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Exclusive muon-pair production in ultrarelativistic heavy-ion collisions: Realistic nucleus charge
form factor and differential distributions
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The cross sections for exclusive muon-pair production in nucleus-nucleus collisions are calculated and several
differential distributions are shown. Realistic (Fourier transform of charge density) charge form factors of nuclei
are used and the corresponding results are compared with the cross sections calculated with monopole form factor
often used in the literature and discussed recently in the context of higher-order QED corrections. Absorption
effects are discussed and quantified. The cross sections obtained with realistic form factors are significantly
smaller than those obtained with the monopole form factor. The effect is bigger for large muon rapidities and/or
large muon transverse momenta. The predictions for the STAR and PHENIX collaboration measurements at
RHIC as well as the ALICE and CMS collaborations at LHC are presented.
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I. INTRODUCTION

In Fig. 1 we show the basic quantum electrodynamics
(QED) mechanism of the exclusive production of muon pairs.
The shaded circles represent the coupling of photons to
large-size objects: nuclei. In the momentum space this is done
in terms of electromagnetic form factors of nuclei. In the case
of scalar nuclei there is only one form factor: the charge form
factor of the nucleus.

It was recognized long ago that the production rate of
leptons in ultrarelativistic heavy-ion collisions is enhanced
considerably by the coherent effects and large charge of
colliding ions [1]. Many results have been presented in
the literature since then (for reviews of the field see, e.g.,
Refs. [2,3]). Recently, there was a growing theoretical interest
in estimating higher-order QED corrections [4–7]. In most of
the practical calculations of exclusive dilepton production a
simple monopole charge form factor of the nucleus was used.
While it may be sufficient for estimating the total cross section,
it may be not sufficient for calculations of the differential
cross sections. The importance of including realistic charge
form factors was discussed recently for exclusive production
of pairs of ρ0 mesons [8].

Most of the existing calculations concentrated on total
cross section, an interesting theoretical quantity, which cannot
be, however, measured in practice, neither at the Relativistic
Heavy Ion Collider (RHIC) nor at the Large Hadron Collider
(LHC). The experiments running at RHIC and those planned
at LHC demand severe cuts on lepton transverse momenta or
on their rapidities.

It is the aim of the present analysis to make realistic
estimates of the cross sections, including the experimental
cuts. We shall compare the results obtained with monopole
form factor used in the literature and the results obtained
with realistic form factor being Fourier transform of the
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charge density of the nucleus. We shall perform the cal-
culation in the equivalent photon approximation (EPA) in
the impact parameter space as well as in the momentum
space. While the impact parameter EPA allows to include
easily absorption effects due to the size of colliding nuclei,
the momentum-space approach allows to study easily several
differential distributions. In our calculation we shall include
experimental limitations of the STAR and PHENIX detectors
at RHIC and those of the ALICE and CMS detectors at
LHC.

II. FORMALISM

A. Charge form factor of nuclei

The charge distribution in nuclei is usually obtained
from elastic scattering of electrons from nuclei [9]. The
charge distribution obtained from these experiments is often
parametrized with the help of two-parameter Fermi model
[10]:

ρ (r) = ρ0

[
1 + exp

(
r − c

a

)]−1

, (2.1)

where c is the radius of the nucleus and a is the so-called
diffiusness parameter of the charge density.

Figure 2 shows the charge density normalizationed to
unity at r = 0. The correct normalization is ρAu(0) =
0.1694

A
fm−3 for Au nucleus and ρPb(0) = 0.1604

A
fm−3 for

Pb nucleus.
The form factor (F ) is the Fourier transform of the charge

distribution [9]. If ρ(r) is spherically symmetric then the form
factor is a function of photon virtuality (q) only:

F (q) =
∫

4π

q
ρ (r) sin (qr) rdr = 1 − q2〈r2〉

3!
+ q4〈r4〉

5!
· · · .
(2.2)

Figure 3 shows the moduli of the form factor as a function
of momentum transfer. The results are depicted for the gold
(solid line) and lead (dashed line) nuclei for realistic charge
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FIG. 1. (Color online) The Born diagram for the exclusive
dimuon production.

distribution. The realistic form factor is obtained as a Fourier
transform of the realistic charge density which we take from the
literature [9]. Here one can see many oscillations characteristic
for relatively sharp edge of the nucleus. For comparison we
show the monopole form factor often used in the literature.
The two form factors coincide only in a very limited range
of q and with larger value of q the difference between them
becomes larger and larger.

The monopole form factor [11] given by the simple formula:

F (q2) = �2

�2 + q2
(2.3)

leads to a simplification of many formulas for photon-photon
collisions. In our calculation � is adjusted to reproduce the

root-mean-square (rms) radius of a nucleus (� =
√

6
〈r2〉 ) with

the help of experimental data [10]:

(i) for 197Au: 〈r2〉1/2 = 5.3 ⇒ � = 0.091 GeV,
(ii) for 208Pb: 〈r2〉1/2 = 5.5016 ⇒ � = 0.088 GeV.

FIG. 2. (Color online) The ratio of the charge distibution (ρ) to
the density in the center of nucleus (ρ0).

FIG. 3. (Color online) The moduli of the charge form factor
Fem(q) of the 197Au and 208Pb nuclei for realistic charge distributions.
For comparison we show the monopole form factor for the same
nuclei.

Different values of � are used in the literature, ranging
from 80 to 90 MeV. Figure 4 shows the monopole form factor
with � adjusted to reproduce the rms radius of the charge
distribution.

B. Equivalent photon approximation

The equivalent photon approximation is the standard semi-
classical alternative to the Feynman rules for calculating cross
sections of electromagnetic interactions [12]. This is illustrated
in Fig. 5 where we can see a fast moving nucleus with the
charge Ze. Due to the coherent action of all the protons in
the nucleus, the electromagnetic field surrounding (the dashed
lines are lines of electric force for a particles in motion) the ions

FIG. 4. (Color online) The monopole form factor for the values
of � reproducing charge radius of 197Au and 208Pb nuclei and for
comparison for � = 0.08 GeV often used in the literature.

014904-2



EXCLUSIVE MUON-PAIR PRODUCTION IN . . . PHYSICAL REVIEW C 82, 014904 (2010)

b

FIG. 5. (Color online) Equivalent photon approximation.

is very strong. This field can be viewed as a cloud of virtual
photons. These photons are often considered as real. They are
called “equivalent” or “quasireal photons.” In the collision of
two ions, these quasireal photons can collide with each other
or with the other nucleus. So the strong electromagnetic field is
used as a source of photons to induce electromagnetic reactions
on the second ion. We consider very peripheral collisions.
It means that the distance between nuclei is bigger than the
sum of the radii of the two nuclei (b > R1 + R2

∼= 14 fm).
Figure 6 explains the quantities used in the impact parameter
calculation. We can see a view in the plane perpendicular to
the direction of motion of the two ions. In order to calculate
the cross section of a process it is convenient to introduce
a new kinematic variable: x = ω

EA
, where ω is the energy of

the photon and the energy of the nucleus EA = γAmproton =
γMA, where MA is the mass of the nucleus and γ is the Lorentz
factor.

The total cross section can be calculated by the convolution:

σ (AA → µ+µ−AA; sAA)

=
∫

σ̂ (γ γ → µ+µ−; Wγγ = √
x1x2sAA)dnγγ (x1, x2, b).

(2.4)

The effective photon fluxes can be expressed through the
electric fields generated by the nuclei:

dnγγ (x1, x2, b) = 1

π
d2b1|E(x1, b1)|2 1

π
d2b2|E(x2, b2)|2

×S2
abs(b)δ(2)(b − b1 + b2)

dx1

x1

dx2

x2
. (2.5)

The presence of the absorption factor S2
abs(b) assures that we

consider only peripheral collisions, when the nuclei do not

b1 b2

b

FIG. 6. (Color online) The quantities used in the impact parame-
ter calculation.

undergo nuclear breakup. In the first approximation this can
be expressed as

S2
abs (b) = θ (b − 2RA) = θ (|b1 − b2| − 2RA). (2.6)

Thus in the present case, we concentrate on processes with
final nuclei in the ground state. The electric field strength can
be expressed through the charge form factor of the nucleus:

E(x, b) = Z
√

4παem

∫
d2q

(2π2)
e−ibq

× q

q2 + x2M2
A

Fem
(
q2 + x2M2

A

)
. (2.7)

Next we can benefit from the following formal
substitution:

1

π

∫
d2b|E (x, b) |2 =

∫
d2bN (ω, b) ≡ n (ω) (2.8)

by introducting effective photon fluxes which depend on
energy of the quasireal photon ω and the distance from the
nucleus in the plane perpendicular to the nucleus motion−→
b . Then, the luminosity function can be expressed in

term of the photon flux factors attributed to each of the
nuclei

dnγγ (ω1, ω2, b) =
∫

θ (|b1 − b2| − 2RA)N (ω1, b1)

×N (ω2, b2)d2b1d
2b2dω1dω2. (2.9)

The total cross section for the AA → µ+µ−AA process can
be factorized into the equivalent photons spectra [n(ω)] and the
γ γ → µ+µ− subprocess cross section as (see, e.g., Ref. [13]):

σ (AA → µ+µ−AA; sAA)

=
∫

σ̂ (γ γ → µ+µ−; Wγγ )θ (|b1 − b2| − 2RA)

×N (ω1, b1)N (ω2, b2)d2b1d
2b2dω1dω2, (2.10)

FIG. 7. (Color online) The equivalent photon number as a
function of impact parameter (integrated over ω), see Eq. (2.19).
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FIG. 8. (Color online) The ratio of the flux factor obtained with
realistic charge distribution to that with the monopole form factor as
a function of impact parameter.

where Wγγ = √
4ω1ω2 is energy in the γ γ subsystem.

Equation (2.10) is a generalization of the simple parton model
formula (see, e.g., Ref. [2]):

σ (AA → µ+µ−AA) =
∫

σ̂ (γ γ → µ+µ−;
√

4ω1ω2)

× n(ω1)n(ω2)dω1dω2. (2.11)

Additionally, we define Y = 1
2 (yµ+ + yµ− ), the rapidity

of the outgoing dimuon system which is produced in
the photon-photon collision. Performing the following
transformations:

ω1 = Wγγ

2
eY , ω2 = Wγγ

2
e−Y , (2.12)

FIG. 10. (Color online) The elementary cross section for the
γ γ → µ+µ− reaction as a function of the photon-photon energy.

dω1dω2 = Wγγ

2
dWγγ dY, (2.13)

dω1dω2 → dWγγ dY, where

∣∣∣∣∣ ∂ (ω1, ω2)

∂
(
Wγγ , Y

)
∣∣∣∣∣ = Wγγ

2
,

(2.14)

formula (2.10) can be rewritten as

σ (AA → µ+µ−AA; sAA)

=
∫

σ̂ (γ γ → µ+µ−; Wγγ )θ (|b1 − b2| − 2RA)N (ω1, b1)

×N (ω2, b2)
Wγγ

2
d2b1d

2b2dWγγ dY. (2.15)

FIG. 9. (Color online) The equivalent photon number n(ω), see Eq. (2.20). (Left panel) b ∈ (0, 100) fm; (right panel) b ∈ (14, 100) fm.
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FIG. 11. (Color online) Amplitude of the considered process. On
the left one can see the t-channel amplitude and on the right the
u-channel amplitude.

Finally, the cross section can be expressed as the fivefold
integral:

σ (AA → µ+µ−AA; sAA)

=
∫

σ̂ (γ γ → µ+µ−; Wγγ )θ (|b1 − b2| − 2RA)N (ω1, b1)

×N (ω2, b2)2πbmdbmdbxdby

Wγγ

2
dWγγ dY, (2.16)

where bx ≡ (b1x + b2x)/2, by ≡ (b1y + b2y)/2, and 	bm =
	b1 − 	b2 have been introduced. This formula is used to calculate
the total cross section for the AA → AAµ+µ− reaction as well
as the distributions in b = bm, Wγγ = Mµ+µ− , and Y (µ+µ−).

Different forms of form factors are used in the literature.
We compare the equivalent photon spectra for an extended
charge distribution (realistic case) to the monopole case. The
dependence of the photon flux on the charge form factors can
be found in [2]:

N (ω, b) = Z2αem

π2

1

b2ω

{∫
u2J1(u)F

[√(
bω
γ

)2 + u2

b2

]

× 1(
bω
γ

)2 + u2
du

}2

, (2.17)

where J1 is the Bessel function of the first kind and q is
the four-momentum of the quasireal photon. The calculations

with the help of realistic form factor are rather laborious, so
often a simpler monopole form factor is used [11]. Introducing
monopole form factor to (2.17) one gets:

N (ω, b) = Z2αem

π2

1

ω

[
ω

γ
K1

(
bω

γ

)
−

√
ω2

γ 2
+ �2

×K1

(
b

√
ω2

γ 2
+ �2

)]2

, (2.18)

where K1 is the modified Bessel function of the second kind.
Figure 7 shows the distribution of the equivalent photon

number as a function of the impact parameter

N (b) =
∫

N (ω, b) dω. (2.19)

We present the results for gold and lead nuclei, for realistic
and monopole form factors. Here we do not impose any sharp
cutoff on the impact parameter. One can see that for small b

the flux factor with monopole form factor is bigger. For large
b the results obtained with the help of realistic and monopole
form factors are almost the same.

In addition, in Fig. 8 we show the ratio of equivalent photon
fluxes obtained with the help of realistic form factor to that for
the monopole form factor. The oscillations in b are due to
steplike distribution of the charge in the nucleus. The results
for lower (

√
sNN = 200 GeV) and higher (

√
sNN = 5.5 TeV)

energies are almost the same.
Figure 9 shows

N (ω) =
∫

2πbN (ω, b) db. (2.20)

Here we consider the integral over full range of the impact
parameter (left panel) and for b > 2RA (right panel). One
can see that the difference between monopole and realistic
form factor for both gold and lead nuclei is not significant.
The quantity shown depends rather weakly on the photon
energy.

In Fig. 10 we show the energy dependence of the
elementary γ γ → µ+µ− cross section used in our EPA

FIG. 12. (Color online) The cross
section as a function of the im-
pact parameter for the AuAu →µ+µ−

AuAu reaction calculated in the
equivalent photon approximation. In
the left panel we show the re-
sults for realistic charge distribution
(solid line) and for monopole form
factor (dashed line). On the right
side we depict the ratio RATIO =
dσ (F REALISTIC

em )/dσ (F MONOPOLE
em ).
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FIG. 13. dσ

db1db2
as a function of b1 and b2 in lego (left) and contour (right) representation for b ∈ (480,520) fm.

FIG. 14. (Color online) The cross section for AuAu scattering as a function of photon-photon center-of-mass energy Wγγ = Mµ+µ− in
EPA. In the right panel we show the ratio of “realistic” to “monopole” form factor.

FIG. 15. (Color online) The cross section as a function of Y = 1
2 (yµ+ + yµ− ) (left panel) for realistic and monopole form factors (left)

calculated in EPA and their ratio (right).

014904-6



EXCLUSIVE MUON-PAIR PRODUCTION IN . . . PHYSICAL REVIEW C 82, 014904 (2010)

FIG. 16. (Color online) The cross section as a function of yµ+ , yµ− for realistic and monopole form factor calculated in the momentum
space (left panel). Their ratio is shown in the right panel.

calculations [1]:

σ (γ γ → µ+µ−)

= 4πα2
em

W 2
γ γ

{
2 ln

[
Wγγ

2mµ

(1 + v)

] (
1 + 4m2

µW 2
γ γ − 8m4

µ

W 4
γ γ

)

−
(

1 + 4m2
µW 2

γ γ

W 4
γ γ

)
v

}
, (2.21)

where

v =
√

1 − 4m2
µ

W 2
γ γ

. (2.22)

This formula is often called the Breit-Wheeler formula.

C. Momentum-space calculation

We consider a genuine 2 → 4 reaction (see Fig. 11)
with four-momenta pa + pb → p1 + p2 + p3 + p4. In the
momentum-space approach the cross section for the produc-

4
y-4 -2 0 2 4

3
y

-4
-2

0
2

4

] 4
dy 3

/d
y

σ
R

A
T

IO
  [

d

0

0.5

1

FIG. 17. The ratio of two-dimensional distributions
dσ (F REALISTIC

em )/dσ (F MONOPOLE
em ) in y3 and y4.

tion of a pair of particles can be written as

σ =
∫

1

2s
|M|2 (2π )4 δ4 (pa + pb − p1 − p2 − p3 − p4)

× d3p1

(2π )3 2E1

d3p2

(2π )3 2E2

d3p3

(2π )3 2E3

d3p4

(2π )3 2E4
. (2.23)

Using

d3pi

Ei

= dyid
2pit = dyipitdpitdφi, (2.24)

Eq. (2.23) can be rewritten as

σ =
∫

1

2s
|M|2δ4 (pa + pb − p1 − p2 − p3 − p4)

× 1

(2π )8

1

24
(dy1p1t dp1t dφ1)(dy2p2t dp2t dφ2)

× (dy3d
2p3t )(dy4d

2p4t ). (2.25)

FIG. 18. (Color online) The compilation of the results obtained
in different approaches for the total cross section for AuAu → Au
Au µ+µ− at

√
sNN = 200 GeV.
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FIG. 19. (Color online) Invariant mass distribution dσ

dMµ+µ− (left) and muon transverse momentum distribution dσ

dp3t
= dσ

dp4t
(right) for ALICE

conditions: y3, y4 ∈ (3, 4), p3t , p4t � 2 GeV and the center-of-mass energy WNN = 5.5 TeV.

FIG. 20. (Color online) dσ

dy3
= dσ

dy4
(left) and the ratio (right) for the ALICE conditions: y3, y4 ∈ (3, 4), p3t , p4t � 2 GeV, and WNN =

5.5 TeV.
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FIG. 21. Double differential
cross section dσ

dy3dp3t
for realistic (left)

and monopole (right) form factors
for ALICE conditions y3, y4 ∈ (3, 4),
p3t , p4t � 2 GeV, and WNN =
5.5 TeV.
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FIG. 22. Ratio of the cross sections dσ

dy3dp3t
for the ALICE

conditions: y3, y4 ∈ (3, 4), p3t , p4t � 2 GeV, and WNN = 5.5 TeV.

In the above formula pit are transverse momenta of outgoing
nuclei and leptons, and φ1, φ2 are azimuthal angles of outgoing
nuclei. Additionally, we introduce a new auxiliary quantity

pm = p3t − p4t (2.26)

and benefitting from four-dimensional Dirac delta function
properties, Eq. (2.25) can be written as:

σ =
∫

1

2s
|M|2δ (Ea + Eb − E1 − E2 − E3 − E4)

× δ3 (p1z + p2z + p3z + p4z)
1

(2π )8

1

24
(dy1p1t dp1t dφ1)

× (dy2p2t dp2t dφ2) dy3dy4d
2pm. (2.27)

The energy-momentum conservation gives the following
system of equations that has to be solved for discrete solutions{√

s − E3 − E4 =
√

m2
1t + p2

1z +
√

m2
2t + p2

2z,

−p3z − p4z = p1z + p2z,
(2.28)

where m1t , m2t are the so-called transverse masses of outgoing
nuclei which are defined as

m2
it = p2

it + m2
i . (2.29)

We wish to make the transformation from (y1, y2)
to (p1z, p2z). The transformation Jacobian takes the
form:

Jk =
∣∣∣∣∣∣

p1z (k)√
m2

1t + p2
1z (k)

− p2z (k)√
m2

2t + p2
2z (k)

∣∣∣∣∣∣ , (2.30)

where k numerates discrete solutions of Eq. (2.28). Thus the
cross section for the 2 → 4 reaction reads:

σ =
∫ ∑

k

J −1
k (p1t , φ1, p2t , φ2, y3, y4, pm, φm)

× 1

2
√

s(s − 4m2)
|M|2 1

(2π )8

1

24

× (p1t dp1t dφ1)(p2t dp2t dφ2)
1

4
dy3dy4d

2pm. (2.31)

For photon exchanges, considered here, it is convenient
to change the variables p1t → ξ1 = log10(p1t ), p2t → ξ2 =
log10(p2t ). The lepton helicity-dependent amplitudes of the
process shown in Fig. 11 can be written as

Mλ3,λ4 (t-channel) = eFch(q1)(pa + p1)α
−igαµ

q2
1 + iε

ū(p3, λ3)

× iγ µ i[( 
p3− 
q1) + mµ]

(q1 − p3)2 − m2
µ

iγ νv(p4, λ4)

× −igνβ

q2
2 + iε

(pb + p2)β eFch(q2)

(2.32)

FIG. 23. (Color online) The muon transverse-momentum distribution dσ

dp3t
(left) and the ratio (right) for the CMS conditions: y3, y4 ∈

(−2.5, 2.5), p3t , p4t � 4 GeV, and WNN = 5.5 TeV.
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FIG. 24. (Color online) The muon rapidity distribution dσ

dy3
(left) and the ratio (right) for the CMS conditions: y3, y4 ∈ (−2.5, 2.5), p3t , p4t �

4 GeV, and WNN = 5.5 TeV.

and

Mλ3,λ4 (u-channel) = eFch(q1)(pa + p1)α
−igαµ

q2
1 + iε

ū(p3, λ3)

× iγ ν i[( 
p3− 
q2) + mµ]

(q2 − p3)2 − m2
µ

iγ µv(p4, λ4)

× −igνβ

q2
2 + iε

(pb + p2)βeFch(q2). (2.33)

These amplitudes are calculated numerically. Finally, to
calulate the total cross section one has to calculate the eight-
dimensional integral inserting Mλ3,λ4 = Mλ3,λ4 (t-channel) +
Mλ3,λ4 (u-channel) into Eq. (2.31). We shall compare the
impact parameter EPA results with the exact1 quantum
electrodynamics results.

III. RESULTS

Let us start from the presentation of the results obtained in
the impact parameter EPA. In Fig. 12 we show the distribution

1By exact we mean the correct inclusion of the 2 → 4 process phase
space. It is, however, rather difficult to include absorption effects in
this approach.

in the impact parameter b for typical RHIC energy
√

sNN =
200 GeV. The contributions from distances smaller than b =
2RA are cut off consistently with θ function in Eq. (2.16). We
clearly see a huge contribution from distances large compared
to the nuclear size. The distribution with realistic charge falls
off somewhat quicker than that for the monopole charge form
factor. This is better visualized in the right panel where the
ratio of the corresponding cross sections is shown.

The difference of the cross sections for the monopole
and exact charge form factors at large impact parameter b

shown in the figure is especially intriguing in the light of
the equality of the photon flux factors at large b1 or b2 (see
Fig. 7). How to understand this quite nonintuitive result? In
Fig. 13 we show the distribution of dσ/db1db2 in (b1, b2) with
the severe restriction for the impact parameter b ∈ (480,520)
fm. We see two pronounced peaks at (b1 ≈ b, b2 ≈ 0) and
(b1 ≈ 0, b2 ≈ b). This demonstrates a strong preference of
asymmetric production of the pair: close to the trajectory of
one or the other nucleus, where the form factor details are
important (see Fig. 7). This point was never discussed so far
in the literature.

The distributions shown in Fig. 12 are purely theoretical;
that is, they cannot be easily measured. Let us come now to the
distributions which could, at least in principle, be measured.
Figure 14 shows the distribution in the dimuon subsystem
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FIG. 25. dσ

dy3dp3t
for realistic (left)

and monopole (right) form factors
for the CMS conditions: y3, y4 ∈
(−2, 5.2, 5), p3t , p4t � 4 GeV, and
WNN = 5.5 TeV.
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FIG. 26. The ratio of the realistic and monopole cross sections
dσ

dy3dp3t
for the CMS conditions: y3, y4 ∈ (−2.5, 2.5), p3t , p4t �

4 GeV, and WNN = 5.5 TeV.

energy. The distributions in Wγγ = Mµ+µ− falls steeply off.
In the right panel we show the ratio of the cross sections for
realistic charge distribution to that for the monopole charge
form factor. At Wγγ = 10 GeV the two distributions differ
already by a factor of about 5 which clearly shows limitations
of the calculations with analytic charge form factors.

Finally, in analogy to the AA → AAρ0ρ0 reaction studied
in Ref. [8], in Fig. 15 we show the distribution in the dimuon
pair rapidity. As for the ρ0ρ0 production we see a huge
difference between the results of the two calculations for
large dilepton rapidities. Measurements of dileptons in forward
directions would be therefore very useful to understand the role
of realistic charge distribution. The relative effect is shown in
the right panel of the figure.

The preliminary calculation in the impact parameter space
clearly shows how important studying differential distributions
to pin down the effects of realistic charge density can be. Not
all of the distributions can be easily addressed in the impact
parameter approach. The Feynman diagram approach in the
momentum space seems to be a better alternative to study the
differential distributions.

Now we come to the presentation of results obtained in the
momentum-space approach with details outlined in Sec. II.
Figure 16 shows distributions in muon rapidities (identical
for µ+ and µ−). No other limitations or kinematical cuts
have been included here. As in the previous cases we show

distributions obtained with the monopole and realistic charge
form factor. The effect of the oscillatory character of Fch(q) and
in particular its first minimum is reflected by a smaller cross
section at larger rapidities compared to the results obtained
with monopole form factor. This is due to the fact that on
average at large rapidities larger four-momentum squared
transfers (t1 or t2) are involved. In reality, one effectively
integrates over a certain range of t1 and t2. The relative effect
is shown in the right panel.

Figure 17 shows the situation (the ratio of the two
calculations) in the two-dimensional space: (y3, y4). Clearly
at midrapidities, where on average rather small t1 and t2 are
involved, the use of the approximate monopole form factor is
justified. This is not the case at the edges of the (y3, y4) plane
where due to kinematics |t1| or/and |t2| are larger.

Until now we have discussed “a theoretical situation” when
all the muons are accepted. In practice one can measure only
muons with transverse momenta larger than a certain value,
characteristic for a given detector. We shall consider now cases
relevant for concrete experimental situations.

The calculations in the literature concentrated mostly on
the total cross section. In Fig. 18 we present the dependence
of the total cross section on the lower cutoff in the impact
parameter. We present EPA results for realistic (lower solid
line) and monopole (upper solid line) form factors. The cross
section without the cutoff is 15% larger than that for bcut =
14 fm. This result is smaller than the corresponding results
obtained within momentum-space calculations, shown as the
horizontal dashed lines. Different methods have been used
in the literature to calculate the total cross section for the
AuAu → AuAu µ+µ− process. For comparison we show also
results obtained recently by Jentschura and Serbo (JS) [14]
in the momentum-space EPA and by Baltz et al. [15] in
the b-space EPA. The JS result should be compared to our
momentum-space calculation with monopole form factor.
Our exact calculation is in this case larger than their EPA
calculation by about 24%. This shows the precision of the
momentum-space EPA. The Baltz et al. result is significantly
lower than our b-space EPA result. In their calculations the
cuts were imposed rather on b1 and b2, instead on b in our
case. If we impose additional cuts on b1 and b2 in Eq. (2.16)
we get the point in the lower-right corner. If the cut on b

is not imposed we get the point in the lower-left corner.
The result of Baltz et al. differs from both these values, the
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FIG. 27. dσ

dy3dy4
for realistic (left)

and monopole (right) form factors
for the CMS conditions: y3, y4 ∈
(−2.5, 2.5), p3t , p4t � 4 GeV, and
WNN = 5.5 TeV.
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FIG. 28. (Color online) dσ

dp3t
(left) and the ratio (right) for the STAR conditions: y3, y4 ∈ (−1, 1), p3t , p4t � 1 GeV, and WNN = 200 GeV.

FIG. 29. (Color online) dσ

dy3
(left) and the ratio (right) for the STAR conditions: y3, y4 ∈ (−1, 1), p3t , p4t � 1 GeV, and WNN = 200 GeV.
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FIG. 30. dσ

dy3dp3t
for realistic (left)

and monopole (right) form factor for
the STAR conditions y3, y4 ∈ (−1, 1),
p3t , p4t � 1 GeV, and WNN = 200 GeV.
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solution being most probably a different form factor
used in their case.

Now we will continue reviewing our predictions for the
differential distributions. Let us start with the ALICE detector.
The ALICE collaboration can measure only forward muons
with psudorapidity 4 < η < 5 and uses a relatively low cut
on muon transverse momentum, pt > 2 GeV. In Fig. 19 (left
panel) we show the invariant mass distribution of dimuons for
monopole and realistic form factors. The ALICE experimental
cuts were incorporated into our calculations. The bigger
invariant mass the bigger the difference between the results
for the two form factors. The same is true for distributions
in muon transverse momenta (see the right panel). The
distribution in rapidity is shown in Fig. 20. We present the cross
sections for both (realistic, monopole) form factors and their
ratio.

Double differential distribution of the muon rapidity and
transverse momentum is shown in Fig. 21. These are our
predictions which could be studied experimentally in the
future. The small irregularities seen in the two-dimensional
spectra for the realistic form factor are the consequence of
the oscillatory character of the nucleus charge form factor.
The distribution for the monopole form factor is more
smooth.

In Fig. 22 we show the ratio of the cross sections shown in
the previous figure. Huge deviations from the unity can be seen.
The reminiscence of the oscillating form factor can be seen also
in the ratio. Experimental confirmation of this behavior would
be very useful. Moreover it would demonstrate whether our
understanding of the nuclear effects is correct. Large deviations
from the predictions presented here would be surprising.

Let us come now to the predictions for the CMS detector.
In contrast to the ALICE detector, CMS can measure midra-
pidity values with −2.5 < y3, y4 < 2.5. At midrapidities one
samples on average smaller t1 and t2 therefore the efects of
the realistic form factors are expected to be smaller. Figure 23
confirms the expectations. Even for muon transverse momenta
of 50 GeV one obtains damping with respect to the result
obtained with the monopole form factor by a factor of about 2
only.
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FIG. 31. The ratio of the two-dimensional distributions from the
previous figure for the STAR conditions: y3, y4 ∈ (−1, 1), p3t , p4t �
1 GeV, and WNN = 200 GeV.

FIG. 32. (Color online) Invariant mass distribution dσ

dMµ+µ− for

the STAR conditions: y3, y4 ∈ (−1, 1), p3t , p4t � 1 GeV, and WNN =
200 GeV.

The cross-section dependence on the muon rapidity is
shown in Fig. 24. A rather large cross section of the order of
0.1 mb is expected within the CMS acceptance. The average
deviation with respect to the monopole form factor is about
20% (see the left panel).

The two-dimensional distributions within the main CMS
detector are shown in Fig. 25. Big modifications with respect
to the monopole case can be seen for large pt and |yµ+ , yµ− | ∼
2.5, which is also presented in the form of the ratio in Fig. 26.

Finally, for completeness in Fig. 27 we show the distribu-
tions in the (y3, y4) plane. Here the distributions obtained with
the monopole and realistic form factors are rather similar, but
one should realize that these distributions are dominated by
muons with small transverse momenta that are only slightly

y3
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1.2 2.4−1.2−2.4
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3 4

FIG. 33. (Color online) The muon rapidity regions available by
the PHENIX detector.
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FIG. 34. (Color online) SQUARE 1: dσ

dy3
(left) and dσ

dy4
(right) for the PHENIX conditions: 1.2 < |y3, y4| < 2.4, p3t , p4t � 2 GeV, and

WNN = 200 GeV.

bigger than the experimental acceptance pt > 2.5 GeV and as
a consequence relatively small t1 and t2 values.

The same processes can be also studied at the being
presently in the operation RHIC. Here STAR and PHENIX
detectors can be used. The distribution of the muon transverse
momentum is shown in Fig. 28. The STAR rapidity cuts
−1 < y3, y4 < 1 are taken into account. Compared to the LHC
the transverse-momentum distributions decrease much faster.
This fast fall-off limits the real measurements to relatively
small transverse momenta of the order of 10 GeV. The
inclusion of realistic charge distribution is here much more
important than for the CMS conditions. The relative effect of
damping with respect to the results with the monopole charge
form factor is shown in the right panel. At pt = 10 GeV the
damping factor is as big as 100! Experiments at RHIC have a
potential to confirm this prediction.

In general, one could also inspect the rapidity distributions.
Our predictions are shown in Fig. 29. We predict the 30–40%

cross-section damping with respect to the reference calculation
(monopole charge form factor).

The two-dimensional distributions in muon rapidity and
muon transverse momenta are shown in Fig. 30 for the
realistic and monopole form factors. Their ratio is presented
in Fig. 31. Again as for the transverse-momentum distribution
(see Fig. 28) a huge damping can be observed. The irregular
structure of the ratio reflects the strong nonmonotonic depen-
dence of the charge form factors of Au nuclei on t1 and t2. For
completeness in Fig. 32 we show the distribution of the dimuon
invariant mass. The effect of the form factor oscillations shows
up at large dimuon invariant masses where the “realistic” cross
section is rather small.

The PHENIX collaboration can measure muons in a rather
limited range of rapidities shown in Fig. 33. We have given
names to the four possible regions (squares) in the figure.
In spite of these limitations, interesting measurements can
be done. As an example, in Figs. 34 and 35 we show our

FIG. 35. (Color online) SQUARE 2: dσ

dy3
(left) and dσ

dy4
(right) for the PHENIX conditions: 1.2 < |y3, y4| < 2.4, p3t , p4t � 2 GeV, and

WNN = 200 GeV.
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predictions for SQUARE1 and SQUARE2, respectively (the
results for SQUARE3 and SQUARE4 are not shown and can
be obtained by symmetry). Again large deviations from the
monopole form factor results are predicted.

IV. CONCLUSIONS

The production of charge leptons in heavy-ion collisions
was proposed recently as a “laboratory” for studying quantum
electrodynamics effects, in particular the multiple photon
exchanges. While very interesting theoretically it is still
nonrealistic because of other approximations made in the
calculations.

In this article we have presented a study of the role of charge
density for the differential distributions of muons produced in
exclusive ultraperipheral production in ultrarelativistic heavy-
ion collisions. Most of the calculations in the literature use
so-called monopole charge form factor, which allows to write
several formulas analytically. While it may be reasonable
for the total rate of the dimuon production it is certainly
too crude for differential distributions and for the cross
sections with extra cuts imposed on transverse momenta of
muons.

We have performed calculations in the equivalent photon
approximation in the impact parameter space and in the
momentum space using Feynman diagrammatic approach.
The first method is very convenient to include absorption
effects, while the second one allows to study differential
distributions.

Our calculations show that the results obtained with the real-
istic and the approximate form factors can differ considerably,
in some parts of the phase space even by orders of magnitude.
The effects related to the charge distribution in nuclei are
particularly important at large rapidities of muons and at
large transverse momenta of muons. We have also discussed
the role of absorption effects which can be easily estimated
in the impact parameter space. This allows to estimate the
absorption effects for the total rate or for the rapidity distribu-
tion of the dimuon pairs. Estimating this effect in the case of
differential distributions is not simple but could be studied in
the future.

We have presented predictions for the STAR and PHENIX
detectors at RHIC as well as for the ALICE and CMS detectors
at LHC. In all cases we have found significant deviations
from the reference calculation for the monopole form factor.

It would be interesting to pin down the effects discussed
here and verify the present predictions in future studies at
LHC. Both ALICE and CMS detectors could be used in such
studies.

In practice such studies may not be simple as an effi-
cient trigger for the peripheral collisions is required. The
multiphoton exchanges leading to additional excitation of
nuclei and subsequent emission of neutrons could be useful
in this context (see, e.g., Ref. [15]). The neutrons could
be then measured by the zero degree calorimeters. First
measurements of this type for e+e− pair emission have been
already performed by the STAR and PHENIX collaborations
[16,17].

In the present calculation we have restricted to lowest-order
QED calculations paying a special attention to realistic form
factors and absorption effects and totally ignored higher-
order corrections. How important are the QED higher-order
correction was demonstrated recently in Refs. [7,14]. While
Jentschura and Serbo [14] argue that the higher-order cor-
rections are rather small, Baltz [7] finds a huge reduction
of the integrated cross section of the order of 20%. Clearly
the discrepancy should be clarified in the future. It would
be also very interesting to calculate the higher-order correc-
tions for differential distributions which will be measured
at LHC.2 The latter calculations seem to us rather difficult
technically.

At present it is too early to answer the question whether the
processes discussed here could be used as a luminosity monitor
for heavy-ion collisions at LHC. In our opinion, first these
processes should be measured and compared to theoretical
calculations. In addition, the influence of the absorption effects
and multiphoton processes on differential distributions should
be studied in more detail.
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