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(3+1)D hydrodynamic simulation of relativistic heavy-ion collisions
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We present MUSIC, an implementation of the Kurganov-Tadmor algorithm for relativistic 3+1 dimensional
fluid dynamics in heavy-ion collision scenarios. This Riemann-solver-free, second-order, high-resolution scheme
is characterized by a very small numerical viscosity and its ability to treat shocks and discontinuities very
well. We also incorporate a sophisticated algorithm for the determination of the freeze-out surface using a
three dimensional triangulation of the hypersurface. Implementing a recent lattice based equation of state, we
compute pT -spectra and pseudorapidity distributions for Au+Au collisions at

√
s = 200 GeV and present results

for the anisotropic flow coefficients v2 and v4 as a function of both pT and pseudorapidity η. We were able
to determine v4 with high numerical precision, finding that it does not strongly depend on the choice of initial
condition or equation of state.
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I. INTRODUCTION

Hydrodynamics is perhaps the simplest description
of the dynamics of a many-body system. Because it is
coarse-grained, the complicated short-distance and short-time
interactions of the particles are averaged out. Therefore, the
effective degrees of freedom to describe the system reduce to
a handful of conserved charges and their currents instead of
some multiple of the number of particles in the system which
can be prohibitively large. Yet, as long as the bulk behavior of
a fluid is concerned, hydrodynamics is an indispensable and
accurate tool.

The equations of hydrodynamics are thus simple: They are
just the conservation laws and an additional equation of state
(for dissipative hydrodynamics, constitutive relationships are
also needed). In spite of their apparent simplicity, they can
explain a vast amount of macroscopic physical phenomena
ranging from the flow of water to the flight of airplanes. In this
paper we are concerned in particular with applying ideal hy-
drodynamics to the description of extremely hot and extremely
dense fluids—the quark-gluon plasma (QGP) and hadron gas.1

The idea that ideal hydrodynamics [1] can describe the
outcome of hadronic collisions has a long history starting from
Landau [2–5]. Subsequent developments and applications to
relativistic heavy-ion collisions have been carried out by
many researchers [6–55] and continue to this day. To describe
the evolution of the system created by relativistic heavy-ion
collisions, we need the following five conservation equations

∂µT µν = 0, (1)

∂µJ
µ

B = 0, (2)

where T µν is the energy-momentum tensor and J
µ

B is the
net baryon current. In ideal hydrodynamics, these are usually
re-expressed using the time-like flow four-vector uµ as

T
µν

ideal = (ε + P)uµuν − Pgµν, (3)

J
µ

B, ideal = ρBuµ, (4)

1We will report on the extension of the current approach including
viscous effects in another publication.

where ε is the energy density, P is the pressure, ρB is the
baryon density, and gµν = diag(1,−1,−1,−1) is the metric
tensor. The equations are then closed by adding the equilibrium
equation of state

P = P(ε, ρB ) (5)

as a local constraint on the variables.
In a first attempt to use these equations to study the QGP

produced in relativistic heavy-ion collisions [6] it was argued
that at a very large

√
s the boost invariant approximation

should work well. Therefore one can eliminate the longitudinal
direction from the full 3D space. Further, it was assumed that
the heavy ions are large enough so that the system is uniform
in the transverse plane, thus eliminating all spatial dimensions
from the equations. The energy-momentum conservation
equation then simply becomes

dε

dτ
= −ε + P

τ
, (6)

where τ is defined as

τ =
√

t2 − z2, (7)

together with the space-time rapidity ηs which transforms t, z

coordinates to τ, ηs coordinates as follows:

t = τ cosh ηs, z = τ sinh ηs. (8)

If the equation of state is given by

P = v2
s ε, (9)

where v2
s is the speed of sound squared, then we can easily

find the solution of Eq. (6)

εBjorken = ε0

(τ0

τ

)1+v2
s

, (10)

where ε0 is the initial energy density at the initial time τ0.
Although this solution is too simple to realistically

describe relativistic heavy-ion collisions, it still is a good
first approximation for the midrapidity dynamics. However,
when one starts to ask more detailed questions about the
dynamics of the evolving QGP such as the elliptic flow and
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HBT radii, it is not enough. One needs more sophisticated
calculations. One of the first attempts to go beyond the Bjorken
scenario was carried out in [56,57]. In the latter, the authors
assumed cylindrical symmetry but otherwise used a fully three
dimensional formulation and were successful in describing
some SPS results available at the time.

At SPS energy, the central plateau in the rapidity distri-
bution is not very pronounced. It is more or less consistent
with a Gaussian shape. In contrast, the central plateau extends
over four units of rapidity at RHIC. Hence, as long as one
is concerned only with the dynamics near the midrapidity
region, boost invariance should be a valid approximation
at RHIC, restricting the relevant spatial dimensions to the
transverse plane. Pioneering work on such 2+1 dimensional
ideal hydrodynamics was carried out in [18,21,22,25,27] and
[28,33]. Much success has been achieved by these 2+1D
calculations, in fact, too much to review in this work. Interested
readers are referred to [34,38] for a thorough review and
exhaustive references.

To go beyond 2+1D ideal hydrodynamics is challenging.
There are two main ingredients that need to be added—
viscosities and the proper longitudinal dynamics. Both require
major changes in algorithm and computing resources. The
main challenge for incorporating viscosities into the algorithm
is the appearance of the faster-than-light propagation of
information. The Israel-Steward formalism [58–60] avoids
this superluminal propagation [61–63] as does the more
recent approach in [30]. Since then a few groups have
produced 2+1D viscous hydrodynamic calculations. Two
groups, [44,51,64,65] and [41,49,53], use the Israel-Stewart
formalism of viscous hydrodynamics whereas another [48]
uses the Öttinger-Grmela [66–68] formalism. There is much
to discuss on the formalism of viscous hydrodynamics alone,
but since it is not the main topic of this paper, we would like
to defer the detailed discussion to our next publication where
we will present our own viscous hydrodynamic calculations.

The motivation to construct 3+1D hydrodynamics is to
investigate the nontrivial longitudinal dynamics and its effects
on the rapidity dependence of the transverse dynamics. Con-
structing a 3+1 dimensional ideal hydrodynamics code, how-
ever, is not as simple as just adding one more dimension or one
more equation to a code. The construction of a shock capturing
algorithm, the freeze-out surface, all become much more intri-
cate. So far there have been a few groups who have published
their study of heavy-ion physics using realistic 3+1D ideal hy-
drodynamic simulations. One of them [29,32,69] uses a fixed
grid (Eulerian) algorithm to solve the hydrodynamic equations,
another [23,47] uses a Lagrangian approach which follows the
evolution of each fluid cell. A somewhat different approach
called smoothed particle hydrodynamics is used in Ref. [20].

We have three major motivations to add another imple-
mentation to this list. The parameters such as the initial
temperature profile and expansion rate can differ between
the 2+1D calculations and the 3+1D calculations and also
among different approaches. Intuitively, it is clear that reality
should favour 3+1D hydrodynamics. But since there are so
many unknowns in the initial state, such as the exact initial
energy density profile, initial flow profile and the initial baryon
density profile, having an independent algorithm is important

for verifying our understanding of the initial condition and
its uncertainty. This difference in 2+1D and 3+1D initial
conditions is also important in jet quenching calculations since
initial conditions can make a fair amount of difference in fixing
the jet quenching parameters such as the initial temperature and
the effective coupling constant.

Another motivation is the desire to have a modular
hydrodynamics code to which we can couple a high pT jet
physics model such as in MARTINI [70]. This is to examine
the response of the medium to the propagating jet as it loses
energy to its surrounding medium. We are not yet at this stage
but planning on implementing it in the near future.

Last but not least, one should take advantage of recent
progress in shock capturing algorithms to possibly simplify
and certainly improve the calculations, creating an updated
standard from which to assess the importance of viscous
effects. The algorithm we use is usually referred to as
Kurganov-Tadmor method [71].

In this work we first review the Kurganov-Tadmor scheme
(Sec. II) and present the implementation for relativistic ideal
hydrodynamics in a three-dimensional expanding geometry
(Sec. III). After discussing initial conditions (Sec. IV) and
the employed equations of state, which include a recent
parametrization of a combined lattice and hadron resonance
gas equation of state (Sec. V), we introduce a new algorithm
for determining the freeze-out surface by discretizing the three
dimensional hyper-surface into tetrahedra (Sec. VI). Finally
we show first results for particle spectra including resonance
decays from resonances up to 2 GeV, elliptic flow, and the
anisotropic flow coefficient v4 (Sec. VII). It is demonstrated
that the latter is highly sensitive to discretization errors which
are shown to be well under control for fine enough lattices.

II. KURGANOV-TADMOR METHOD

Hydrodynamic equations stem from conservation laws.
Hence, they take the following general form:

∂tρa = −∇ · Ja, (11)

where a runs from 0 to 4, labeling the energy, three components
of the momentum and the net baryon density. The task is then
to solve these equations together with the equation of state.
Even though they have a deceptively simple form, they are
remarkably subtle to solve. In this section, we briefly sketch
the Kurganov and Tadmor scheme (KT) [71], which we use
for the solution of Eq. (11).

To illustrate the method, consider the following single
component conservation equation in one spatial dimension

∂tρ = −∂xJ, (12)

together with an equation that relates J to ρ such as J = vρ.
All the essential features of KT can be explained with this
simple example. As it was shown in Ref. [71], higher dimen-
sions can be dealt with by simply repeating the treatment here
for all spatial dimensions. Coupled conservation equations
make the calculation of the maximum local propagation speed
more complicated (see below), but there is no conceptual
complication in doing so.
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The need for more sophisticated numerical methods in
solving conservative equations in part comes from the fact
that a naive discretization of Eq. (12) such as

ρn+1
j − ρn

j

�t
= −J n

j+1 − J n
j−1

2�x
, (13)

with J = vρ is unconditionally unstable. That is, the solution
will either grow without bound as t increases or start to
oscillate uncontrollably. Here the superscript n indicates that
the quantity is evaluated at tn = t0 + n�t and the subscript j

indicates that the quantity represents the value at xj = j�x.
One can make this stable if one devises a scheme where
numerical damping is introduced. For instance, suppose one
replaces ρn

j in the left hand side of Eq. (13) with the spatial
average (ρn

j+1 + ρn
j−1)/2. In the small �t and �x limit, this

well-known Lax method [72,73] is equivalent to solving

∂tρ = −∂xJ +
(

(�x)2

2�t

)
∂2
xρ. (14)

The second term is the numerical dissipation term often
referred to as the “numerical viscosity”. Different schemes
introduce different forms of the numerical viscosity term.

This simple method does stabilize the numerical solutions
but one also can immediately see that (�x)2/�t must not
be large. Otherwise, this artificial term will dominate the
numerical evolution of the system. Therefore in this method,
a finer time resolution result cannot be computed without
making the number of spatial grid points correspondingly
large. Many other numerical methods also have a 1/�t

behavior for the artificial viscosity, including KT’s immediate
predecessor [74]. However, in KT the artificial viscosity does
not depend on �t . It only depends on some positive power
of �x and we are free to take the �t → 0 limit. As a bonus,
this allows us to turn a set of difference equations into a set of
ordinary differential equations as explained below. This places
the vast array of ODE solvers at one’s disposal, thus making
this method much more versatile.

Notably, KT is a MUSCL-type (Monotonic Upstream-
centered Schemes for Conservation Laws) finite volume
method [75] in which the cell average of the density ρ around
xj is used instead of the value of the density at xj . Then, the
conservation equation for the cell average

ρ̄j (t) = 1

�x

∫ xj+1/2

xj−1/2

dx ρ(x, t), (15)

becomes
d

dt
ρ̄j (t) = J (xj−1/2, t) − J (xj+1/2, t)

�x
, (16)

and the current and charge density at values other than the xj

are constructed using a piecewise linear approximation. This
method leads to discontinuities at the halfway points xj±1/2

where the current is evaluated. Kurganov and Tadmor solved
this problem using the maximal local propagation speed a =
|∂J/∂ρ| to identify how far the influence of the discontinuities
at xj±1/2 could travel, and divided the space into two groups;
one with elements that include a discontinuity and one where
the solution is smooth. The exact procedure of doing this is
explained in the Appendix.

Here, we quote Kurganov and Tadmor’s final result for the
conservation equation in the �t → 0 limit:

d

dt
ρ̄j (t) = −Hj+1/2(t) − Hj−1/2(t)

�x
, (17)

where

Hj±1/2 = J (xj±1/2,+, t) + J (xj±1/2,−, t)

2

− aj±1/2(t)

2
(ρ̄j±1/2,+(t) − ρ̄j±1/2,−(t)), (18)

with

ρ̄j+1/2,+ = ρ̄j+1 − �x

2
(ρx)j+1, (19)

ρ̄j+1/2,− = ρ̄j + �x

2
(ρx)j . (20)

The order of the spatial derivatives (ρx)j is chosen by the
minmod flux limiter

(ρx)j = minmod

(
θ
ρ̄j+1 − ρ̄j

�x
,
ρ̄j+1 − ρ̄j−1

2�x
, θ

ρ̄j − ρ̄j−1

�x

)

where

minmod(x1, x2, · · ·) =

⎧⎪⎨
⎪⎩

minj {xj }, if xj > 0 ∀j

maxj {xj }, if xj < 0 ∀j

0, otherwise

and 1 � θ � 2 is a parameter that controls the amount
of diffusion and the oscillatory behavior. This is also our
choice with θ = 1.1. This allows for higher accuracy using
the second-order approximation where possible and avoids
spurious oscillations around stiff gradients by switching to the
first order approximation where necessary.

The Kurganov-Tadmor method, combined with a suitable
flux limiter such as the one just described, is a non-oscillatory
and simple central difference scheme with a small artificial
viscosity which can also handle shocks very well (for an
extensive comparison with other schemes in this regard, see
Ref. [76]). It is also Riemann-solver free and hence does not
require calculating the local characteristics. This scheme is
ideally suited for hydrodynamics studies.

III. IMPLEMENTATION

We now describe our implementation of the KT algorithm
for relativistic heavy-ion collisions, dubbed MUSIC, MUScl for
Ion Collisions.

As in most ideal hydrodynamics implementations for
heavy-ion collisions, the most natural coordinate system for
us is the τ − ηs coordinate system defined by Eq. (8). In the
τ − ηs coordinate system, the conservation equation ∂µJµ = 0
becomes

∂τ (τJ τ ) + ∂ηs
J ηs + ∂v(τJ v) = 0, (21)

where

J τ = (cosh ηsJ
0 − sinh ηsJ

3), (22)

J ηs = (cosh ηsJ
3 − sinh ηsJ

0), (23)
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which is nothing but a Lorentz boost with the space-time
rapidity ηs = tanh−1(z/t). The index v and w in this section
always refer to the transverse x, y coordinates which are not
affected by the boost. Applying the same transformation to
both indices of T µν , one obtains

∂τ (τT ττ ) + ∂ηs
(T ηsτ ) + ∂v(τT vτ ) + T ηsηs = 0, (24)

and

∂τ (τT τηs ) + ∂ηs
(T ηsηs ) + ∂v(τT vηs ) + T τηs = 0, (25)

and

∂τ (τT τv) + ∂ηs
(T ηsv) + ∂w(τT wv) = 0, (26)

These five equations, namely Eq. (21) for the net baryon
current, and Eqs. (24), (25), (26) for the energy and momentum
are the equations we solve with the KT scheme explained in
the previous section. Multidimension is dealt with by repeating
the KT scheme in each direction [71]. The source term is dealt
with by following the suggestions in the original KT paper and
others [77].

At each time step, the new values of J τ , T ττ , T τηs , and
T τv are obtained by solving the semidiscrete version of KT
using Heun’s rule. Heun’s rule is a form of the second-order
Runge-Kutta method which can be stated as follows. Suppose
we have a differential equation

dρ

dt
= f (t, ρ). (27)

A numerical solution of this equation can be obtained by
applying the following rules:

(i) Compute k1 = f (t, ρn).
(ii) Compute ρ ′

n+1 = ρn + k1�t .
(iii) Compute k2 = f (t + �t, ρ ′

n+1).
(iv) Compute ρn+1 = ρn + (k1 + k2)�t/2.

Once new values of J τ , T ττ , T ηsτ , and T vτ are obtained,
the following ideal gas expressions:

T ττ = (ε + P)uτuτ − P, (28)

T τηs = (ε + P)uηs uτ , (29)

T τv = (ε + P)uτuv, (30)

J τ = ρuτ , (31)

together with the equation of state

P = P(ε, ρ) (32)

determine the net baryon density ρ, the pressure P , the energy
density ε, and the flow velocity uµ. The flow components uτ

and uηs here are given by the Lorentz boost with the space time
rapidity ηs exactly as in Eqs. (22), (23). Hence, they still satisfy
the normalization condition u2

τ = 1 + u2
x + u2

y + (1/τ 2)u2
ηs

.
Explicitly, the values of ε and ρ are obtained by iteratively

solving the following coupled equations:

ε = T ττ − K

[T ττ + P(ε, ρ)]
, (33)

ρ = J τ

√
ε + P(ε, ρ)

T ττ + P(ε, ρ)
, (34)

where K = (T ηsτ )2 + (T xτ )2 + (T yτ )2. A good initial guess
turned out to be either the value at the previous time step or
just the initial T ττ and J τ . Knowing ε, ρ, we can calculate the
pressure P = P(ε, ρ) and uτ = J τ /ρ. These then determine
the spatial flow vector components as

ui = T τi

(ε + P)uτ
, (35)

for i = ηs, x, y. With these ε, ρ,P and uµ, the whole T µν can
be reconstructed and be used at the next time step.

In addition to the currents, we need to find the maximum
local propagation speed at each time step. The maximum speed
in the k direction is given by the maximum eigenvalue of the
following Jacobian:

J k
ab = ∂J k

a

∂J τ
b

, (36)

where J
µ
a with a = 0, 1, . . . , 4 stand for the five currents (net

baryon, energy, and momentum). The whole matrix is quite
complicated. However, with the help of MATHEMATICA [78], it
turned out that the eigenvalues can be analytically calculated.

If there is no net baryon current to consider, two of the four
eigenvalues in the k = x, y direction are degenerate and equal
to uk/uτ . The remaining two are

λ±
k = A ± √

B

D
, (37)

with

A = uτuk
(
1 − v2

s

)
,

B = [
u2

τ − u2
k − (

u2
τ − u2

k − 1
)
v2

s

]
v2

s , (38)

D = u2
τ − (

u2
τ − 1

)
v2

s ,

where v2
s = P ′(ε) is the speed of sound squared. In the k = ηs

direction, we have the same expression, but the eigenvalues are
scaled with 1/τ , that is ληs

= λk→ηs
/τ . The same expressions

for the Cartesian case was obtained in [79]. The largest
eigenvalue is thus

∣∣λlargest
k

∣∣ = |A| + √
B

D
, (39)

with an additional 1/τ factor for k = ηs .
Even with the net baryon current present, the eigenvalues

of the the resulting 5 × 5 matrix can be computed analytically.
Consider first k = x, y directions. Among the five eigenvalues,
three are degenerate and equal to uk/uτ . The other two are
again given by Eq. (38) with

v2
s = ∂εP + (ρ/(ε + P))∂ρP. (40)

It is obvious that the ρ → 0 limit coincides with the no current
case. In the ηs direction, the expressions for the eigenvalues
are the same except for the overall scale factor 1/τ . The
maximum eigenvalue is again given by Eq. (39) with the above
substitution.

Importantly, MUSIC is fully parallelized to run on many
processors simultaneously. To achieve this, the lattice is
truncated in the ηs direction so that each processor only has to
evolve the system on one slice, communicating the cell values
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at the boundary to the neighboring processors every time step.
This leads to an increase in speed almost (minus the time
necessary for communication between the processors) linear
in the number of processors used.

The typical size of a time step is of the order of 0.01 fm/c.
Energy conservation is fulfilled to better than 1 part in 30 000
per time step.

IV. INITIAL CONDITIONS

The initialization of the energy density is done using the
Glauber model (see [80] and references therein): Before the
collision the density distribution of the two nuclei is described
by a Woods-Saxon parametrization

ρA(r) = ρ0

1 + exp[(r − R)/d]
, (41)

with R = 6.38 fm and d = 0.535 fm for Au nuclei. The
normalization factor ρ0 is set to fulfill

∫
d3rρA(r) = A. With

the above parameters we get ρ0 = 0.17 fm−3. The relevant
quantity for the following considerations is the nuclear
thickness function:

TA(x, y) =
∫ ∞

−∞
dz ρA(x, y, z), (42)

where r =
√

x2 + y2 + z2. The opacity of the nucleus is
obtained by multiplying the thickness function with the total
inelastic cross section σ0 of a nucleus-nucleus collision.

Experiments at SPS found that the number of final state
particles scales with the number of wounded nucleons,
nucleons that interact at least once in the collision. Deviations
from the scaling are observed at RHIC.

Statistical considerations allow to express the number of
wounded nucleons in the transverse plane by the nuclear
thickness function of one nucleus, multiplied with a com-
binatorial factor involving the nuclear thickness function of
its collision partner. This factor ensures that the participating
nucleon does not penetrate the finite opposing nuclear matter
without interaction. For noncentral collisions of nuclei with
mass numbers A and B at impact parameter b, the number of
wounded nucleons per transverse area is given by [27]

nWN(x, y, b)

= TA

(
x + b

2
, y

) ⎡
⎣1 −

(
1 − σ0TB

(
x − b

2 , y
)

B

)B
⎤
⎦

+ TB

(
x − b

2
, y

) ⎡
⎣1 −

(
1 − σ0TA

(
x + b

2 , y
)

A

)A
⎤
⎦ .

(43)

Integrating this expression over the transverse plane yields the
total number of wounded nucleons (participants) as a function
of the impact parameter. We compute the relevant quantities
using routines adapted from LEXUS [81].

At high energies the density of binary collisions becomes of
interest. After suffering their first collision, the partons travel
on through the nuclear medium and are eligible for further
(hard) collisions with other partons. This leads to the notion

that one has to count the binary collisions. The density of
their occurrence in the transverse plane is simply expressed by
the product of the thickness function of one nucleus with the
encountered opacity of the other nucleus, leading to

nBC(x, y, b) = σ0TA(x + b/2, y)TB (x − b/2, y). (44)

The total number of binary collisions shows a stronger
dependence on the impact parameter than does the number
of wounded nucleons.

We now assume that the initial state of matter in the
transverse plane is governed entirely by the physics of ‘soft’
and ‘hard’ processes represented in terms of the densities
of wounded nucleons and binary collisions, respectively.
Shadowing effects by the spectators do not play a role at RHIC
energies because the spectators leave the transverse plane at
z = 0 on a timescale of less than 1 fm/c.

Whether the deposited energy density or entropy density
scales with the density of wounded nucleons or binary colli-
sions is not clear from first principles. As mentioned above,
SPS data suggests that the final state particle multiplicity is
proportional to the number of wounded nucleons. At RHIC
energies a violation of this scaling was found. (The particle
production per wounded nucleon is a function increasing with
centrality. This is attributed to a significant contribution from
hard processes, scaling with the number of binary collisions.)

We parametrize the shape of the initial energy density
distribution in the transverse plane as

W (x, y, b) = (1 − α)nWN(x, y, b) + αnBC(x, y, b), (45)

where α determines the fraction of the contribution from binary
collisions.

Alternatively, we can scale the entropy density as opposed
to the energy density as in Eq. (45). This leads to more pro-
nounced maxima in the energy density distributions because
of the relation ε ∼ s4/3 in the QGP phase. However, a similar
effect can be achieved by increasing the contribution of binary
collision scaling α.

For the longitudinal profile we employ the prescription used
in [29,32,47,69,82–84]. It is composed of two parts, a flat
region around ηs = 0 and half a Gaussian in the forward and
backward direction:

H (ηs) = exp

[
− (|ηs | − ηflat/2)2

2σ 2
η

θ (|ηs | − ηflat/2)

]
. (46)

The full energy density distribution is then given by

ε(x, y, ηs, b) = ε0H (ηs)W (x, y, b)/W (0, 0, 0). (47)

The parameters ηflat and ση are tuned to data and will be
quoted below.

V. EQUATION OF STATE

To close the set of equations (21), (24), (25), (26) we must
provide a nuclear equation of state P(ε, ρ) which relates the
local thermodynamic quantities. We present calculations using
a modeled equation of state (EOS-Q) also used in AZHYDRO

[21,34,85] as well as one extracted from recent lattice QCD
calculations [86].
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For the EOS-Q, the low temperature regime is described as
a noninteracting gas of hadronic resonances, summing over
all resonance states up to 2 GeV [87]. Above the critical
temperature Tcrit = 164 MeV, the system is modeled as a
noninteracting gas of massless u, d, s quarks and gluons,
subject to an external bag pressure B. The two regimes are
matched by a Maxwell construction, adjusting the bag constant
B1/4 = 230 MeV such that for a system with zero net baryon
density the transition temperature coincides with lattice QCD
results [88,89]. The Maxwell construction inevitably leads to
a strong first order transition, with a large latent heat.

However, lattice results suggest a smoother transition.
Recently, in [86] several parametrizations of the equation
of state which interpolate between the lattice data at high
temperature and a hadron-resonance gas in the low temper-
ature region were constructed. We adopt the parametrization
“s95p-v1” (and call it EOS-L in the following), where the
fit to the lattice data was done above T = 250 MeV, and the
entropy density was constrained at T = 800 MeV to be 95%
of the Stefan-Boltzmann value. Furthermore, one “datapoint”
was added to the fit to make the peak in the trace anomaly
higher. See [86] for more details on this parametrization of the
nuclear equation of state.

VI. FREEZE-OUT

The spectrum of produced hadrons of species i with
degeneracy gi is given by the Cooper-Frye formula [90]:

E
dN

d3p
= dN

dypT dpT dφp

= gi

∫


f (uµpµ)pµd3µ, (48)

with the distribution function

f (uµpµ) = 1

(2π )3

1

exp((uµpµ − µi)/TFO) ± 1
. (49)

We assumed that at freeze-out every infinitesimal part of the
hypersurface  behaves like a simple black body source of
particles (this assumption will be modified when including
viscosity). The collective velocity of the fluid on the hy-
persurface, which results from longitudinal and transverse
flow, is taken into account by using the invariant expression
E = E(x) = uµ(x)pµ. To evaluate the right hand side of
Eq. (48) we need to determine the freeze-out hypersurface

 = [0(x, y, ηs), 
1(x, y, ηs), 

2(x, y, ηs), 
3(x, y, ηs)]

= [τf (x, y, ηs) cosh ηs, x, y, τf (x, y, ηs) sinh ηs], (50)

where τf (x, y, ηs) is the freeze-out time, determined by when
the energy density (or temperature) falls below the critical
value εFO (or TFO). The normal vector on this surface is given
by

d3µ = −εµνλρ

∂ν

∂x

∂λ

∂y

∂ρ

∂ηs

dxdydηs, (51)

with the totally anti-symmetric tensor of fourth order

εµνλρ = −εµνλρ =
⎧⎨
⎩

1 even permutation
−1 odd permutation
0 otherwise

. (52)

Using Eq. (50) we find

d3µ =
(

∂τf

dηs

sinh ηs + τf cosh ηs,−τf

∂τf

∂x
,−τf

∂τf

∂y
,

− ∂τf

∂ηs

cosh ηs − τf sinh ηs

)
dxdydηs. (53)

To evaluate Eq. (48) we need to determine uµpµ and
pµdµ. The hydrodynamic evolution calculation provides
uτ , ux, uy, uηs , so we express pµ as2

pτ = mT cosh(y − ηs)

pηs = mT

τ
sinh(y − ηs),

with mT = √
m2 + p2

T , where m is the mass of the considered
particle, and obtain

uµpµ = uτpτ − uxpx − uypy − τ 2uηs pηs

= uτmT cosh(y − ηs) − uxpx − uypy

− τuηs mT sinh(y − ηs). (54)

Note that y’s appearing in the cosh and sinh functions represent
the rapidity of the produced hadron. We can express  from
Eq. (50) in terms of τ − ηs coordinates

α = (τ ,x,y,ηs ) = [τf (x, y, ηs), x, y, ηs], (55)

and get

d3α =
(

1,−∂τf

∂x
,−∂τf

∂y
,−∂τf

∂ηs

)√
−det g dxdydηs

=
(

1,−∂τf

∂x
,−∂τf

∂y
,−∂τf

∂ηs

)
τf dxdydηs, (56)

with g the metric in τ − ηs coordinates. The scalar product of
Eq. (56) with pα is then found to be

pαd3α =
[
mT

∂

∂ηs

(τf sinh(y − ηs))

− τf �pT · �∇T τf

]
dxdydηs, (57)

with the two-dimensional derivative �∇T = (∂x, ∂y).
In the limit that τf does not depend on ηs we recover the

Bjorken result

pα d3α = (mT cosh(y − ηs) − �pT · �∇T τf )τf dxdydηs.

(58)

In practice, we need to determine d3α geometrically. In
previous works a simple algorithm has been used [32,91]
that adds a cuboidal volume element to the total freeze-out
surface whenever the surface crosses a cell, e.g., if the
quantity ε − εFO changes sign when moving along the x

direction, one adds a volume element of size �y�ηs�τ with
its hyper-surface vector pointing in the x direction (towards
lower energy density). So surface vectors always point along
one of the axes x, y, ηs , or τ . This method overestimates
the freeze-out surface itself but is sufficient for computing

2In this section, our definition of the four-vector component vηs =
(cosh ηs v3− sinh ηs v0)/τ carries an extra factor of 1/τ .
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particle spectra. However, it turns out that for computing
anisotropic flow and especially higher harmonics than v2 it
is essential to determine the freeze-out surface much more
precisely. To do so, within MUSIC we employ the following
method:

We define a cube in four dimensions that may reach over
several lattice cells in every direction and over several τ

steps, and determine if and on which of the cube’s 32 edges
the freeze-out surface crosses. In this work we let the cube
extend over one lattice cell in each spatial dimension and
over ten steps in the time direction. If the freeze-out surface
crosses this cube, we use the intersection points to perform
a 3D-triangulation of the three dimensional surface element
embedded in four dimensional space. This leads to a group of
tetrahedra, each contributing a part to the hypersurface vector.
This part is of the form

dn
µ = εµαβγ AαBβCγ /6, (59)

where A, B, and C are the three vectors that span the
tetrahedron n. The factor 1/6 normalizes the length of
the vector to the volume of the tetrahedron. We demand
that the resulting vector points into the direction of lower
energy density, i.e., outwards. The vector-sum of the found
tetrahedra determines the full surface-vector in the given
hypercube.

Depending on where the freeze-out surface crosses the
edges, the structure may be fairly simple (e.g., eight crosses,
all on edges in x direction) or rather involved (crossings on
edges in many different directions). The current algorithm is
close to perfect and fails to construct hyper-surface elements
only in very rare cases. Typically these are cases when the
surface crosses the cube in many different directions, e.g., in
the ηs , x, and τ direction. However, even for these cases a
full reconstruction can usually be achieved and the algorithm
was found to succeed in determining the volume element
in ∼99% of the cases for the studied systems. The ∼1%
of surface elements that could not be fully reconstructed
usually miss only one tetrahedron. Because one typocally
needs between eight and 20 tetrahedra to reconstruct a cell,
the error introduced by missing one tetrahedron in the 1%
of the cells lies between 5 and 15%. Considering the high
complexity of the triangulation procedure in four dimensions,
this is a very satisfactory result.

VII. RESULTS

To obtain results for particle spectra, we first compute the
thermal spectra of all particles and resonances up to ∼2 GeV
using Eq. (48) and then perform resonance decays using
routines from AZHYDRO [21,85,92,93] that we generalized
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FIG. 1. (Color online) pT spectra for π−, K−, and p̄ at
central collisions using different equations of state [thin lines:
AuAu-1 (EOS-Q), thick lines: AuAu-3 (EOS-L)] compared to
0–5% central PHENIX data [95]. The used impact parameter was
b = 2.4 fm.

to three dimensions. Unless indicated otherwise, all shown
results include the resonance feed-down. Typically, the used
time step size is �τ ≈ 0.01 fm/c, and the spatial grid spacings
are �x = �y = 0.08 fm, and �ηs = 0.3. This is significantly
finer than in previous 3+1D simulations: [94] for example uses
�τ = 0.3 fm/c, �x = �y = 0.3 fm, and �ηs = 0.3. The
possibility to use such fine lattices is an improvement because
it is mandatory when computing higher harmonics like v4 as
demonstrated below. Another advantage of using large lattices
is that in the KT scheme the numerical viscosity decreases
with increasingly fine lattices (see the Appendix). The spatial
extend of the lattice used in the following calculations is 20 fm
in the x and y direction, and 20 units of rapidity in the ηs

direction.

A. Particle spectra

In Fig. 1 we present the transverse momentum spectra for
identified particles in Au+Au collisions at

√
s = 200 GeV

compared to data from PHENIX [95]. The used parameters
are indicated in Table I. They were obtained by fitting the data
at most central collisions.

We reproduce both pion and kaon spectra well. The model
assumption of chemical equilibrium to very low temperatures
leads to an underestimation of the antiproton spectrum. The
overall shape is however well reproduced, even more so with
the EOS-L that leads to flatter spectra [86].

One way to improve the normalization of the proton and
anti-proton spectra (as well as those of multistrange baryons)
is to employ the partial chemical equilibrium model (PCE)
[32,85,96], which introduces a chemical potential below a
hadron species dependent chemical freeze-out temperature.
Note that the initial time was set to τ0 = 0.4 fm/c when using

TABLE I. Parameter sets.

set EoS τ0 [fm] ε0 [GeV/fm3] ρ0 [1/fm3] εFO [GeV/fm3] TFO [MeV] α ηflat ση

AuAu-1 EOS-Q 0.55 41 0.15 0.09 ≈130 0.25 5.9 0.4
AuAu-2 EOS-Q 0.55 35 0.15 0.09 ≈130 0.05 6.0 0.3
AuAu-3 EOS-L 0.4 55 0.15 0.12 ≈137 0.05 5.9 0.4
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FIG. 2. (Color online) Centrality dependence of pseudorapidity
distribution compared to PHOBOS data [97]. From top to bottom,
the used average impact parameters are b = 2.4 fm, b = 4.83 fm,
b = 6.7 fm, and b = 8.22 fm.

the EOS-L to match the data. The quoted parameter sets fit the
data very well, however, they do not necessarily represent the
only way to reproduce the data and a more detailed analysis of
the whole parameter space may find other parameters to work
just as well.

Next, we show the pseudorapidity distribution of charged
particles at different centralities compared to PHOBOS data
[97] in Fig. 2. The only parameter that changes in going to
larger centrality classes is the impact parameter. Experimental
data are well reproduced also for semicentral collisions,
showing that the results mostly depend on the collision geom-
etry. The used impact parameters, b = 2.4 fm, b = 4.83 fm,
b = 6.7 fm, and b = 8.22 fm, were obtained using the optical
Glauber model and correspond to the centrality classes used
by PHOBOS. We show the centrality dependence of the
transverse momentum spectrum of π− in Fig. 3. Deviations
occur for more peripheral collisions because the soft collective
physics described by hydrodynamics becomes less important
compared to jet physics in peripheral events. However, we find
smaller deviations than [47].

In Fig. 4 we present results for the average transverse
momentum of pions and kaons as a function of pseudorapidity
in central collisions. We compare with 0–5% central data by
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FIG. 3. (Color online) Centrality dependence of π− transverse
momentum spectra compared to PHENIX data [95]. The curves (both
data and hydro) for 10–15%, 15–20%, and 20–30% centrality are
scaled by a factor of 5, 25, and 150, respectively. Thick lines are for
parameter set AuAu-3 (EOS-L), thin lines for AuAu-1 (EOS-Q).
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FIG. 4. (Color online) 〈pT 〉 for positive kaons and pions as a
function of rapidity compared to most central BRAHMS data [98].
The used impact parameter is b = 2.4 fm. Different lines correspond
to different parameter sets: From top to bottom: AuAu-3 (EOS-L),
AuAu-1, AuAu-2 (EOS-Q).

BRAHMS [98] and find good agreement for kaons, but slightly
larger values for pions. This could be expected because the
calculated pT spectra are slightly harder than the experimental
data, especially when using the EOS-L (see Fig. 1).

B. Elliptic flow

We present results for v2 as a function of pT integrated over
the pseudorapidity range −1.3 < η < 1.3, which corresponds
to the cut in the analysis by STAR [99] that we compare to. We
show results for identified hadrons obtained using parameter
set AuAu-1 (EOS-Q) and AuAu-3 (EOS-L) in Fig. 5. While
the pion elliptic flow is relatively well described for both
equations of state, we find an overestimation of the antiproton
v2, especially when using the EOS-L. This is compatible with
results in [86].

Charged hadron v2 is presented in Fig. 6 where we compare
results using different contributions of binary collision scaling
α which lead to different initial eccentricities. We also show
the result obtained by using the EOS-L, which is somewhat
above the EOS-Q result for lower pT but bends more strongly
to be smaller at pT = 2 GeV.

Overall, we find that while the pion v2 is well reproduced,
both antiproton and charged hadron v2 is overestimated for
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FIG. 5. (Color online) pT dependence of the elliptic flow coeffi-
cient v2 for π− and p̄ using parameter set AuAu-1 (EOS-Q, thin lines)
and AuAu-3 (EOS-L, thick lines) compared to STAR data from [99].
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FIG. 6. (Color online) pT dependence of the elliptic flow co-
efficient v2 for charged hadrons using parameter sets AuAu-1,
AuAu-2 (EOS-Q), and AuAu-3 (EOS-L) compared to STAR data
from [99].

both parameter sets. So there is room for viscous corrections
that have been found to reduce v2 at pT = 1.5 GeV by 20 %
for ηshear/s = 0.08 [48,50,53,65].

Figure 7 shows v2 of positive pions for different centrality
classes, again comparing calculations using parameter sets
AuAu-1 and AuAu-3 with experimental data [99]. In both
cases the agreement with the experimental data that is available
to up to pT = 1 GeV is very reasonable.

In Fig. 8 we present the result for v2 as a function of
pseudorapidity η, comparing to data from PHOBOS [100].
As earlier calculations [32,47] the hydrodynamic model
calculation overestimates the elliptic flow especially at forward
and backward rapidities. This is most likely due to the fact that
the assumption of ideal fluid behavior is no longer valid far
away from the midrapidity region. Calculations combining
hydrodynamic evolution with a hadronic after-burner improve
on this [39,47]. Effects of viscosity on v2(η) in the 3+1
dimensional simulation have been estimated to be stronger
at larger |η| [101] and it will be interesting to see what a full
computation will yield.

C. Higher harmonics

The extraction of higher harmonic coefficients from the
computed particle distributions has to be done with great care.
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FIG. 7. (Color online) Elliptic flow coefficient v2 for positive
pions using parameter set AuAu-1 (EOS-Q, thin lines) and AuAu-3
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data from [99].
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FIG. 8. (Color online) Pseudorapidity dependence of the elliptic
flow coefficient v2 for charged hadrons using parameter sets AuAu-1
(EOS-Q), and AuAu-3 (EOS-L) compared to PHOBOS data from
[100].

Apart from being highly sensitive to the initial conditions
[40,102], the fourth harmonic coefficient v4 is also highly
sensitive to the discretization of the freeze-out surface and
lattice artifacts. Where other quantities such as pT spectra
and v2 are almost unaffected by a change of the lattice
resolution or the freeze-out method, v4 depends strongly
on the method and the lattice spacing. Using the simplified
freeze-out surface algorithm described above, the dependence
of v4 on the discretization becomes very strong (in this case
v4 is negative when using a 1283-lattice and only becomes
positive and slowly approaches the correct value for much finer
lattices).

It is therefore necessary to work on very fine lattices and
have a very sophisticated algorithm for determining the freeze-
out surface in order to obtain reliable results for v4. To measure
the error introduced by the anisotropic discretization of the
lattice (lattice along the diagonal in the transverse plane looks
different than along one of the axes), we compute v4 twice:
once with the impact parameter along the x-axis, once with
the impact parameter along the diagonal in the x-y-plane. The
difference between the results is a measure of discretization
errors in v4 and is shown for the pion v2 in Fig. 9. The difference
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FIG. 9. (Color online) Pion-v4 (without resonance decays) as a
function of pT computed on different lattices. The upper curve of
each band is the result from when the impact parameter is aligned
with the diagonal in the x-y plane, the lower curve from when
it is aligned with the x-axis. The absolute value of the impact
parameter is b = 6.3 fm. We compare to charged hadron STAR data
from [99].
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FIG. 10. (Color online) v4 for charged hadrons using all param-
eter sets for different centrality classes compared to STAR data
from [99]. See text for details.

decreases significantly when going from a 642 to a 3202 lattice
in the transverse plane. Hence, the numerical error of v4 is well
under control.

Figure 10 shows v4 of charged hadrons computed with
both parameter set AuAu-1 (EOS-Q) and AuAu-3 (EOS-L).
We added error bands representing an estimate for the
discretization error on the used 2562 × 64 lattice. Motivated
by the results shown in Fig. 9, we choose ±15%. Experimental
data for midcentral centrality classes is well reproduced in
both cases, and contrary to expectations [102], we find that
v4 is not very sensitive to either the initial condition or
the equation of state. This is also visible in Fig. 11 where
we show v4 as a function of pseudorapidity compared to
preliminary STAR data [103]. Also here we add an error
band to indicate the discretization error, estimating it to
be ±15%.

We have checked that the ratio v4/v
2
2 approaches 0.5 for

large pT as it should for an ideal fluid, at least in the limit
of small impact parameter [104]. The difference to the data,
which for charged hadrons in minimum bias collisions is
about constant at v4/v

2
2 ≈ 1.2 [99,105] comes mostly from our

overestimation of v2 at high pT , while v4 is well reproduced
(see Figs. 9 and 10).
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FIG. 11. (Color online) v4 for charged hadrons using parameter
sets AuAu-1 and AuAu-3 at b = 7.5 fm compared to STAR data
from [103].

VIII. CONCLUSIONS AND OUTLOOK

We presented first results from our newly developed 3+1
dimensional relativistic fluid dynamic simulation, MUSIC,
using the Kurganov-Tadmor high-resolution central scheme
to solve the hydrodynamic equations. The method handles
large gradients very well, which makes it ideal for future ex-
plorations of ‘lumpy’ initial conditions or energy-momentum
deposition by jets. It also has a very small numerical viscosity,
which is a prerequisite for extracting physical viscosities in
the future extension to dissipative hydrodynamics.

We showed a detailed comparison of results using different
equations of state including a very recent parametrization
of combined lattice and hadron resonance gas equations
of state. Our calculations of identified hadron pT -spectra,
pseudorapidity distributions, and elliptic flow coefficients
of charged hadrons in Au+Au collisions at the highest
RHIC energies reproduced results of earlier 3+1 dimensional
simulations. In addition, we were able to obtain reliable results
for the anisotropic flow coefficient v4, which is highly sensitive
to discretization errors. This was possible by developing a
sophisticated algorithm for determining the freeze-out surface
in four dimensions and running the simulation on fine
lattices on many parallel processors to obtain results within
a reasonable amount of time. We found that contrary to earlier
expectations, v4 is not very sensitive to the initial conditions.
Neither is it very sensitive to the equation of state.

The next step will be the inclusion of viscous effects which
we will present in a forthcoming work. We also plan to combine
the simulation with our event generator for the hard probes,
MARTINI, to finally obtain a coupled simulation of both the
soft and hard physics in heavy-ion collisions, creating an
unprecedented theoretical tool for the study of the hot and
dense phase of matter generated in heavy-ion collisions.
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APPENDIX: KURGANOV-TADMOR METHOD

As described in the main text, the Kurganov-Tadmor
method is a MUSCL-type finite volume method in which
the cell average of the density ρ around xj is used instead
of the value of the density at xj . To do so, we first divide the
space into equal intervals of the width �x. If one integrates
over the interval [xj − �x/2, xj + �x/2], the conservation
equation becomes

d

dt

∫ xj+1/2

xj−1/2

dx ρ(x, t) = J (xj−1/2, t) − J (xj+1/2, t), (A1)
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where we introduced the notations xj±1/2 = xj ± �x/2.
Defining the cell average at xj as

ρ̄j (t) = 1

�x

∫ xj+1/2

xj−1/2

dx ρ(x, t), (A2)

the above equation becomes

d

dt
ρ̄j (t) = J (xj−1/2, t) − J (xj+1/2, t)

�x
. (A3)

Using this exact equation, we can formally advance the time
by �t as

ρ̄j (t + �t) = ρ̄j (t) − 1

�x

∫ t+�t

t

dt ′(J (xj+1/2, t
′)

− J (xj−1/2, t
′)). (A4)

So far no approximation has been made. The main variables
to calculate are the discrete average values ρ̄n

j ≡ ρ̄j (tn) for all
xj = x0 + j�x and at every time step tn = t0 + n�t . Note
that in Eq. (A4), the currents are evaluated at halfway points
between xj and its neighboring points xj±1. Therefore, even
if Eq. (A4) is exact, it is not complete. One needs to know
how to evaluate J (xj±1/2, t

′) which in turn needs the value of
ρ(xj±1/2, t

′). Note further that this is not the cell averages but
actual local values of ρ. Thus, the problem to solve now is how
to approximate the current and the charge density at arbitrary
x from the cell averages at discrete points xj .

A simple but effective solution is to approximate the local
value with the average value and make a linear interpolation
within each cell:

p(x, tn) =
∑

j

[
ρ̄n

j + (ρx)nj (x − xj )
]
θ (xj−1/2 < x < xj+1/2),

(A5)

where θ (xj−1/2 � x � xj+1/2) is defined to be 1 when the
condition is fulfilled and 0 otherwise. This piecewise linear
approximation is constructed in such a way that the amount
of matter in the cell remains the same, that is, by construction∫ xj+1/2

xj−1/2

dx p(x, tn) = ρ̄n
j (A6)

which, of course is a necessary condition for solving a
conservation equation. The derivative (ρx)nj is a suitable
approximation of ∂xρ at xj and tn constructed from the cell
averages. It could be the backward slope

(ρx)nj = ρ̄n
j − ρ̄n

j−1

�x
, (A7)

or the forward slope

(ρx)nj = ρ̄n
j+1 − ρ̄n

j

�x
, (A8)

or any combination of them. We will discuss the choice of
derivatives in more detail shortly. For now we leave this
choice open.

There is, however, a potentially serious problem with
this piecewise linear reconstruction. There are two ways to
calculate the value of p(xj+1/2, t

n) ≡ pn
j+1/2. One way is to

calculate if from the left

pn
j+1/2

∣∣
left

= ρ̄n
j + (ρx)nj�x/2, (A9)

or from the right

pn
j+1/2

∣∣
right

= ρ̄n
j+1 − (ρx)nj+1�x/2. (A10)

These two values in general do not coincide. Since we
need these half-way values to calculate the currents at the
cell boundaries, we need to find a way to deal with this
discontinuity.

A simple but effective solution to this problem was
originally proposed by Nessyahu and Tadmor [74]: First, the
discontinuity matters only for the current part because of the
spatial derivative. For the density part, the linear approximation
is fine because only the time derivative is taken. For the density,
we can integrate over this discontinuity without any problem.
Now, for a sufficiently small time interval �t , the effect of the
discontinuity at xj+1/2 will not reach xj and xj+1. Hence, if one
alternatively considers a cell defined by [xj , xj+1] instead of
one defined by [xj−1/2, xj+1/2], then the currents are calculated
at xj and xj+1 where p(x, t) is still smooth. Hence we can use
p(x, t) to calculate both the charge density and the currents
on the right hand side of Eq. (A4) provided that the average
is now over the staggered cell [xj , xj+1]. After this step,
the discontinuities are located at xj ’s instead of the halfway
points. The next step in this approach is to repeat the same
procedure now for [xj−1/2, xj+1/2] where this time the halfway
points xj±1/2 are where the linear interpolation is smooth. This
staggered grid approach is an effective method. However, the
numerical viscosity term turns out to be O(�x)4/�t) which
means that one still cannot take the �t → 0 limit.

Generalizing the Nessyahu-Tadmor method, Kurganov and
Tadmor came up with a better solution to this problem. Their
main idea can be described as follows: The Nessyahu-Tadmor
method relies on the smallness of �t to guarantee that the
influence of the discontinuities does not reach the midpoints
of the (staggered) cells. This can be further improved if one
uses one more piece of information, namely the maximum
local propagation speed. The influence of the discontinuities
at xj±1/2 can travel no faster than the maximum propagation
speed given by a = |∂J/∂ρ|. Therefore, it makes sense to
divide the space into two groups. One such group is given by
the following set of intervals:

µn
j+1/2 = [

xj+1/2 − an
j+1/2�t, xj+1/2 + an

j+1/2�t
]
, (A11)

where an
j+1/2 is the maximum propagation speed at xj+1/2

and time tn. The linear interpolation p(x, t) is possibly
discontinuous in µn

j+1/2 as indicated by the θ functions in
Eq. (A5). The other group is given by the set

χn
j = [

xj−1/2 + an
j−1/2�t, xj+1/2 − an

j+1/2�t
]
, (A12)

and in these intervals, p(x, t) is linear and smooth. The
fact that we must have non-empty χn

j gives us a condition
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on �t

�t <
�x

an
j+1/2 + an

j−1/2

, (A13)

which is related to the CFL (Courant-Friedrichs-Lewy) condi-
tion. In fact, Ref. [71] has a more severe CFL condition

�t � �x

8amax
, (A14)

where amax is the maximum propagation speed in the whole
region.

The derivation of the Kurganov-Tadmor method now
proceeds as follows. First, apply Eq. (A4) to µn

j±1/2 and χn
j .

Since we have divided the space into the µ set and the χ set,
the currents are not being evaluated at the discontinuities at
xj±1/2. Hence we can safely use p(x, t) to evaluate the right
hand side of Eq. (A4) in both µn

j±1/2 and χn
j . In this way, we get

estimates of the density average in these intervals at the next
time step. The intervals µn

j±1/2’s and χn
j ’s are nonuniformly

distributed. However, our starting point was the cell averaged
values in the uniform grid. The next step is then to project
the next-time values in this nonuniform grid of µj±1/2’s and
χn

j ’s onto the original uniform grid [xj−1/2, xj+1/2]. Finally,
one takes the �t → 0 limit to get the semidiscrete equations.

Application of Eq. (A4) to µn
j±1/2 and χn

j proceeds as
follows. Within µn

j+1/2, the right hand side of Eq. (A4) is
given by

wn+1
j+1/2 ≡ 1

2an
j+1/2�t

∫
µn

j+1/2

dξ ρ(ξ, tn)

− 1

2an
j+1/2�t

∫ tn+1

tn

dt ′
(
J
(
xj+1/2 + an

j+1/2�t, t
)

− J
(
xj+1/2 − an

j+1/2�t, t
))

, (A15)

where 2an
j+1/2�t is the size of the interval. Using p(x, t) for

the ρ integral and using the midpoint rule for the time integral,
we obtain

wn+1
j+1/2 = ρ̄n

j + ρ̄n
j+1

2
+ �x − an

j+1/2�t

4

(
(ρx)nj − (ρx)nj+1

)
− 1

2an
j+1/2

(
J
(
xn

j+1/2,+, t + �t/2
)

−J
(
xn

j+1/2,−, t + �t/2
))

, (A16)

where we have defined

xn
j+1/2,± = xj+1/2 ± an

j+1/2�t. (A17)

Similarly, for χn
j ,

wn+1
j ≡ ρ̄n

j − 1

2
(ρx)nj

(
an

j+1/2 − an
j−1/2

)
�t

− (�t/�x)

1 − (�t/�x)
(
an

j−1/2 + an
j+1/2

)
× (

J
(
xn

j+1/2,−, t + �t/2
)

− J
(
xn

j−1/2,+, t + �t/2
))

. (A18)

At this point, wn+1
j and wn+1

j+1/2 approximate the value
of ρ̄ at tn+1 on a nonuniform grid. The next step is to
construct a piecewise linear function q(x, tn+1) using wn+1

j

and wn+1
j+1/2 and integrate over [xj−1/2, xj+1/2] to get the

next cell average ρ̄n+1
j . For this purpose, the piecewise

linear function q(x, tn+1) is constructed by using a linear
approximation within µn

j+1/2 and the constant approximation
within χn

j

q(x, tn+1) =
∑

j

{[
wn+1

j+1/2 + (ρx)n+1
j+1/2(x − xj+1/2)

]
× θ

(
x ∈ µn

j+1/2

) + wn+1
j θ

(
x ∈ χn

j

)}
. (A19)

The derivative appearing in the above approximation must also
be calculated using wn+1

j+1/2 and wn+1
j . Again leaving what to

use for the derivative for later discussions, integrating over the
interval (xj−1/2, xj+1/2) finally yields the cell average at the
next time step

ρ̄n+1
j = wn+1

j−1/2a
n
j−1/2

�t

�x
+ wn+1

j+1/2a
n
j+1/2

�t

�x

+
(

1 − �t

�x

(
an

j+1/2 + an
j−1/2

))
wn+1

j

+ (ρx)n+1
j−1/2

(
an

j−1/2�t
)2

2�x
− (ρx)n+1

j+1/2

(
an

j+1/2�t
)2

2�x
.

(A20)

Passing to the �t → 0 limit, we get Kurganov and Tadmor’s
main result in the semidiscrete form

d

dt
ρ̄j (t) = −Hj+1/2(t) − Hj−1/2(t)

�x
, (A21)

where

Hj±1/2 = J (xj±1/2,+, t) + J (xj±1/2,−, t)

2

− aj±1/2(t)

2
(ρ̄j±1/2,+(t) − ρ̄j±1/2,−(t)). (A22)

Here

ρ̄j+1/2,+ = ρ̄j+1 − �x

2
(ρx)j+1, (A23)

ρ̄j+1/2,− = ρ̄j + �x

2
(ρx)j , (A24)

and J (xj±1/2,±) are evaluated with ρ̄j+1/2,±. Any explicit x

dependence in ρ̄j+1/2,± and J (xj±1/2,±) must be evaluated at
xj+1/2. Note that all references to the intermediate values have
disappeared.

One detail we need to take care of now is the
choice of the spatial derivatives. Formally, the second-order
approximation

(ρx) ≈ ρj+1 − ρj−1

2�x
(A25)

gives a better approximation than the first-order approxima-
tions Eqs. (A7), (A8). But it is also known that when there is
a stiff gradient, the second order expression tends to introduce
spurious oscillations in the solution. To remedy this situation,
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one needs to use flux limiters which automatically switch the
form of the numerical derivative according to the stiffness of
the slope. Kurganov and Tadmor chose the minmod limiter
given by

(ρx)j = minmod

(
θ
ρ̄j+1 − ρ̄j

�x
,
ρ̄j+1 − ρ̄j−1

2�x
, θ

ρ̄j − ρ̄j−1

�x

)
,

where

minmod(x1, x2, · · ·) =

⎧⎪⎨
⎪⎩

minj {xj }, if xj > 0 ∀j

maxj {xj }, if xj < 0 ∀j

0, otherwise

and 1 � θ � 2 is a parameter that controls the amount of
diffusion and the oscillatory behavior. This is also our choice
with θ = 1.1.
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