.
For a period of time, there was some apparent conflict between
the chiral invariant approach and the gauge invariant approach
to the calculation of the contribution of the gluon to the
quark polarization, because in the operator product expansion
approach, which is model independent, the hard gluons at the
twist-2 level make no contribution to the first moment of g1

structure function. This apparent problem has been clarified
[79,81], and one can consider the possibility of contribution
as a result of gluon anomaly, which is not unexpected in
a perturbative QCD (pQCD) regime [82]. Although recent
experimental evidence points to small gluon polarization, the
uncertainty in the shape of the gluon distribution is large
enough that excluding high gluon polarization is not possible
[83–86]. Therefore, by considering the observed experimental
results as superpositions of the quark and gluon polarizations,
one can resolve the spin crises. For interested readers,
there are a number of excellent extended articles on this
topic [86–99].

In Sec. II, we briefly present a light-front representation
of three-body systems and introduce the two types of wave
functions that we use for the nucleon core. This is followed by
the formalism for the MCM in Sec. III. Results and discussion
are presented in Sec. IV, which is followed by a summary in
Sec. V.
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II. LIGHT-FRONT REPRESENTATION OF THE NUCLEON

Since the original work by Dirac [100] several decades
ago, there has been extensive use of the light-front frame to
study high-energy processes [101–104]. Basic definitions and
formalism are discussed in Refs. [105,106]. A four-vector in
the light-front frame is defined as

a = (a+, a−, a⊥), (1)

where a± = (a◦ ± a3)/
√

2 and a⊥ = (a1, a2). Following the
relativistic treatment of the nucleon by Berestetskii and
Terent’ev [107,108], we separate the center-of-mass motion of
the three quarks in the nucleon from their relative motion by
transforming their momenta, p1, p2, p3, into total and relative
momenta as follows:

�P = �p1 + �p2 + �p3, (2a)

ξ = p+
1

p+
1 + p+

2

, η = p+
1 + p+

2

P + , (2b)

q⊥ = (1 − ξ )p1⊥ − ξp2⊥,

Q⊥ = (1 − η)(p1⊥ + p2⊥) − ηp3⊥. (2c)

Then, the Hamiltonian of the system takes the form

H = P 2
⊥ + M̂2

2P + , (3)

where M̂ is the mass operator with the interaction term W:

M̂ = M + W, (4a)

M2 = Q2
⊥

η(1 − η)
+ M2

3

η
+ m2

3

1 − η
, (4b)

M2
3 = q2

⊥
ξ (1 − ξ )

+ m2
1

ξ
+ m2

3

1 − ξ
, (4c)

with m1,m2, and m3 as the constituent quarks masses. M and
M3 can be rewritten in a more transparent way in terms of the
relative momenta q and Q:

E1 =
√

q2 + m2
1, E2 =

√
q2 + m2

2,
(5a)

E3 =
√

Q2 + m2
3, E12 =

√
Q2 + M2

3 ,

ξ = E1 + q3

E1 + E2
, η = E12 + Q3

E12 + E3
, (5b)

M = E12 + E3, M3 = E1 + E2, (5c)

where q = (q1, q2, q3) and Q = (Q1,Q2,Q3).
The wave function of the nucleon can be written as

� = �χφ, (6)

where �,χ , and φ are the flavor, spin, and momentum
distributions, respectively. We are going to consider two
different wavefunctions for the core nucleon. First, assume that
the nucleon is a quark-diquark system. In general, the nucleon
state can be a linear combination of the following spin-isospin
diquark states: (0,0), (0,1), (1,0), and (1,1) written as:

�1 = A√
2

[
uud

(
χρ1φλ1

1 + χρ2φλ2
1

)
− udu

(
χρ1φλ1

1 − χρ3φλ3
1

) − duu
(
χρ2φλ2

1 + χρ3φλ3
1

)]

+ B√
6

[
uud

(
χρ1φ

ρ1
1 + χρ2φ

ρ2
1 − 2χρ3φ

ρ3
1

)
+udu

(
χρ1φ

ρ1
1 − 2χρ2φ

ρ2
1 + χρ3φ

ρ3
1

)
+ duu

( − 2χρ1φ
ρ1
1 + χρ2φ

ρ2
1 + χρ3φ

ρ3
1

)]
+ C√

2

[
uud

(
χλ1φ

ρ1
1 + χλ2φ

ρ2
1

)
− udu

(
χλ1φ

ρ1
1 − χλ3φ

ρ3
1

) − duu
(
χλ2φ

ρ2
1 + χλ3φ

ρ3
1

)]
+ D√

6

[
uud

(
χλ1φλ1

1 + χλ2φλ2
1 − 2χλ3φλ3

1

)
+udu

(
χλ1φλ1

1 − 2χλ2φλ2
1 + χλ3φλ3

1

)
+ duu

( − 2χλ1φλ1
1 + χλ2φλ2

1 + χλ3φλ3
1

)]
. (7a)

For the second case we assume that there is no cluster of quarks
inside the nucleon [105,106]:

�2 = −1√
3

(uudχλ3 + uduχλ2 + duuχλ1)φ2. (7b)

We will be using three wavefunctions called set 1, set 2 and
set 3. Set 1 and set 2 correspond to the models that we have
used in Refs. [31,32]. Set 1 is the spin-0 diquark with A =
.9798, B = −.2, C = 0.0 and D = 0.0 in Eq. (7a). Set 2 is
Eq. (7b). Set 3 is the new model in which we choose A =
−0.7874, B = 0.0, C = 0.0, and D = −0.6164 in Eq. (7a).
Also, in Eq. (7), u and d represent the up and down flavor, and
χρi and χλi with i = 1, 2, 3 represent the Melosh transformed
spin wave functions [109]. For example,

χ
ρ3
↑ = 1√

2
(↑↓↑ − ↓↑↑), (8a)

χ
ρ3
↓ = 1√

2
(↑↓↓ − ↓↑↓), (8b)

χλ3
↑ = 1√

6
(↓↑↑ + ↑↓↑ − 2↑↑↓), (8c)

χλ3
↓ = 1√

6
(2↓↓↑ − ↓↑↓ − ↑↓↓). (8d)

The spin wave function of the ith quark is

↑ = Ri

(
1
0

)
, ↓ = Ri

(
0
1

)
. (9)

In Eq. (9), Ri are the Melosh matrices:

R1 = 1√
a2 + Q2

⊥
√

c2 + q2
⊥

(
ac − qRQL −aqL − cQL

cQR + aqR ac − qLQR

)
,

(10a)

R2 = 1√
a2 + Q2

⊥
√

d2 + q2
⊥

(
ad + qRQL −aqL − dQL

dQR − aqR ad − qLQR

)
,

R3 = 1√
b2 + Q2

⊥

(
b QL

−QR b

)
, (10b)

where

a = M3 + ηM, b = m3 + (1 − η)M, (11a)
c = m1 + ξM3, d = m2 + (1 − ξ )M3, (11b)
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qR = q1 + iq2, qL = q1 − iq2, (11c)
QR = Q1 + iQ2, QL = Q1 − iQ2. (11d)

The functions φ
ρi

1 and φλi
1 , with i = 1, 2, 3, and φ2, are the

momentum wave functions, which we take be of the following
form:

φ
ρi

1 = Nρi(Xj − Xk)φsi
1

/
XT , (12a)

φλi
1 = Nλi(Xj + Xk − 2Xi)φ

si
1

/
XT , (12b)

with i �= j �= k, and [105]

φ2 = N

(M2 + β2)3.5
. (12c)

Also,

X3 = Q2
⊥

2η(1 − η)β2
Q

+ q2
⊥

2ηξ (1 − ξ )β2
q

+ m2
1

2ηξβ2
q

+ m2
2

2η(1 − ξ )β2
q

+ m2
3

2(1 − η)β2
Q

, (13a)

X2 = q2
⊥

(1 − η)(1 − ξ )β2
Q + ξβ2

q

2β2
Qβ2

qηξ (1 − ξ )(1 − η + ξη)

+Q2
⊥

(1 − ξ )(1 − η)β2
q + ξβ2

Q

2β2
Qβ2

qη(1 − η)(1 − η + ξη)

+ q⊥Q⊥
β2

Q − β2
q

β2
Qβ2

qη(1 − η + ξη)
+ m2

1

2ηξβ2
q

+ m2
2

2η(1 − ξ )β2
Q

+ m2
3

2(1 − η)β2
q

, (13b)

X1 = q2
⊥

(1 − ξ )β2
q + ξ (1 − η)β2

Q

2β2
Qβ2

qηξ (1 − ξ )(1 − ξη)

+Q2
⊥

(1 − ξ )β2
Q + ξ (1 − η)β2

q

2β2
Qβ2

qη(1 − ξ )(1 − ξη)

− q⊥Q⊥
β2

Q − β2
q

β2
Qβ2

qη(1 − ξη)
+ m2

1

2ηξβ2
Q

+ m2
2

2η(1 − ξ )β2
q

+ m2
3

2(1 − η)β2
q

, (13c)

XT = X1 + X2 + X3, (13d)

and

φsi
1 = 1

(1 + XT )ni
. (13e)

In these equations, βQ, βq , and β are confinement scale
parameters and Nρi

, Nλi
, and N are normalization constants.

III. MESON CLOUD MODEL IN LIGHT-CONE FRAME

The MCM has been used extensively in the 1990s, mostly
to investigate the flavor asymmetry of the nucleon sea. In this
approach using the convolution model, one can decompose the
physical nucleon in terms of the nucleon core and intermediate,
virtual meson-baryon states [1,2,4–39]. Following the work
done by Zoller [14], Holtmann, Szczurek, and Speth [36], and

Speth and Thomas [37], one can write

|N↑〉 = Z1/2

[
|N↑〉bare+

∑
BM

∑
λλ′

∫
dyd2k⊥βλλ′

BM (y, k2
⊥)

× |Bλ(y, �k⊥); Mλ′
(1 − y,−�k⊥)〉

]
, (14a)

with

βλλ′
BM (y, k2

⊥) = 1

2π
√

y(1 − y)

√
mNmBV λλ′

IMF (y, k2
⊥)

m2
N − M2

BM (y, k2
⊥)

, (14b)

where Z is the probability of the physical nucleon being
in the core state. βλλ′

BM (y, k2
⊥) is the probability amplitude

for the physical nucleon with helicity + 1
2 in a virtual state

consisting of baryon Bλ(y, �k⊥), with helicity λ, longitudinal
momentum y, and transverse momentum �k⊥, and meson
Mλ′

(1 − y,−�k), with helicity λ′, longitudinal momentum 1 −
y, and transverse momentum −�k. V λλ′

IMF (y, k2
⊥), is the vertex

function, and its explicit form for different baryon-meson pairs
with their corresponding helicities are listed in the appendix.
The summations in Eq. (14) include all physically possible
pairs from the pseudoscalar and vector mesons and their
corresponding baryons from the baryon octet and decuplet.
Using βλλ′

BM (y, k2
⊥), one can define polarized splitting function

in the following way:

nλ
BM/N (y) =

∑
λ′

∫ ∞

0
dk2

⊥|βλλ′
BM (y, k2

⊥)|2, (15a)

nλ′
MB/N (y) =

∑
λ

∫ ∞

0
dk2

⊥|βλλ′
BM (1 − y, k2

⊥)|2. (15b)

The splitting functions must satisfy the equations

nMB(y) = nBM (1 − y), (15c)

and

〈xnMB〉 + 〈xnBM〉 = 〈nBM〉. (15d)

In Eq. (15d), 〈n〉 and 〈xn〉 are the first and second moments
of the splitting functions. Equation (15c) ensures the global
charge conservation and Eq. (15d) ensures momentum conser-
vation.

Calculation of the physical polarized quark distributions is
basically the same as what was done in Refs. [31,32]. Namely,
the polarized core quark distribution can be written as [110]

qλ
core(x) =

∑
j

〈N↑|P j

qλδ(x − xj )|N↑〉, (16a)

= 3〈N↑|P 3
qλδ(x − x3)|N↑〉, (16b)

with ∑
i

xi = 1, (16c)

where x1 = ξη, x2 = η(1 − ξ ), and x3 = 1 − η and P
j

qλ is a
projection operator that projects out j th quark with helicity
λ. Equation (16b) is for the symmetrized wave function. For
pseudoscalar and vector meson distributions, we have used
the formulation in Refs. [111] and [112], respectively. Using
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the core quark distribution along with the meson cloud and
their companion baryons, one can obtain the initial quark
distributions [31].

These initial distributions are calculated at some initial low
Q2

0. To be able to compare our results with experiments, we
evolve these initial distributions using Dokshitzer, Gribov,
Lipatov, Altarelli and Parisi (DGLAP) equations [113–115]
to some final high Q2. The DGLAP equations for polarized
distributions are [81]

d

dt
�qNS(x, t) = αs(t)

2π
�P NS

qq (x) ⊗ �qNS(x, t) (17a)

for nonsinglet distributions and

d

dt
�qS(x, t) = αs(t)

2π

[
�P S

qq(x) ⊗ �qS(x, t)

+ 2nf �PqG(x) ⊗ �G(x, t)
]
, (17b)

d

dt
�G(x, t) = αs(t)

2π

[
�P S

Gq(x) ⊗ �qS(x, t)

+�PGG(x) ⊗ �G(x, t)
]

(17c)

for singlet distributions. In Eq. (17), αs is the QCD running
coupling constant, �q and �G are the polarized quark and
gluon distribution functions, �P ’s are the splitting functions,
f is the number of flavors, and t is defined as

t = ln
(
Q2

/
Q2

0

)
. (17d)

With these the polarized distribution functions, one can
calculate polarized singlet, a0, and nonsinglet, a3 and a8,
distributions as well as g

p

1 and gn
1 polarized structure

functions along with their first moment in the following
way:

a0(x) = �u(x) + �d(x) + �s(x), (18a)

a3(x) = �u(x) − �d(x), (18b)

a8(x) = �u(x) + �d(x) − 2�s(x)√
3

, (18c)

g
p

1 (x) = 1

2

[
4

9
�u(x) + 1

9
�d(x) + 1

9
�s(x)

]
, (18d)

gn
1 (x) = 1

2

[
1

9
�u(x) + 4

9
�d(x) + 1

9
�s(x)

]
, (18e)

where

�q(x) = [q↑(x) − q↓(x)] + [̄q↑(x) − q̄↓(x)], (18f)

and

�
p

1 =
∫ 1

0
g

p

1 (x)dx, (19a)

�n
1 =

∫ 1

0
gn

1 (x)dx, (19b)

where Eq. (19) represents the first moment of g
p

1 (x) and gn
1 (x).

Using Eq. (18) and Eq. (19), one can calculate BSR [73,74]
and EJSR [75]:

SB = �
p

1 − �n
1 , (20a)

S
p

EJ = 1

12

(
a3 + 5√

3
a8

)
, (20b)

TABLE I. Parameters used in sets 1, 2, and 3. Here mu, md ,
βQ, and βq are all in GeV, and µp and µn are in nuclear magneton
units. Set 1 represents our diquark-quark model, and set 2 represents
parameters used by Schlumpf [105,106].

mu md βQ βq n1 n2 n3 µp µn

Set 1 0.250 0.210 0.25 0.45 2.8 2.8 2.6 2.82 –1.61
Set 2 0.263 0.263 0.607 0.607 3.5 3.5 3.5 2.81 –1.66

Sn

EJ = 1

12

(
−a3 + 5√

3
a8

)
. (20c)

Using Eqs. (18a)–(18c), one could write polarized quark
distributions in terms of singlet and nonsinglet distributions:

�u = (
√

3a8 + 2a0 + 3a3)

6
, (21a)

�d = (
√

3a8 + 2a0 − 3a3)

6
, (21b)

�s = (−√
3a8 + a0)

3
. (21c)

IV. RESULTS AND DISCUSSION

In Table I, we present the parameters, in energy units
of GeV, that have been used in Eqs. (12), (13), (16), and
(17) to calculate quark distribution functions and the proton
and neutron polarized structure functions. Set 1 represents
spin-0 diquark distribution for the nucleon core. Set 2
is the parameters used by Schlumpf [105] and represents
symmetrical distribution of quarks inside the nucleon. Set 3 is
a superposition of spin-0 and spin-1 diquark wave functions.

In Fig. 1, we present polarized xu and xd distributions
for the nucleon core. These distributions have been evaluated

FIG. 1. Polarized xu-core and xd-core distributions for sets 1,
2, and 3. Set 1 represents a spin-0 diquark in a diquark-quark
distribution, in set 2 there is no quark clustering, and set 3 represents
a superposition of spin-0 and spin-1 diquarks in a diquark-quark
distribution.
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FIG. 2. Initial x�u and x�d distributions for dressed nucleon.
The line curves include both vector and pseudoscalar meson contri-
butions, and the line symbol curves include only the pseudoscalar
contribution from Ref. [31]. Set 1 represents a spin-0 diquark in a
diquark-quark distribution, in set 2 there is no quark clustering, and
set 3 represents a superposition of spin-0 and spin-1 diquarks in a
diquark-quark distribution.

using Eqs. (16). One can see that the relative closeness of
d↑ and d↓ for the spin-0 diquark-quark distribution, which
means a rather small magnitude of �d for set 1. However, for
set 3, the gap between d↑ and d↓ is noticeably larger, which
leads to a larger d-quark polarization. With these distributions,
the bare nucleon is dressed up into a physical nucleon by
introducing the meson cloud at some initial low momentum.
Figure 2 shows x�u and x�d distributions for sets 1, 2,
and 3. In this graph, the line symbol curves include only the
pseudoscalar meson cloud, whereas the solid lines include both
the pseudoscalar and the vector meson clouds. One can see the
noticeable role that the vector meson cloud plays in the quark
polarization. Regarding vector mesons, in Ref. [2] we showed
that it was the addition of the vector meson cloud that made
it possible to reproduce the observed GSR violation. Also,
in this graph, one notices that the set 3 �d is significantly
larger than that of set 1 but is comparable with that of
set 2. Figure 3 compares s-quark polarization. The first point
to be made is that all distributions are positive, in contrast
with observation (see, for example, Ref. [56]). However, this
is not surprising because we have not introduced any gluon
polarization at this stage. At this point, we mention that one
can correctly infer that our model does predict asymmetries
between the strange and antistrange quark distributions. Also,
the vector meson cloud significantly increases the strange
quark polarization. However, the overall contribution of the
strange quark to nucleon polarization is negligible because the
total strangeness in the nucleon is zero. As we have shown in
Ref. [2],

∫ 1
0 (s(x) + s̄(x))dx = 0, as it should be. Figures 4,

5, and 6 present the comparisons of xa3, xa8, and xa0 of the
present work with those of Ref. [31]. One can see the effect of

FIG. 3. Initial x�s distributions for the dressed nucleon. The line
curves include both vector and pseudoscalar meson contributions, and
the line symbol curves include only the pseudoscalar contribution
from Ref. [31]. Set 1 represents a spin-0 diquark in a diquark-quark
distribution, in set 2 there is no quark clustering, and set 3 represents
a superposition of spin-0 and spin-1 diquarks in a diquark-quark
distribution.

the dominance of u quark in the quark model. Also, the set 3
results are more comparable with the set 2 results rather than
with those of the set 1. These initial distributions are evolved
using the code of Kumano and collaborators [116,117] to final
momentum transferred and are compared with experimental
results. The code uses the modified minimal subtraction (MS)
renormalization scheme and calculates Q2 evolution to the
next-to-leading order of the running coupling constant with
QCD scale parameter of 0.2 GeV. To be consistent, we used
the same evolution parameter as in Refs. [31] and [32], namely

FIG. 4. Initial xa3 distributions for the dressed nucleon. The line
curves include both vector and pseudoscalar meson contributions,
and the line symbol curves include only the pseudoscalar contribution
from Ref. [31]. Set 1 represents a spin-0 diquark in a diquark-quark
distribution, in set 2 there is no quark clustering, and set 3 represents
a superposition of spin-0 and spin-1 diquarks in a diquark-quark
distribution.

015204-5



F. ZAMANI PHYSICAL REVIEW C 82, 015204 (2010)

FIG. 5. Initial xa8 distributions for the dressed nucleon. The line
curves include both vector and pseudoscalar meson contributions,
and the line symbol curves include only the pseudoscalar contribution
from Ref. [31]. Set 1 represents a spin-0 diquark in a diquark-quark
distribution, in set 2 there is no quark clustering, and set 3 represents
a superposition of spin-0 and spin-1 diquarks in a diquark-quark
distribution.

t ′ = 0.3, as defined in Refs. [116,117]. Also, we have assumed
that there is no initial gluon polarization. However, evolution
generates gluon polarization. In set 1 we get �G = 0.78, in
set 2 we get �G = 0.76, and in set 3 we get �G = 0.98.
Therefore, set 3 results in an increase of gluon polarization but
still less than �G = 1.21, which we observed in Ref. [32]
when we had not yet introduced the vector meson cloud.
Because we are interested in comparing the impact of a variety
of nucleon cores and the physical nucleon has a unique gluon
polarization, we renormalize total gluon polarization for all

FIG. 6. Initial xa0 distributions for the dressed nucleon. The line
curves include both vector and pseudoscalar meson contributions,
and the line symbol curves include only the pseudoscalar contribution
from Ref. [31]. Set 1 represents a spin-0 diquark in a diquark-quark
distribution, in set 2 there is no quark clustering, and set 3 represents
a superposition of spin-0 and spin-1 diquarks in a diquark-quark
distribution.

FIG. 7. Evolved x�u and x�d distributions with corrections
attributable to gluon anomaly. The line curves include both vector and
pseudoscalar meson contributions, and the line symbol curves include
only the pseudoscalar contribution from Ref. [31]. The symbols,
AAC08, have been generated using calculations by the AAC group
Ref. [118]. Set 1 represents a spin-0 diquark in a diquark-quark
distribution, in set 2 there is no quark clustering, and set 3 represents
a superposition of spin-0 and spin-1 diquarks in a diquark-quark
distribution.

sets to be 2.5, the same as in Refs. [31] and [32]. However, to
take into account the fact that experimental results favor small
gluon polarization, as mentioned in the introduction, we also
consider the case of total gluon polarization of 2.0. The initial
justification for using a high contribution was that it is not
unexpected in pQCD, as explained by Ellis and Karliner [82].
Therefore, one can consider the experimental observation as
a superposition of quark and gluon polarization. Taking this
into account, one can write

�q −→ �q − αs

2π
�G, (22)

where αs is QCD running coupling constant. In our case,
we chose αs

2π
= 0.048, which means Q2 is about 4 GeV2.

Therefore, we are fitting our data to a final scale of 4 GeV2.
Knowing the evolution parameter fixes our initial model
scale at Q0 = 0.390 GeV, which is in line with that of
Ref. [15].

The results that take into account Eq. (22) for evolved
distributions are shown in Figs. 7–11. To avoid overcrowding
the graphs, instead of comparing our work with data from
several experiments, we compare our work with the best fit
to world experimental data by the AAC group [118]. As
expected, the evolution results in the shift of the distribution
peaks to lower x. In Fig. 7, d-quark polarizations for sets 2
and 3 are very close to each other and are in better agreement
with AAC than set 1, which predicts a very small d-quark
polarization. Also, the inclusion of a gluon anomaly leads to a
reasonable agreement of polarized strange quark distributon
with observation, as can be seen in Fig. 8. Because the
addition of the vector mesons leads to an increase in u-quark
polarization, one can see from Figs. 7 and 9–11 that set 2 leads
to the best agreement with experimental data for x�u, xa3,
xa8, and xa0, respectively. As shown in Ref. [31], introduction
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FIG. 8. Evolved x�s distributions with corrections attributable to
gluon anomaly. The line curves include both vector and pseudoscalar
meson contributions, and the line symbol curves include only the
pseudoscalar contribution from Ref. [31]. The symbols, AAC08, have
been generated using calculations by the AAC group Ref. [118]. Set
1 represents a spin-0 diquark in a diquark-quark distribution, in set 2
there is no quark clustering, and set 3 represents a superposition of
spin-0 and spin-1 diquarks in a diquark-quark distribution.

of vector mesons did not lead to a better agreement of
set 1 with observations for xa3, xa8, and xa0. However,
set 3, which includes vector mesons, is in better agreement
with observations than set 1 with only pseudoscalar mesons
for xa8 and xa0. For �d and �s, one can see from Figs.
7 and 8, respectively, that the addition of the vector mesons
leads to better agreement with observations. Our numerical
results along with some experimental and theoretical results
are presented in Table II. There are few points to be made
concerning these data. Comparing sets 3 and 1, one can see

FIG. 9. Evolved xa3 distributions with corrections attributable to
gluon anomaly. The line curves include both vector and pseudoscalar
meson contributions, and the line symbol curves include only the
pseudoscalar contribution from Ref. [31]. The symbols, AAC08, have
been generated using calculations by the AAC group Ref. [118].
Set 1 represents a spin-0 diquark in a diquark-quark distribution, in
set 2 there is no quark clustering, and set 3 represents a superposition
of spin-0 and spin-1 diquarks in a diquark-quark distribution.

that set 3 generates a large magnitude of �d and negative
first moment of gn

1 , which is in agreement with observations
[48,55,56,66]. Set 1, even after addition of vector mesons and
introduction of gluon anomaly, results in small magnitude of
�d and positive first moment of gn

1 , which is in contrast with
observations [48,55,56,66]. Both sets reproduce strange quark
polarizations nicely, but set 1 is in better agreement with BSR
than set 3. Set 2 results are more in line with those of set 3.
With the exception of set 1 of Ref. [32], which is in agreement
with the HERMES (NNNLO) BSR calculation, our model

TABLE II. Comparison of the results of our models with theory and experiment. The first four rows are experimental results corresponding
to Refs. [57], [56], [49], and [66] respectively. The fifth row corresponds to Ellis-Jaffe [75] and Bjorken [73,74] sum rules. The sixth and
seventh rows are leading-order and next-to-next-to-next-leading-order calculations [66]. Row 8 is simply the nonrelativistic quark parton
model prediction. The ninth row corresponds to relativistic quark model calculations [121]. The results of our work are presented in the last
six rows.

�u �d �s �
p

1 �n
1 �

p

1 − �n
1

E143 (3 GeV2) 0.83 −0.43 −0.09 0.133 −0.032 0.165
E154 (5 GeV2) 0.122 −0.056 0.168
SMC (5 GeV2) 0.132 −0.048 0.181
HERMES (5 GeV2) 0.842 −0.427 −0.085 0.121 −.027 0.148
EJSR/BSR 0.167 −0.015 0.182
HERMES (5 GeV2 LO) 0.153 −0.059 0.212
HERMES (5 GeV2 NNNLO) 0.138 −0.044 0.182
NRQPM (�G = 0) 1.33 −0.33 0
RQPM (�G = 0) 1.0 −0.25 0
Set 1 (�G = 2.50, Ref. [32]) 0.917 −0.195 −0.105 0.187 0.002 0.185
Set 2 (�G = 2.50, Ref. [32]) 0.951 −0.271 −0.059 0.193 −0.011 0.204
Set 1 (�G = 2.50, Ref. [31]) 1.00 −0.187 −0.100 0.208 0.009 0.199
Set 2 (�G = 2.50, Ref. [31]) 1.07 −0.324 −0.101 0.213 −0.018 0.231
Set 3 (�G = 2.50, current work) 1.10 −0.326 −0.105 0.221 −0.017 0.238
Set 3 (�G = 2.00, current work) 1.13 −0.302 −0.081 0.229 −0.009 0.238
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FIG. 10. Evolved xa8 distributions with corrections attributable
to gluon anomaly. The line curves include both vector and pseu-
doscalar meson contributions, whereas the line symbol curves include
only the pseudoscalar contribution from Ref. [31]. The symbols,
AAC08, have been generated using calculations by the AAC group
Ref. [118]. Set 1 represents a spin-0 diquark in a diquark-quark
distribution, in set 2 there is no quark clustering, and set 3 represents
a superposition of spin-0 and spin-1 diquarks in a diquark-quark
distribution.

calculations are more in line with the HERMES (LO) BSR
calculations, where LO indicates the leading order term and
NNNLO indicates the leading order term plus the next three
terms of the perturbation series. Comparing the last six rows
of Table II with the theoretical calculations for non-relativistic
quark-parton model (NRQPM) row and relativistic quark-
parton model (RQPM) row, one realizes that the introduction

FIG. 11. Evolved xa0 distributions with corrections attributable
to gluon anomaly. The line curves include both vector and pseu-
doscalar meson contributions, and the line symbol curves include
only the pseudoscalar contribution from Ref. [31]. The symbols,
AAC08, have been generated using calculations by the AAC group
Ref. [118]. Set 1 represents a spin-0 diquark in a diquark-quark
distribution, in set 2 there is no quark clustering, and set 3 represents
a superposition of spin-0 and spin-1 diquarks in a diquark-quark
distribution.

of the meson cloud in the relativistic quark model results in
better agreement with experimental results, which once again
shows the significance of the role of the meson cloud in nucleon
structure.

V. SUMMARY

Over a series of calculations, we have used three different
nucleon core distributions, namely, the no diquark model, the
spin-0 diquark model, and the superposition of spin-0 and
spin-1 diquarks model, in a relativistic quark model along with
pseudoscalar mesons and vector mesons to evaluate polarized
and unpolarized nucleon structure functions. Our results show
that the no diquark model fails to reproduce the F2 structure
function, which is in agreement with experimental results for
moderate to high x values. However, the model is reasonably
successful in evaluation of the g1 structure function for the
nucleon and the BSR when one includes both classes of
meson cloud. The spin-0 diquark does a much better job in F2

calculations but underestimates the GSR violation. However,
this model fails to agree with experimental results for the
polarized case. For example, it predicts positive first moment
of the g1 structure function for the neutron. The third model,
namely, a superposition of spin-0 and spin-1 diquarks, is
the only model that was reasonably successful in evaluation
of both F2 and g1 structure functions. Also, it is the only
model that reproduces the experimental observations for GSR
violations when one includes both the pseudoscalar mesons
and the vector mesons.

APPENDIX

The explicit form of the vertex function, V λλ′
IMF (y, k2

⊥), used
in Eq. (14b) is

V λλ′
IMF (y, k2

⊥) = ∣∣�MB

(
M2

MB

)∣∣2
V ′λλ′

IMF (y, k2
⊥), (A1)

where �MB(M2
MB) is the vertex form factor and is parameter-

ized by the exponential function of the invariant mass, MMB ,
of the intermediate baryon-meson state:

�MB

(
M2

MB

) = e−(M2
MB−m2

N )/�2
MB , (A2)

where λMB are free parameters determined by fitting ex-
perimental data. In the following, we present the explicit
form of V ′λλ′

IMF (y, k2
⊥), for intermediate helicity states of

pseudoscalar meson and baryon states, calculated by Holtmann
and collaborators [36,37].For intermediate states Nπ , Nη,
�K , and �K , the vertex functions are

1

2
→ +1

2
, 0

gNMB

2

ymN − mB√
ymNmB

, (A3)

1

2
→ −1

2
, 0

gNMBe−iφ

2

k⊥√
ymNmB

. (A4)

For �π,�∗K intermediate states, we have

1

2
→ +3

2
, 0 − fNMBe+iφ

2
√

2

k⊥(ymN + mB)

y
√

ymNmB

, (A5)
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1

2
→ +1

2
, 0

fNMB

2
√

6

(ymN + mB)2(ymN − mB) + k2
⊥(ymN + 2mB)

ymB

√
ymNmB

, (A6)

1

2
→ −1

2
, 0

fNMBe−iφ

2
√

6

k⊥[(ymN + mB)2 − 3mB(ymN + 2mB) + k2
⊥]

ymB

√
ymNmB

, (A7)

1

2
→ −3

2
, 0 − fNMBe−2iφ

2
√

2

k2
⊥

y
√

ymNmB

. (A8)

For Nρ, Nω, �K∗, and �K∗ intermediate states, we have

1

2
→ +1

2
, +1

gNMBe+iφ

√
2

k⊥
(1 − y)

√
ymNmB

− fNMB

√
2e+iφ k⊥mN√

ymNmB

, (A9)

1

2
→ +1

2
, 0

gNMB

2

k2
⊥ + mNmB(1 − y)2 − ym2

M

2(1 − y)mM

√
ymNmB

− fNMB

2

(ymN − mB)
[
y2m2

N − y
(
m2

N + m2
B + m2

M

) + m2
B + k2

⊥
]

ymM

√
ymNmB

,

(A10)

1

2
→ +1

2
, −1

gNMBe−iφ

√
2

yk⊥
(1 − y)

√
ymNmB

+ fNMB

√
2e−iφ k⊥mB√

ymNmB

, (A11)

1

2
→ −1

2
, +1

gNMB√
2

ymN − mB√
ymNmB

− fNMB

√
2
k2
⊥ − (mN + mB)(1 − y)(ymN − mB)

(1 − y)
√

ymNmB

, (A12)

1

2
→ −1

2
, 0 − gNMBe−iφ

2

k⊥ + (mN − mB)

mM

√
ymNmB

− fNMBe−iφ

2

k⊥(1 + y)
[
y2m2

N − y
(
m2

N + m2
B + m2

M

) + m2
B + k2

⊥
]

y(1 − y)mM

√
ymNmB

, (A13)

1

2
→ +1

2
, −1 fNMB

√
2e−2iφ k2

⊥
(1 − y)

√
ymNmB

. (A14)

Finally, for �ρ, �∗K∗, we have

1

2
→ +3

2
, +1 − fNMBe+2iφ

2

k⊥
y(1 − y)

√
ymNmB

, (A15)

1

2
→ +3

2
, 0

fNMBe+iφ

√
2

k⊥mN

(1 − y)
√

ymNmB

, (A16)

1

2
→ +3

2
, −1

fNMB

2

mNmB(1 − y)2 − ym2
M

(1 − y)
√

ymNmB

, (A17)

1

2
→ +1

2
, +1

fNMBe+iφ

2
√

3

k⊥
[
k2
⊥ − 2(1 − y)m2

B

]
y(1 − y)mB

√
ymNmB

,

(A18)

1

2
→ +1

2
, 0 − fNMB√

6

mM [k2
⊥ + mB(1 − y)(ymN − mB)]

(1 − y)mB

√
ymNmB

,

(A19)

1

2
→ +1

2
, −1

fNMBe−iφ

2
√

3

k⊥[ym2
M − 2mNmB(1 − y)]

(1 − y)mB

√
ymNmB

,

(A20)

1

2
→ −1

2
, +1

fNMBe−iφ

2
√

3

2(1 − y)mBk2
⊥ + mNm2

My3 − (1 − y)2m3
B

y(1 − y)mB
√

ymNmB

, (A21)

1

2
→ −1

2
, 0

fNMBe−iφ

√
6

k⊥mM (ymN − (1 − y)mB)

(1 − y)mB
√

ymNmB

,

(A22)

1

2
→ −1

2
, −1

fNMBe−2iφ

2
√

3

k2
⊥mN

(1 − y)mB

√
ymNmB

, (A23)

1

2
→ −3

2
, +1

fNMBe−iφ

2

k⊥mB(1 − y)

y
√

ymNmB

, (A24)

1

2
→ −3

2
, 0 0, (A25)

1

2
→ −3

2
, −1 0. (A26)

In these equations, we have used the notation 1/2 →
λ, λ′, where λ and λ′ are the helicities of the baryon
and meson respectively, y is the longitudinal momen-
tum fraction of the baryon, and φ is the angle between
the baryon’s transverse momentum and that of the nu-
cleon; gNMB and fNMB are the coupling constants, which

we choose [14,36,119] to be
g2

pπ0p

4π
= 13.6,

g2
pρ0p

4π
= 0.84,

g2
pωp

4π
= 8.1,

f 2
pπ−�++

4π
= 10.85 GeV−2,

f 2
pρ−�++

4π
= 34.7 GeV−2,

f 2
pρ0p

4π
= 31.25 GeV−2, and

f 2
pωp

4π
= 0.Other coupling con-

stants are related to these two through the quark model
[36,119,120].
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