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Spin-5
2 fields in hadron physics
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We show that the Lagrangian of a free spin- 5
2 field in the spinor-tensor representation with an auxiliary spinor

field depends on three arbitrary parameters. The first two parameters are associated with the spin- 3
2 and spin- 1

2
sector of the theory while the last is related to the auxiliary degrees of freedom. We derive a corresponding
propagator of the system which represents a (2 × 2) matrix in the (ψµν, ξ ) space. The diagonal terms stand for
the propagation of the spin- 5

2 and auxiliary fields whereas the nondiagonal ones correspond to the ψµν-ξ mixing.
The resulting spin- 5

2 propagator contains nonpole contributions coming from the spin- 3
2 and spin- 1

2 sector of the
spinor-tensor representation. A general form of the interaction vertex involving the spin- 5

2 field is discussed by
the example of the πNN∗

5
2

coupling. It is demonstrated that lower spin degrees of freedom can be removed from

the theory by use of higher-order derivative coupling.
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I. INTRODUCTION

The description of pion- and photon-induced reactions in
the resonance energy region is faced with the problem of
the proper treatment of higher-spin states. In 1941 Rarita
and Schwinger (RS) suggested a set of equations that a field
function of a higher spin should obey [1]. Another formulation
has been developed by Fierz and Pauli [2] where an auxiliary
field concept is used to derive subsidiary constraints on the
field function.

Regardless of the procedure used, the Lagrangians obtained
for free higher-spin fields turn out to be always dependent
on arbitrary free parameters. For the spin- 3

2 fields, this issue
is widely discussed in the literature (see, e.g., [3–5] for the
modern status of the problem). The case of the spin- 5

2 fields is
less studied. The first attempts were made in [6,7], where
a theory of free fields was suggested. The authors of [7]
deduced an equation of motion as a decomposition in terms of
corresponding projection operators with additional algebraic
constraints on parameters of the decomposition. Schwinger
[6] derived a particular form of the spin- 5

2 equation which
coincides with the equation suggested in [7] for a specific
choice of the parameters.

The free-particle propagator is a central quantity in most
calculations in quantum field theory. In [7] the authors deduced
a spin- 5

2 propagator written in operator form. In practical
calculations, however, one needs an explicit expression of
the propagator. An attempt to construct a propagator only
from the spin- 5

2 projection operator has been made in [8].
We demonstrate that such a quantity is not consistent with the
equation of motion for the spin- 5

2 field. Another pathology
is experienced with the propagator [9] and projector [10]
used in calculations of the resonance production amplitudes:

they do not satisfy the condition [γ0G
5
2
µν;ρσ ]† = γ0G

5
2
ρσ ;µν ,

*shklyar@theo.physik.uni-giessen.de; on leave from Far Eastern
State University, 690600 Vladivostok, Russia.

where G
5
2
µν;ρσ is a spin- 5

2 propagator, and consequently are not
Hermitian. Therefore, it is important to derive the propagator
and investigate its properties in detail. To our knowledge no
such study has been done so far.

The aim of this paper is to deduce an explicit expression for
the spin- 5

2 propagator and study its properties. Guided by the
properties of the free spin- 3

2 RS theory, one would expect the
equation of motion for the spin- 5

2 field to have two arbitrary
free parameters which define the nonpole spin- 3

2 and spin- 1
2

contributions to the full propagator. The coupling of the spin- 5
2

field to the pion-nucleon final state, for example, is therefore
defined up to two “off-shell” parameters [11] which scale
the nonpole contributions to the physical observables. Hence,
one can ask whether this arbitrariness can be removed from
the theory.

The possibility of constructing consistent higher-spin mass-
less theories has already been pointed out by Weinberg and
Witten some time ago [12]. Pascalutsa and Timmermans
showed that, by use of a gauge-invariant coupling for higher-
spin fields, it is possible to remove the extra degrees of freedom
[13] in a particular case of the RS theory that maintains gauge
invariance in the massless limit.

As we demonstrated in [4], the demand for gauge invariance
may not be enough to eliminate the extra degrees of freedom
at the interaction vertex. The problem appears when the
theory does not have a massless limit. However, a coupling
that removes nonpole terms from the spin- 5

2 propagator can
be easily constructed by using higher-order derivatives. A
corresponding interaction Lagragian was deduced in [4] for
the case of spin- 3

2 fields and can be easily extended to higher
spins too.

The paper is organized as follows. In Sec. II we suggest
an alternative form of the free spin- 5

2 Lagrangian as compared
to [7] and discuss its properties in detail. The presence of the
auxiliary field complicates the derivation of the propagator.
Therefore, in Sec. III we first demonstrate how the free
propagator can be obtained for a vector field in the presence
of an auxiliary one. The method is then applied to the
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spin- 5
2 field in Sec. IV. The resulting spin- 5

2 propagator
contains contributions corresponding to the lower spin- 3

2 and
spin- 1

2 sector of the spin-tensor representation. In Sec. V
we discuss how these degrees of freedom can be removed
from the physical observables using the example of the pion-
nucleon scattering amplitude. The results are summarized in
Sec. VI.

II. FREE SPIN- 5
2 FIELD

The field function of higher spins in the spinor-tensor
representation is a solution of the set of equations suggested
by Rarita and Schwinger in [1]. In a consistent theory the
description of the free field is specified by setting up an
appropriate Lagrange function L(ψµν, ∂ρψµν). The spin- 5

2
Lagrangian in the presence of the auxiliary spinor field ξ (x)
can be written in the form

L = L(1) + L(2) + L(aux), (1)

where the explicit expressions for L(1), L(2), and L(aux) read

L(1) = iaψ̄µν(x)[(γ µgνσ + γ νgµσ )
−→
∂ρ + (γ µgνρ + γ νgµρ)

×−→
∂σ − (γ ρgνσ + γ σ gνρ)

←−
∂µ − (γ ρgµσ + γ σ gµρ)

←−
∂ν ]

×ψρσ (x) + i
F1(a)

2
ψ̄µν(x)γ λ(

−→
/∂ − ←−

/∂ )γ δψρσ (x)

× (gλµgδρgνσ + gλνgδρgµσ + gλµgδσ gνρ+gλνgδσ gµρ)

+mF2(a) ψ̄µν(x)(γ µγ ρgνσ + γ νγ ρgµσ + γ µγ σ gνρ

+ γ νγ σ gµρ)ψρσ (x) + ψ̄µν(x)

(
i

2
(
−→
/∂ − ←−

/∂ ) − m

)
×ψρσ (x) (gµρgνσ + gµσ gνρ) ,

L(2) = ib ψ̄µν(x)[gµν(γ ρ−→∂σ + γ σ−→
∂ρ ) − (γ ν←−∂µ + γ µ←−

∂ν )gρσ ]

×ψρσ (x) + i
G1(a, b)

2
ψ̄µν(x)gµν(

−→
/∂ − ←−

/∂ )

× gρσ ψρσ (x) + m G2(a, b) ψ̄µν(x)gµνgρσ ψρσ (x),

L(aux) = mc[ψ̄µν(x)gµνξ (x) + ξ̄ (x)gρσ ψρσ (x)]

+B(a, b, c) ξ̄ (x)

(
i

2
(
−→
/∂ − ←−

/∂ ) + 3m

)
ξ (x), (2)

and F1(a), F2(a), G1(a, b), G2(a, b), and B(a, b, c) are
functions of the free real parameters a, b, and c (see
Appendix B).

The Lagrangian equation (1) in general depends on only
three independent real parameters a, b, and c. This formulation
of the spin- 5

2 theory is simpler than that of suggested in [7].
In fact, the Lagrangian in [7] is written as a decomposition
in terms of projection operators with a number of free
parameters. These parameters are subjected to additional
subsidiary constraints that need to be resolved.

Independent variations of the ψµν and ξ fields give two
equations of motion, which in momentum space can be written
in the following form:[

�(1)
µν;ρσ (p) + �(2)

µν;ρσ (p)
]
ψρσ (p) + cmgµνξ (p) = 0, (3)

mcgρσ ψρσ (p) + B(a, b, c) (/p + 3m) ξ (p) = 0, (4)

where the operators �(1)
µν;ρσ (p) and �(2)

µν;ρσ (p) are

�(1)
µν;ρσ (p) = (/p − m)(gµσ gνρ + gµρgνσ )

+ a(γµpρgνσ + γνpρgµσ + γµpσ gνρ

+ γνpσ gµρ + γρpµgνσ + γσpµgνρ + γρpνgµσ

+ γσpνgµρ) + F1(a) (γµ/pγρgνσ + γν/pγρgµσ

+ γµ/pγσ gνρ + γν/pγσ gµρ) + mF2(a) (γµγρgνσ

+ γνγρgµσ + γµγσ gνρ + γνγσ gµρ), (5)

�(2)
µν;ρσ (p) = b (γµpνgρσ + γνpµgρσ + γρpσ gµν + γσpρgµν)

+ [/pG1(a, b) + mG2(a, b)] gµνgσρ. (6)

The equations of motion (3) and (4) are written in the most
general form and are consistent with those defined in [6,7]. For
example, the equation suggested by Schwinger corresponds to
the choice of parameters a = −1, b = 1, and c = −2. Note
that the functions F1(a), F2(a), G1(a, b), and G2(a, b) do not
contain the parameter c which reflects the independence of
the spin- 5

2 field on the auxiliary degrees of freedom. The RS
constraints [1] follow from Eqs. (3) and (4) with the additional
condition ξ (p) = 0 (see Appendix B).

It is interesting to note that the operator �(1)
µν;ρσ (p) would

give an equation of motion �(1)
µν;ρσ (p)ψρσ = 0 for the spin-

5
2 fields, provided gµνψµν = 0, where the latter property
is assumed a priori. However, the corresponding inverse
operator [�(1)

µν;ρσ (p)]−1 has additional nonphysical poles in the
spin- 1

2 sector. This indicates that the constraint gµνψµν = 0
should also follow from the equation of motion and cannot
be assumed a priori. The second operator �(2)

µν;ρσ (p) acts
only in the spin- 1

2 sector of the spin-tensor representation.
This can be checked by a direct decomposition of the
operator Eq. (6) in terms of projection operators given in
Appendix A. The same conclusion can be drawn from the

observation that �(2)
µν;ρσ (p) is orthogonal to all P

5
2
ρσ ;τδ(p) and

P
3
2
ij ;ρσ ;τδ(p) projection operators, where i, j = 1, 2. Hence the

parameter b is related only to the spin- 1
2 degrees of freedom,

whereas a scales both the spin- 3
2 and spin- 1

2 ones.
In practical calculations, one needs to know a free prop-

agator corresponding to the spin- 5
2 field. The derivation of

the propagator becomes complicated in the presence of the
auxiliary degrees of freedom. To demonstrate the procedure,
it is useful to consider first an example of the free vector field
ϕµ in the presence of an auxiliary one. In the next section we
outline a general procedure that can be applied to the spin- 5

2
case.

III. FREE VECTOR FIELD

The idea of using auxiliary degrees of freedom to describe
systems with higher spins was first utilized in the original
work of Fierz and Pauli [2]. As is well known, however, there
is no need for such complications in the case of spins J � 2
and J � 3

2 . For higher spins the use of auxiliary degrees of
becomes inevitable [7]. Here we consider the case of the vector
field ϕµ in the presence of an additional scalar field λ and
derive the free propagator of the system. The Lagrangian of
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the (ϕµ, λ) system can be written as

Lv = − 1
2 (∂µϕν)(∂µϕν) + 1

2m2ϕνϕ
ν

+ am(∂νϕ
ν) λ − 1

2a2m2λ2, (7)

where ϕµ is a vector, λ is an auxiliary scalar field, and a is an
arbitrary free parameter. Independent variations of the vector
and auxiliary fields produce two equations of motion

(� + m2)ϕµ − am∂µ λ = 0,

am∂µϕµ − a2m2λ = 0. (8)

Diagonalization of the system (8) leads to the Proca equation
for the vector field ϕµ, whereas the auxiliary field λ vanishes.
Although λ = 0, the propagator of the system always contains
a component associated with the auxiliary field and ϕµ-λ
mixing terms.

To obtain a propagator for the system of fields (ϕµ, λ), it is
convenient to rewrite Eq. (8) in the matrix form

�v
{µν}�

v{ν} = 0, (9)

where

�v
{µν} =

(
(� + m2)gµν −am∂µ

am∂ν −a2m2

)
and �v{ν} =

(
ϕν

λ

)
.

(10)

Since the system contains vector and scalar degrees of
freedom, the Lorentz indices in curly brackets of Eqs. (9)
and (10) are associated with corresponding tensor and vector
elements of �v

{µν} and �v
{ν}.

The inverse operator (propagator) can be obtained as a
solution of the following equation:

�
v ρ}
{µ Gv

{ρν} = I v{µν} δ4(x − x ′), (11)

where the propagator Gv
{µν} and the unit matrix I v{µν} are defined

as

Gv
{µν} =

(
G(ϕϕ)

µν G(ϕλ)
µ

G(λϕ)
ν G(λλ)

)
and I v{µν} =

(
gµν 0

0 1

)
.

The four components of the matrix Gv
{µν} have simple physical

meanings: G(ϕϕ)
µν and G(λλ) stand for the propagator of the

purely vector and auxiliary scalar fields, respectively, whereas
the nondiagonal G(ϕλ)

µ and G(λϕ)
ν terms are associated with the

ϕ-λ mixing. The solution of Eq. (11) in the momentum space
is

Gv
{µν}(p) =

⎛
⎜⎜⎝

(
−gµν+ pµpν

m2

)
p2 − m2 i

pµ

a m3

−i
pν

a m3

(p2 − m2)

a2 m4

⎞
⎟⎟⎠ . (12)

The pole (p2 − m2)−1 appears only in the vector component
G(ϕϕ)

µν (p); this term completely coincides with the corre-
sponding expression well known from quantum field theory.
The remaining terms in the propagator depend on the free
parameter a associated with the auxiliary field λ. From Eq. (12)
one can conclude that G(λλ) gives contributions only off shell,
p2 �= m2. Note that the scalar component of the propagating
vector field ϕµ mixes with the λ field, which leads to the

appearance of finite nondiagonal components in the propagator
Eq. (12).

Despite the complications related to the introduction of the
auxiliary field, the description in terms of the (ϕµ, λ) system is
completely equivalent to the conventional description in terms
of the pure vector field. It implies that physical observables do
not depend on the free parameter a appearing in the the full
propagator (12). For the free fields this conclusion immediately
follows from the fact that the auxiliary field can be excluded
from the upper equation (8). It also holds true in the case of
interacting fields provided there is no coupling to auxiliary
degrees of freedom.

IV. PROPAGATOR FOR THE FREE
SPIN- 5

2 FIELD

Similarly to the procedure described in Sec. III it is
convenient to rewrite the set of Eqs. (3) and (4) in matrix
form, (

�
(ψψ)
µν;ρσ (p) mcgµν

cmgρσ �(ξξ )(p)

) (
ψρσ (p)
ξ (p)

)
= 0, (13)

where �
(ψψ)
µν;ρσ (p) = �(1)

µν;ρσ (p) + �(2)
µν;ρσ (p) and �(ξξ )(p) =

B(a, b, c) (/p + 3m). While the auxiliary field vanishes on
shell, the full propagator should also contain an off-shell part
related to the auxiliary field ξ (x). Hence, the full propagator
of the system is

G{τλ;ρσ }(p) =
(

G
τλ;ρσ

(ψψ) (p) G
τλ;
(ψξ )(p)

G
;ρσ

(ξψ)(p) G(ξξ )(p)

)
(14)

and satisfies the equation(
�

(ψψ)
µν;τλ(p) mcgµν

cmgτλ �(ξξ )(p)

) (
G

τλ;ρσ

(ψψ) (p) G
τλ;
(ψξ )(p)

G
;ρσ

(ξψ)(p) G(ξξ )(p)

)

=
(

I ρσ
µν 0

0 1

)
, (15)

where I ρσ
µν = gρ

µgσ
ν + gσ

µgρ
ν . The diagonal terms G

µν;ρσ

(ψψ) (p) and
G(ξξ )(p) are related to the fields ψ and ξ , respectively, whereas
the nondiagonal ones stand for mixing between the auxiliary
spinor field and the “off-shell” spin- 1

2 component of the spin- 5
2

field.
The propagator of the spin- 5

2 field G
5
2
µν;ρσ (p) = G

(ψψ)
µν;ρσ (p)

is obtained as a solution of the set of equations

�
(ψψ)
µν;τλ(p) G

τλ;ρσ

(ψψ) (p) + mcgµν G
;ρσ

(ξψ)(p) = I ρσ
µν ,

(16)
cmgτλG

τλ;
(ψξ )(p) + �(ξξ )(p) G(ξξ )(p) = 1.

In the literature one sometimes encounters a propagator
defined as

G′
ρσ ;τδ(p) = /p + m

p2 − m2 + iε
P

5
2
ρσ ;τδ(p), (17)

where P
5
2
ρσ ;τδ(p) is a spin- 5

2 projection operator in the spinor-
tensor representation (A1). However, the quantity defined
above does not have an inverse and therefore cannot obey
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Eqs. (16) for any choice of the free parameters. This can
be shown by replacing the G

τλρσ

(ψψ) (p) in the upper equa-
tion (16) by the expression from Eq. (17) and multiplying
both sides of the resulting equation from the right by a

projection operator P
3
2

22;ρσ,τδ(p). Using the general properties
of projection operators Eq. (A2), the expression obtained
reduces to

mcgµν G
;ρσ

(ξψ)(p)P
3
2

22;ρσ,τδ(p) = 2P
3
2

22;µν,τδ(p). (18)

This leads to a contradiction: From Eq. (18) it follows that

G
ρσ

(ξψ)(p)P
3
2

22;ρσ,τδ(p) cannot be zero but by multiplying both
sides of the same equation by gµν and using the property

gµνP
3
2

22;µν,τδ(p) = 0, one can draw the opposite conclusion.
Hence, the quantity defined in Eq. (17) does not obey Eqs. (16)
and cannot be a spin- 5

2 propagator.
In solving Eq. (16), we restrict ourselves to a solution with

a specific choice of the parameters a = −1, b = −1, whereas
c is kept arbitrary. This choice of parameters is discussed
in Sec. V. The independence of G

τλ;ρσ

(ψψ) (p) of the parameter
c signifies that the auxiliary field does not contribute to the
physical observables. With this specific choice of the free
parameters, the resulting equations are

[(/p − m)(gµτ gνλ + gµλgντ ) − (γµpνgλτ + γνpµgλτ

+ γλpτ gµν + γτpλgµν) + (/p + m)gµνgτλ − (γµpλgντ

+ γνpλgµτ + γµpτ gνλ + γνpτ gµλ + γλpµgντ + γτpµgνλ

+ γλpνgµτ + γτpνgµλ) + (γµ/pγλgντ + γν/pγλgµτ

+ γµ/pγτ gνλ + γν/pγτ gµλ) + m (γµγλgντ + γνγλgµτ

+ γµγτ gνλ + γνγτ gµλ)]Gτλ;ρσ

(ψψ) (p) + mcgµν G
;ρσ

(ξψ)(p)

= gρ
µ gσ

ν + gσ
µ gρ

ν ,

mgτλG
τλ;
(ψξ )(p) − 6 c2

5
(/p + 3m)(p) G(ξξ )(p) = 1. (19)

The obtained spin- 5
2 propagator G

µν;ρσ
5
2

(p) = G
µν;ρσ

(ψψ) (p)

can be written as a decomposition in terms of projection
operators as follows [7]:

G
5
2
µν;ρσ (p) = 1

p2 − m2

(
(/p + m)P

5
2
µν;ρσ (p)

− p2 − m2

m2

[
D

3
2
µν;ρσ (p) + D

1
2
µν;ρσ (p)

])
, (20)

where D
3
2
µν;ρσ (p) and D

1
2
µν;ρσ (p) stand for the contributions

from the spin- 3
2 and spin- 1

2 sector of the spinor-vector represen-
tation (see Appendix C). As expected, the spin- 5

2 propagator
itself does not depend on the parameter c related to the spinor
field ξ . This observation also holds for arbitrary values of a

and b in Eq. (16), as we have checked by explicit calculations.
The propagator obtained has a pole associated with the spin- 5

2
part and so-called off-shell nonpole contributions coming from

the lower-spin components D
3
2
µν;ρσ (p) and D

1
2
µν;ρσ (p).

V. COUPLING TO HIGHER-SPIN FERMIONS

In the case of the spin- 5
2 field, in the spinor-tensor

representation we deal with a system (ψµν, ξ ) that contains
auxiliary degrees of freedom. One might raise the question
whether the unphysical degrees of freedom could be eliminated
from physical observables. Here we consider the simple case
of the spin- 5

2 resonance contribution to πN scattering, which
is valid for applications in hadron physics. The corresponding
πNN∗

5
2

coupling can be chosen as follows:

LI = gπNN∗

4m2
π

(ψ̄N (x), 0)�µν;ρσ

[
P̂(ψψ)

(
ψρσ

ξ

)]
∂µ∂νπ (x)

+ H.c.,

where the nucleon field is written as (ψ̄N (x), 0), which implies
the absence of auxiliary fields in the final state. The operator

P̂(ψψ) =
(

1 0

0 0

)

projects out the spin- 5
2 field and ensures that there is no

coupling to ξ . Hence, only the spin- 5
2 component of the

propagator G
5
2
µν;ρσ (p), Eq. (20), contributes to physical ob-

servables at any order of perturbation theory. In Sec. III we
demonstrated that the inclusion of auxiliary degrees of freedom
in the vector field does not affect the physical observables.
To our knowledge, this statement is not generally proven
for the (ψµν, ξ ) system beyond the perturbation expansion.
The reason is that the equation of motion for massive spin- 5

2
fields in the spinor-tensor representation is defined only in
the presence of an auxiliary field. This is unlike the case
of the vector field, where auxiliary degrees of freedom can
be removed by proper field transformations. Note that these
degrees of freedom contribute because of ψµν − ξ mixing.
This mixing takes place only between the spin- 1

2 sector of the
spinor-tensor and the auxiliary spinor fields, as pointed out in
the previous section. One may therefore hope that the use of a
coupling that suppresses the spin- 1

2 contributions would also
prevent the appearance of the auxiliary degrees of freedom in
the physical observables in the nonperturbative regime.

The possibility of removing unwanted degrees of freedom
in the special case of spin- 3

2 fields has been demonstrated
by Pascalutsa in [3,13,14]. The idea of that approach is
based on the observation that the Lagrangian of the Rarita-
Schwinger fields for the specific choice A = −1 maintains
gauge invariance in the massless limit. Therefore, the use of a
gauge-invariant coupling suppresses the contribution from the
lower-spin sector.

Guided by the results obtained in the spin- 3
2 Rarita-

Schwinger theory [3,13,14], one might expect that the lower-
spin terms of the spin- 5

2 propagator, Eq. (20), would not
contribute to the physical observables as long as a gauge-
invariant coupling is used. This, however, is not true for
the spin- 5

2 fields in the spinor-tensor representation. Such a
conclusion can be drawn from the fact that the Lagrangian
equation (2) is not invariant under the gauge transformations
ψµν → ψµν + ∂µξν + ∂νξµ in the massless limit for any
choice of the parameters a and b. We show this more explicitly
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by exploring the general structure of the gauge-invariant vertex
function for the example of the πN scattering amplitude in the
leading order of the perturbation expansion. The amplitude
can in general be written in the form

M ∼ ūN (p′)
[
�µν;ρσ (q) G

5
2
ρσ ;αβ (q) �†αβ;λτ (q)

]
× uN (p) k′

µ k′
ν kλ kτ , (21)

where p (k) and p′(k′) are the momenta of the initial and final
nucleon (pion), respectively; q stands for the momentum of
the resonance and depends on the channel (s or u) of interest.
The gauge-invariant coupling to the spin- 5

2 field imposes the
following constraint on the vertex function qρ �µν;ρσ (q) =
qσ �µν;ρσ (q) = 0. For the transition matrix to be free from
any contribution from the lower-spin sector, the expression in
square brackets in Eq. (21) should be proportional to the spin- 5

2
projection operator:[

�µν;ρσ (q) G
5
2
ρσ ;αβ (q) �†αβ;λτ (q)

] ∼ P 5
2 µν;λτ (q). (22)

This gives an additional constraint qµ�µν;ρσ (q) =
qν�

µν;ρσ (q) = 0. The vertex function can be decomposed in
terms of the spin projection operators. There are only three

operators, P
5
2
µν;ρσ (q), P

3
2

22; µν;ρσ (q), and P
1
2

22; µν;ρσ (q), that

satisfy the properties qµP
5
2
µν;ρσ (q) = 0, qνP

3
2

22; µν;ρσ (q) = 0,
and so on. Hence, the decomposition can be written as

�µν;ρσ (q) = α1(/q)P
5
2
µν;ρσ (q) + α2(/q)P

3
2

22; µν;ρσ (q)

+ α3(/q)P
1
2

22; µν;ρσ (q), (23)

where the coefficients of the decomposition α1(/q), α2(/q), and

α3(/q) are polynomials of m and /q. Note, that P
5
2
µν;ρσ (q),

P
3
2

22; µν;ρσ (q), and P
1
2

22; µν;ρσ (q) commute with /q. The spin- 5
2

propagator can also be decomposed in terms of the spin
projection operators. Because of the orthogonality properties

of the projection operators, only those terms in G
5
2
ρσ ;αβ (q) con-

tribute to the matrix element Eq. (21) that contain P
5
2
µν;ρσ (q),

P
3
2

22; µν;ρσ (q), and P
1
2

22; µν;ρσ (q) operators. If the parameters
a and b in Eqs. (15) and (16) could be chosen in such a

way that the propagator does not contain the P
3
2

22; µν;ρσ (q)

and P
1
2

22; µν;ρσ (q) operators, the lower-spin contributions to the
matrix element would be suppressed. This situation is realized
in the spin- 3

2 Rarita-Schwinger theory for the special choice
of the free parameter A = −1 (see [4] for a discussion). In
that case the use of a gauge-invariant coupling as suggested
by Pascalutsa [3,13,14] suppresses the remaining spin- 1

2
components, and the overall vertex has the desired projection
properties.

For the spin- 5
2 fields of Eq. (4), the contribution of the

P
3
2

22; µν;ρσ (q) projector can also be suppressed by choosing
a = −1. As we already mentioned in Sec. II, this parameter
is associated with both spin- 3

2 and spin- 1
2 degrees of freedom,

whereas b regulates only the spin- 1
2 ones. Indeed the expres-

sion Eq. (C1) derived for a = −1, b = −1 does not have the

P
3
2

22; µν;ρσ (q) projector. One might ask whether P
1
2

22; µν;ρσ (q)

can also be removed from the free propagator. The general
conclusion is that the term G

τλ;ρσ

(ψψ) (p), being a solution of

Eq. (16), always has contributions from P
1
2

22; µν;ρσ (q). We have
checked this by explicit calculation for arbitrary values of the
parameter b.

This conclusion is ultimately linked to the fact that the
Lagrangian of the free spin- 5

2 fields (2) does not maintain
gauge invariance in the massless limit. The same conclusion
was also drawn in [7]. Therefore one can never remove the
corresponding degrees of freedom from the transition matrix
Eq. (21) provided the vertex function is written in the form of
Eq. (23).

The solution to the problem was suggested in [4], where
it was proposed to utilize the Rarita-Schwinger condition
γµψµν = γνψ

µν = 0 to constrain the interaction vertex. As
a result, the interaction vertex satisfies the condition γ · � =
� · γ = 0. By applying this constraint to the decomposition

Eq. (23), one can see that only the P
5
2
µν;ρσ (q) projector obeys

the desired property and the decomposition reduces to

�µν;ρσ (q) = α1(/q)P
5
2
µν;ρσ (q). (24)

Since the vertex function should be free from any singularities,
the minimal power of /q in the function α1(/q) should be of the
fourth order. Then the simplest coupling can be written as
follows:

L
5
2
πNN∗ = gπNN∗

m2
πm4

R

ψ̄N (x)
[
�2P

5
2
µν;ρσ (∂)ψρσ

N∗
]
∂µ∂νπ (x) + H.c.

(25)

The use of P
5
2
µν;ρσ (∂) ensures that only the spin- 5

2 part of
the propagator contributes, and the square of the d’Alembert
operator guarantees that no other singularities except the mass
pole term (p2 − m2)−1 appear in the amplitude. As a result,
the physical observables no longer depend on the arbitrary
parameters a and b of the free Lagrangian. The πN scattering
amplitude with intermediate N∗( 5

2 ), Eq. (21), then reads

M =
(

gπNN∗

m2
π

)2

ūN (p′)

[ (
q2

m2
R

)4

P
5
2
µν;λτ (q)

]

× uN (p) k′µ k′ν kλ kτ . (26)

The coupling in Eq. (25) can be generalized for the fields
ψ

{ρ···σ }
N∗ of the arbitrary spin J as

LJ
πNN∗ = gπNN∗

(mπ )
1
2 (J−1/2)

ψ̄N (x)

×
[(

�
m2

R

)(J− 1
2 )

PJ
{µ···δ;ρ···σ }(∂)ψ {ρ···σ }

N∗

]

× {∂µ} · · · {∂δ} π (x) + H.c., (27)

where the number of indices assigned to ψ
{ρ···σ }
N∗ and

PJ
{µ···ν;ρ···σ }(∂) depends on the chosen representation. The cou-

pling constructed in Eqs. (26) and (27) ensures that the physical
observables do not depend on the free parameters of the theory.
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VI. SUMMARY

In summary, we have investigated the general properties
of free spin- 5

2 fields in the spinor-tensor representation. The
Lagrangian is written in terms of spin- 5

2 and auxiliary fields
(ψµν, ξ ) and coincides with that suggested in the literature for
a specific choice of free parameters. We demonstrate that the
Lagrangian in general depends on three arbitrary parameters:
two of them are associated with the lower spin- 3

2 and spin- 1
2

sector of the theory while the third one is linked to the auxiliary
field ξ .

We deduce a free propagator of the system that is given by
a 2 × 2 matrix in the (ψµν, ξ ) space. The diagonal elements
stand for the propagation of the spin- 5

2 and ξ fields, whereas
the nondiagonal ones correspond to ψµν-ξ mixing. The mixing
takes place between the spin- 1

2 sector of the spinor-tensor
representation and an auxiliary spinor field. While the free
propagator includes auxiliary degrees of freedom, they do not
contribute to the physical observables calculated within the
perturbation theory provided there is no coupling to ξ .

As an application to hadron physics calculations, the
interaction involving (ψµν, ξ ) is discussed for the example of
πNN∗

5
2

coupling. The pure spin- 5
2 propagator contains nonpole

terms which contribute in the whole kinematical region. As
we demonstrate, invariance under gauge transformations is
not enough to remove these contributions. This is ultimately
related to the fact that the free Lagrangian of the (ψµν, ξ )
system does not maintain gauge invariance in the massless
limit for any choice of the free parameters. The desired result
can, however, be obtained by construction of a coupling with
higher-order derivatives. In that case, the amplitude of the πN

scattering does not depend on the arbitrary parameters of the
free Lagrangian. The suggested coupling is generalized to the
Rarita-Schwinger fields of any half-integer spin.
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APPENDIX A: SPIN PROJECTION OPERATORS FOR THE
SPINOR-TENSOR REPRESENTATION

The spin projection operators are taken from [7]. In the
momentum space they are given by

P
5
2
µν;ρσ (q) = 1

2

(
P1

µρP1
νσ + P1

µσP1
νρ

) − 1

5
P1

µνP1
ρσ

− 1

10

(
/P1

µ/P1
ρP1

νσ + /P1
ν/P1

ρP1
µσ + /P1

µ/P1
σP1

νρ

+ /P1
ν/P1

σP1
µρ

)
,

P
3
2

11;µν;ρσ (q) = 1

2

(
P1

µρP0
νσ + P1

νρP0
µσ + P1

µσP0
νρ + P1

νσP0
µρ

)
− 1

6q2
OµνOρσ ,

P
3
2

22;µν;ρσ (q) = 1

10

(
/P1

µ/P1
ρP1

νσ + /P1
ν/P1

ρP1
µσ + /P1

µ/P1
σP1

νρ

+ /P1
ν/P1

σP1
µρ

) − 2

15
P1

µνP1
ρσ ,

P
3
2

21;µν;ρσ (q) = −P
3
2

12;ρσ ;µν(q) = 1

2
√

5 q2

(
qρ/P1

µP1
νσ

+ qρ/P1
νP1

µσ + qσ /P1
µP1

νρ + qσ /P1
νP1

µρ

)
/q

− 1

3
√

5 q2
P1

µνOρσ /q,

P
1
2

11;µν;ρσ (q) = P0
µνP0

ρσ ,

P
1
2

22;µν;ρσ (q) = 1

3
P1

µνP1
ρσ ,

P
1
2

33;µν;ρσ (q) = 1

6 q2
OµνOρσ ,

P
1
2

21;µν;ρσ (q) = P
1
2

12;ρσ ;µν(q) = 1√
3
P1

µνP0
ρσ ,

P
1
2

31;µν;ρσ (q) = −P
1
2

13;ρσ ;µν(q) = 1√
6 q2

OµνP0
ρσ /q,

P
1
2

23;µν;ρσ (q) = −P
1
2

32;ρσ ;µν(q) = −1

3
√

2 q2
OρσP1

µν /q, (A1)

where the operators P1
µν , P0

µν , /P1
µ, and Oµν are defined as

P1
µν = gµν − qµqν

q2 , /P1
µ = P1

µνγ
ν,

P0
µν = qµqν

q2 , Oµν = /P1
µqν + qµ/P1

ν .

The projection operators Eq. (A1) satisfy the following
properties: They satisfy orthogonality conditions

PJ ;τλ
ii;µν (q) PJ ′

ii;τλ;ρσ (q) = δJJ ′PJ
ii;µν;ρσ (q) (A2)

and the sum rules

P
5
2
µν;ρσ (q) +

2∑
i=1

P
3
2
ii;µν;ρσ (q) +

3∑
i=1

P
1
2
ii;µν;ρσ (q)

= 1

2
(gµρgνσ + gµσ gνρ). (A3)

APPENDIX B: LAGRANGIAN FOR THE
FREE SPIN- 5

2 FIELD

The functions F1(a), F2(a), G1(a, b), G2(a, b), and
B(a, b, c) of the free real parameters a, b, and c used in the
definition of the Lagrangian equation (2) read
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F1(a) = 1

4
(5a2 + 2a + 1),

F2(a) = 1

8
(15a2 + 10a + 3),

G1(a, b) = 5a4 − 12a3 − 20a2 − 8a − 4b2 − 4b(7a2 + 6a + 1) − 1

2(3a + 1)2
,

G2(a, b) = −15a4 + 18a2 + 8a + 12b2 + 6b(5a2 + 6a + 1) + 1

2(3a + 1)2
,

B(a, b, c) = − 24c2(3a + 1)2

5(5a2 + 6a + 4b + 1)2
. (B1)

Using the variational principle, one obtains two equations of
motion (3) and (4). Here we show that all Rarita-Schwinger
constraints [1] can be obtained from these equations. By
multiplying Eq. (3) by gµν , γ µpν , and pµpν and carrying
out the summation, we get

(gρσ {/p[b − 2F1(a) + 2G1(a, b) + 1] + m[2F2(a)

+ 2G2(a, b) − 1]} + 2(γσpρ + γρpσ )[a + b

+F1(a)])ψρσ + 2cmξ = 0, (B2)(
[2a + 5b + 2F1(a) + G1(a, b)] p2gρσ + m/p [G2(a, b)

− 2F2(a)]gρσ + {−m + 6mF2(a) + [b − 1 + 4F1(a) ] /p}
× (γρpσ + γσpρ) + (12a + 4) pρpσ

)
ψρσ + cm/p ξ = 0,

(B3)(
2[(2a + 1) /p − m]pρpσ + {p2[2a + b + 2F1(a)]

+ 2mF2(a) /p }(γ ρpσ + γ σpρ) + p2{[2b + G1(a, b)]/p

+mG2(a, b)}gρσ
)
ψρσ + cmp2 ξ = 0, (B4)

respectively. Expressing (γσpρ + γρpσ )ψρσ from the first
equation (B2) and substituting it in Eqs. (B3) and (B4), we
obtain(

4(3a + 1)[a + b + F1(a)] pρpσ + 1
2

( − [6F2(a) − 1]

× [2F2(a) + 2G2(a, b) − 1]m2 + 2/p {b + G1(a, b)

− 2F2(a) × [a + 3b + 3G1(a, b) + 1] + F1(a)

× [1 − 3G2(a, b)] + [a + 1]G2(a, b)}m
+ p2{4 a2 + 14 a b + 9 b2 + 12F 2

1 (a)

+ 2F1(a)[4a + 6b − 3G1(a, b) − 3]

+ 2 (a + 1) G1(a, b) + 1})gρσ
)
ψρσ + cm {[1 − 6F2(a)]

× m + /p [a − 3F1(a) + 1]}ξ = 0, (B5)(
2[a + b + F1(a)][(2a + 1)/p − m]pρpσ + 1

2 [−2F2(a)

× [ 2F2(a) + 2G2(a, b) − 1]m2/p − p2(/p{−3b2 − 2ab

+ b − 4F 2
1 (a) + 2a + 2a G1(a, b) + F1(a)[−4a − 4b

+ 2G1(a, b) + 2]} + m{2G2(a, b)a − 2a − b + F2(a)

× [4a + 4b + 4G1(a, b) + 2] + 2F1(a)[G2(a, b)

− 1]})]gρσ
)
ψρσ + cm{−[a + F1(a)] p2

− 2mF2(a) /p}ξ = 0. (B6)

Now, multiplying Eq. (B5) from the left by (6a + 2)−1[(2a +
1)/p − m], subtracting it from Eq. (B6), and using the defini-
tions (B1), we have

−cm(3a + 1)

8

(
(5m2 + 3p2) ξ + 3cm

B(a, b, c)

× (/p − 3m) gρσ ψρσ

)
= 0. (B7)

From Eqs. (4) and (B7), we obtain

(3a + 1) cm3ξ = 0, (B8)

which means that the auxiliary field vanishes provided a �=
− 1

3 . Having ξ = 0, the remaining constraints

(γµpν + γνpµ) ψµν = 0,

pµpν ψµν = 0, (B9)

gµν ψµν = 0

can be easily derived from Eqs. (B2)–(B4) and Eq. (4).
Now multiplying Eq. (3) from the left by γ ν and pν and

using Eqs. (B9), we have two equations,

{[a + 6F1(a) − 1] /p + [6F2(a) − 1]m}(γ σ gµρ + γ ρgµσ )ψρσ

+ 2(3a + 1)(gµρpσ + pρgµσ )ψρσ = 0, (B10)

[(a + 1)/p − m](pσ gµρ + pρgµσ )ψρσ + {p2[a + F1(a)]

+ m/pF2(a)}(γ σ gµρ + γ ρgµσ )ψρσ = 0. (B11)

Again, multiplying Eq. (B10) by (6a + 2)−1[(a + 1)/p − m],
subtracting the resulting equation from Eq. (B11), and using
definitions (B1) we get

(γ σ gµρ + γ ρgµσ ) ψρσ = 0, (B12)

provided a �= − 1
3 ,− 1

2 . Then the constraint

(pσ gµρ + pρgµσ ) ψρσ = 0 (B13)

immediately follows from Eqs. (B10) and (B12). Having
γ ρψρσ = 0, pρψρσ = 0, ξ = 0, and gρσ ψρσ = 0, Eq. (3)
reduces to the Dirac equation (/p − m)ψρσ = 0. Finally, we
have shown that all Rarita-Schwinger constraints can be
obtained from Eqs. (3) and (4). Hence, the function ψρσ

obeying these equations describes the spin- 5
2 field.
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APPENDIX C: SPIN- 5
2 PROPAGATOR

The solution of Eq. (19) can be written in the form

G
5
2
µν;ρσ (p) = 1

p2 − m2

(
(/p + m)P

5
2
µν;ρσ (p) + p2 − m2

m2

× [
D

3
2
µν;ρσ (p) + D

1
2
µν;ρσ (p)

])
, (C1)

G
ρσ

(ψξ )(p) = 1

64 m3c
{(/p + m)[2(γ ρpσ + γ σpρ) + 5mgρσ ]

+ 6(p2 − m/p)gρσ − 16pρpσ }, (C2)

where the lower spin- 3
2 and spin- 1

2 parts D
3
2
µν;ρσ (p) and

D
1
2
µν;ρσ (p) are

D
3
2
µν;ρσ (p)

= −4

5
(/p + m)P

3
2

11; µν;ρσ (p) + m√
5

(
P

3
2

12; µν;ρσ (p)

+P
3
2

21; µν;ρσ (p)
)
, (C3)

D
1
2
µν;ρσ (p)

= 1

80 m2

[
−3

8

(
[(73m2 − 12p2)/p + 3m(27m2

− 8p2)]P
1
2

11; µν;ρσ (p) + [(35m2 − 36p2)/p − m(13m2

+ 96p2)]P
1
2

22; µν;ρσ (p) −
√

3[(43m2 − 12p2)/p

+m(47m2 − 28p2)]
[
P

1
2

12; µν;ρσ (p) + P
1
2

21; µν;ρσ (p)
])

− [(16m2 + 3p2)/p + m(16m2 − 15p2)]P
1
2

33; µν;ρσ (p)

+ 9

2
√

6
(3m2 − 2p2) /p

[
P

1
2

13; µν;ρσ (p) − P
1
2

31; µν;ρσ (p)
]

+ 3m

2
√

6
(64m2 − 21p2)

[
P

1
2

13; µν;ρσ (p) + P
1
2

31; µν;ρσ (p)
]

+ 9

2
√

2
(3m2 + 2p2) /p

[
P

1
2

23; µν;ρσ (p) − P
1
2

32; µν;ρσ (p)
]

− m

2
√

2
(64m2 − 69p2)

[
P

1
2

23; µν;ρσ (p) + P
1
2

32; µν;ρσ (p)
]]

.

(C4)

The solution with arbitrary values of parameters a and b is
given in Appendix D.

APPENDIX D: SPIN- 5
2 PROPAGATOR FOR ARBITRARY

VALUES OF a AND b

The spin- 5
2 propagator for arbitrary values of the parameters

a and b can be written in the form of Eq. (C1), where the lower

spin- 3
2 and spin- 1

2 parts D
3
2
µν;ρσ (p) and D

1
2
µν;ρσ (p) are

D
3
2
µν;ρσ (p) = 1

(3a + 1)2

[
−

(
(5a + 1)2

5
/p + 75a2 + 50a + 7

10
m

)
P

3
2

11; µν;ρσ (p) + (a + 1)(5a + 1)√
5

/p
(
P

3
2

12; µν;ρσ (p) −P
3
2

21; µν;ρσ (p)
)

+ 15a2 + 10a + 3

2
√

5
m

(
P

3
2

12; µν;ρσ (p) + P
3
2

21; µν;ρσ (p)
) +

(
(a + 1)2/p − 3a2 + 2a − 1

2
m

)
P

3
2

22; µν;ρσ (p)

]
,

D
1
2
µν;ρσ (p) = 1

20 (3a + 1)2 m2

[
− 3

8(5a2 + 6a + 4b + 1)2
({[2000a6 + 4000a5 + 5(640b + 353)a4 + 20(128b − 25)a3

+ 2(640b2 − 444b − 205)a2 − 4(128b2 + 148b + 17) a − 256b2 − 56b − 3]m2 − 48(5a3 + 5a2

+ 4ba + a + b)2p2}/p + {[6000a6 + 18 400a5 + 25(384b + 793)a4 + 20(896b + 479)a3 + 2(1920b2

+ 5120b + 1043)a2 + 4(640b2 + 512b + 43)a + 256b2 + 128b + 1]m2 − 24[150a6 + 325a5 + 5(48b + 53)a4

+ 20(17b + 5)a3 + (96b2 + 157b + 17)a2 + (64b2 + 26b + 1)a + b (10b + 1)]p2}m)P
1
2

11; µν;ρσ (p)

− 1

8(5a2 + 6a + 4b + 1)2
({[2000a6 + 4000a5 + 5(640b − 943)a4 + 4(640b − 2717)a3 + 10(128b2 − 348b

− 617)a2 − 4(128b2 + 580b + 353) a − 256b2 − 344b − 115]m2 − 48[5a3 + 14a2 + (4b + 7)a + b + 1]2 p2}/p
+{[6000a6 + 18 400a5 + 5(1920b + 2021)a4 + 20(896b − 169)a3 + 2(1920b2 + 5120b − 2197)a2

+ 4(640b2 + 512b − 317) a + 256b2 + 128b − 119]m2 − 24[150a6 + 865a5 + 16(15b + 106)a4

+ 4(193b + 340)a3 + (96b2 + 589b + 523)a2 + (64b2 + 170b + 97)a + 10b2 + 17b + 7]p2}m)P
1
2

22; µν;ρσ (p)

+{[4(5a2 + 14a + 5)m2 − 3(2a + 1)2p2]/p − [4(15a2 + 10a − 1)m2 − 3(12a2 + 8a + 1)p2]m}P
1
2

33; µν;ρσ (p)

+
√

3

8(5a2 + 6a + 4b + 1)2
({[2000a6 + 4000a5 + 5(640b + 353)a4 + 4(640b − 341)a3 + 2(640b2 − 1092b

− 565)a2 − 4 (128b2 + 364b + 65)a − 256b2 − 200b − 19]m2 − 48[25a6 + 95a5 + 10(4b + 11)a4

+ (86b + 54)a3 + (16b2 + 51b + 12)a2 + (8b2 + 12b + 1)a + b(b + 1)]p2}/p + {[6000a6 + 18 400a5

+ 5(1920b + 4937)a4 + 20(896b + 803)a3 + 2(1920b2 + 5120b + 2663)a2 + 4(640b2 + 512b + 223)a
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+ 256b2 + 128b + 61]m2 − 12[300a6 + 1190a5 + 5(96 b + 295) a4 + 4(278b + 203) a3 + 2(96b2 + 373b

+ 108)a2 + 2(64b2 + 98b + 13) a + 20b2 + 18b + 1]p2}m)
(
P

1
2

12; µν;ρσ (p) + P
1
2

21; µν;ρσ (p)
)

+
√

3

2
√

2(5a2 + 6a + 4b + 1)
{[200a4 + 480a3 + (160b + 287)a2 + 6(32b + 7)a + 32b − 1]m2

− 12(2a + 1)(5a3 + 5a2 + 4ba + a + b)p2} /p
(
P

1
2

13; µν;ρσ (p) − P
1
2

31; µν;ρσ (p)
)

+
√

3

2
√

2(5a2 + 6a + 4b + 1)
{8(15a2 + 10a + 3)(5a2 + 6a + 4b + 1)m2 − 3[120a4 + 170a3

+ (96b + 81) a2 + 16(4b + 1) a + 12b + 1]p2} m
(
P

1
2

13; µν;ρσ (p) + P
1
2

31; µν;ρσ (p)
)

− 1

2
√

2(5a2 + 6a + 4b + 1)
{[200a4 + 480a3 + (160b + 611)a2 + 6(32b + 43)a + 32b + 35]m2

− 12(2a + 1)[5a3 + 14a2 + (4b + 7)a + b + 1]p2} /p
(
P

1
2

23; µν;ρσ (p) − P
1
2

32; µν;ρσ (p)
)

− 1

2
√

2(5a2 + 6a + 4b + 1)
{8(15a2 + 10a + 3)(5a2 + 6a + 4b + 1)m2 − 3[120a4 + 386a3 + 3(32b + 99)a2

+ 8(8b + 11) a + 12b + 9]p2} m
(
P

1
2

23; µν;ρσ (p) + P
1
2

32; µν;ρσ (p)
)]

.
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