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The two-body breakup of the deuteron is studied at high-Q2 kinematics, with the main motivation to
probe the deuteron at small internucleon distances. Such studies are associated with the probing of the
high-momentum component of the deuteron wave function. For this, two main theoretical issues have been
addressed: electromagnetic interaction of the virtual photon with the bound nucleon and the strong interaction of
produced baryons in the final state of the breakup reaction. Within virtual nucleon approximation we developed
a new prescription to account for the bound nucleon effects in electromagnetic interaction. The final-state
interaction at high-Q2 kinematics is calculated within the generalized eikonal approximation (GEA). We studied
the uncertainties involved in the calculation and performed comparisons with the first experimental data on
deuteron electrodisintegration at large Q2. We demonstrate that the experimental data confirm the GEA’s early
prediction that the rescattering is maximal at ∼70◦ of recoil nucleon production relative to the momentum of the
virtual photon. Comparisons also show that the forward recoil nucleon angles are best suited for studies of the
electromagnetic interaction of bound nucleons and the high-momentum structure of the deuteron. Backward recoil
angle kinematics show sizable effects owing to the �-isobar contribution. The latter indicates the importance
of further development of the GEA to account for the inelastic transitions in the intermediate state of the
electrodisintegration reactions.
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I. INTRODUCTION

Two-body electrodisintegration of the deuteron at high
Q2 represents a powerful tool for studying one of the most
fundamental issues of nuclear physics: nuclear forces at
intermediate to short distances. Despite all the successes in
constructing interaction potentials for NN scattering, the most
advanced potentials [1–4] still use phenomenological form
factors to account for intermediate- to short-range interactions.
Such form factors shed little light on how nuclear forces
at short distances follow from the basic concepts of QCD.
Presently, only the long-range NN interaction is understood
on fundamental QCD grounds.

The situation is not spectacular also from the experimental
point of view. New experiments aimed at studies of NN

interaction at short distances practically stopped after the
reassignment of AGS at Brookhaven National Laboratory.1

In this respect, an alternative way of studying nuclear
forces at short distances is to probe NN systems in nuclei
at short space-time separations. Expectations that this can
be achieved only at high-momentum transfer reactions (see,
e.g., Refs. [7–11]) were confirmed in a series of experiments
with high-energy electron [12–16] and proton probes [17–21].
Some of the unique results of these experiments were the
observations of the scaling for the ratios of inclusive cross
sections of nuclei and the deuteron [12] (or 3He [13,14]) at
xBj > 1 at Q2 > 1.5 GeV2, as well as the observation of the
strong (by factor of 20) dominance of pn relative to pp/nn

short-range correlations in the 12C nucleus for bound nucleon
momenta 300–600 MeV/c [15,16,21]. If the first result was

1The best hopes for the restart of the program of high-energy
baryonic experiments are associated with the upcoming projects of
J-PARC, Japan [5], and GSI, Germany [6].

an indication that two (or more) nucleons can be probed at
small separations, the second one was an indication of the
dominance of the tensor forces [22–24] in such correlations.

The simplest reaction which could be used to investigate
short-range NN interactions using nuclear targets is the
exclusive electrodisintegration of the deuteron in which large
magnitudes of the relative momentum of the pn system
in the ground state are probed. Three experiments [25–27]
have already been performed using the relatively high (up
to 6 GeV)-energy electron beam of the Jefferson Lab and a
more comprehensive experimental program will follow after
the 11-GeV upgrade of the laboratory [28].

The prospect of having detailed experimental data on high-
energy deuteron electrodisintegration makes the development
of theoretical approaches for description of these reactions a
pressing issue.

One of the first models for high-energy breakup of the
deuteron were developed in the mid-1990s, in which the main
emphasis was given to the studies of nucleon rescattering
in the final state of the reactions [29–32]. These models
were simple in a way that they assumed a factorization of
the electromagnetic γ ∗N and final-state NN interactions and
considered the rather small values of relative momenta of the
bound pn system.

The extension of these calculations to a larger internal
momentum region required more elaborate approaches, and
several studies were done in this direction [10,33–39].

In this work we develop a theoretical model for the
description of high-Q2 exclusive electrodisintegration of the
deuteron in knockout kinematics based on virtual nucleon
approximation. The main theoretical framework is based on the
generalized eikonal approximation (GEA) [10,31,35,40–43],
which allows us to represent the scattering amplitude in the
covariant form using effective Feynman diagram rules. In this
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way all the virtualities involved in the scattering amplitudes
are defined unambiguously. Reducing these amplitudes by
choosing positive energy projections for the nucleon propa-
gators allows us to represent them through the convolutions
of the deuteron wave function, on- and off-shell components
of electromagnetic current, and pn rescattering amplitude. In
addition to accounting for the off-shell effects, nonfactorized
approximation is applied to the electromagnetic and NN

rescattering parts in the calculation of the final-state interaction
(FSI) amplitude. As a result, our calculation extends beyond
the distorted wave impulse approximation limit. We also
estimated the charge-exchange contribution in the FSI in
addition to the pn → pn rescattering part of the FSI amplitude
included in the eikonal approximation.

The article is organized as follows. In Sec. II we briefly
discuss the kinematics of the disintegration reaction which we
consider most efficient in probing the pn system at small sep-
arations. Then we discuss the basic assumptions of virtual nu-
clear approximation and proceed with the derivation of scatter-
ing amplitudes and the differential cross section of the reaction.

In Sec. III, after deriving the total scattering amplitude, we
perform a detailed theoretical analysis to identify the extent of
uncertainties owing to the off-shell part of the FSI, as well as
contribution owing to charge-exchange rescattering. We also
analyzed the role of the off-shell effects in the electromagnetic
current of the bound nucleon. These analyses allowed us to
conclude that at sufficiently large values of Q2 (∼6 GeV2)
the three most important contributions into the disintegration
process are the off-shell electromagnetic current of the bound
nucleon, the deuteron wave function, and the on-shell part of
the NN scattering amplitude.

Furthermore, we compare our calculations with the first
available high-Q2 experimental data. These comparisons allow
us to confirm the early prediction of the GEA that the maximal
strength of FSI corresponds to ∼70◦ production of the recoil
nucleon relative to the direction of the virtual photon. We
also found that forward angles of recoil nucleon are best
suited for studies of the off-shell electromagnetic current and
the deuteron wave function. Another observation is that in
the backward direction there is a sizable contribution owing
to the �-isobar production at the intermediate state of the
reaction. In Sec. IV we give conclusions and an outlook on
further development of the model.

II. CROSS SECTION OF THE REACTION

A. Kinematics

We discuss the process

e + d → e′ + p + n (1)

in knockout kinematics in which case one nucleon (for
definiteness we consider it to be a proton) absorbs the virtual
photon and carries almost all of its momentum. The optimal
kinematics for probing the initial pn system at close distances
is defined as follows:

(a) Q2 � 1 GeV2; (b) �pf ≈ �q;
(2)

(c) pf � pr � 300 MeV/c,

p(p )
p(p )

p(p’ )

n(p )
(a) (b)

(c) (d)

i

f

r

q
p(p′ )f

i

n(p′ )r r n(p )r

p(p )f

pn
n

p n N N

R N
N

FIG. 1. (Color online) GEA diagrams.

where we define q ≡ (q0, �q), pf ≡ (Ef , �pf ), and pr =
(Er, �pr ) as four-momenta of virtual photon, knockout proton,
and recoil neutron, respectively. Also, Q2 = |�q|2 − q2

0 . Con-
ditions (2)(b) and (2)(c) define the knockout process, while
condition (2)(a) is necessary to satisfy Eq. (2)(c). From the
point of view of the dynamics of the reaction, one also needs
Eq. (2)(a) to provide a necessary resolution for probing the
deuteron at small internucleon distances.

In the most simple picture the kinematics of Eq. (2)
represent a scenario in which the high-energy virtual photon
removes the proton from the pn system, leaving the neutron
with the pre-existing relative momentum pr [see Fig. 1(a)].

B. Main assumptions of virtual nucleon approximation

The virtual nucleon approximation is based on the following
main assumptions, which also define the limits of its validity.
First, one considers only the pn component of the deuteron, ne-
glecting inelastic initial-state transitions. Because the deuteron
is in a isosinglet state, this will correspond to restricting the
kinetic energy of recoil nucleon to

TN < 2(m� − mN ) ∼ (mN∗ − m) ∼ 500 MeV, (3)

where m, m�, and mN∗ are masses of the nucleon and low-lying
nonstrange baryonic resonances �(1232) and N∗(1525). We
neglect also the pionic degrees of freedom in the deuteron wave
function. However, we expect that the overall error introduced
by this approximation to be small because the probability
of low-momentum pionic degrees of freedom is suppressed
owing to the pseudo-Goldstone nature of pions in QCD, as
well as the observation that πNN form factors are soft (see,
e.g., discussion in Refs. [8,11]).

The second assumption is that the negative energy pro-
jection of the virtual nucleon propagator gives negligible
contribution to the scattering amplitude. Such an assumption
can be justified if

Md −
√

m2 + p2 > 0, (4)

where Md is the mass of the deuteron and p is the relative
momentum of the bound pn system.

The preceding two conditions can be satisfied if we restrict
the momentum of the recoil neutron, pr � 700 MeV/c.
However, owing to the fact that we explicitly left out the
non-nucleonic components of deuteron wave function, the
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momentum sum rule is not satisfied in virtual nucleon
approximation (see discussions in Refs. [8,44,45]).

The third assumption that is made in the calculations is that
at large Q2 (>1 GeV2) the interaction of virtual photon with
exchanged mesons are a small correction and can be neglected
(see, e.g., discussions in Refs. [9,10]).

C. Generalized eikonal approximation

The previously discussed assumptions allow us to restrict
the consideration by the set of Feynman diagrams presented
in Fig. 1. One can calculate these diagrams based on the
effective Feynman diagram rules discussed in Ref. [10].
These rules allow us to formulate scattering amplitudes in
the covariant form which unambiguously accounts for all the
off-shell effects. Then we reduce the covariant amplitudes
into a noncovariant form by choosing the positive energy
projection of nucleon (or baryonic resonance) propagators at
the intermediate state of the reaction.

The diagram in Fig. 1(a) corresponds to the plane wave
impulse approximation (PWIA), in which the virtual photon
knocks out one of the nucleons from the deuteron, leaving
the second nucleon in the on-shell positive energy state. Two
nucleons do not interact in the final state of the reaction, rep-
resenting two outgoing plane waves. The diagram in Fig. 1(b)
represents a situation in which the elastic electroproduction is
followed by the elastic pn → pn rescattering. In this case,
the rescattering is forward in the sense that, for example,
the proton struck by the virtual photon will attain its large
momentum after the pn → pn rescattering. The amplitude of
this scattering will be referred to as a forward FSI amplitude.

The diagram of Fig. 1(c) corresponds to the scenario in
which FSI proceeds through the charge-exchange pn → np

rescattering. In this case the final fast proton emerges from
the process in which the photon strikes the neutron, which
then undergoes a np → pn charge-exchange rescattering. The
amplitude of this scattering process will be referred to as a
charge-exchange FSI amplitude.

The fourth diagram [Fig. 1(d)] corresponds to the electro-
production of an excited state R with a subsequent RN → NN

final-state rescattering. The most important contribution to the
fourth diagram is attributable to the �-isobar (IC), whose
production threshold is closest to the quasielastic scattering
kinematics. Several factors make IC contribution small in
the high-Q2 limit at x � 1 [9,10]. One factor is the large
longitudinal momenta of the initial nucleon involved in the
�-electroproduction process,

pIC
i,z = (1 − x)m − m2

� − m2

2q
, (5)

which indicates that choosing x > 1 one can suppress the
electroproduction of � resonance in the intermediate states
owing to the large values of initial momenta entering in the
deuteron wave function.

An additional suppression of IC follows from the smallness
of the γ ∗N → � transition form factors, as compared to the
elastic form factors at Q2 � few GeV2 [46,47]. Finally, owing
to the fact that the �N → NN amplitude is dominated by pion

or ρ-type reggeon exchanges, it will be additionally suppressed
by at least the factor of 1√

Q2
. In any case, this contribution can

be calculated in a self-consistent way within the GEA. The
calculation of these types of diagrams within the GEA will be
presented elsewhere [48].

In what follows we discuss the calculations of only the first
three diagrams of Fig. 1.

1. Plane wave impulse approximation amplitude

The amplitude of the PWIA diagram in the covariant form
can be written as follows:

〈sf , sr |Aµ

0 |sd〉 = −ū(pr, sr )ū(pf , sf )�µ
γ ∗p

× /pi + m

p2
i − m2

· �DNN · χsd , (6)

where �γ ∗p is the electromagnetic vertex of the γ ∗N → N

scattering and the vertex function �DNN describes the transi-
tion of the deuteron into the pn system. The notations sd , sf ,
and sr describe the spin projections of the deuteron, knockout
proton, and recoil neutron, respectively. The spin function of
the deuteron is represented by χsd . The four-momentum of the
struck nucleon in the initial state within PWIA is defined as

pi = (Ed − Er, �pd − �pr ) = (Md − Er,− �pr )|LaB. (7)

The preceding relation clearly shows the off-shell character
of the struck nucleon in the initial state, because p2

i = m2.
Therefore, expressing the initial nucleon’s propagator through
the on-mass shell nucleonic spinors is not valid.

However, using an approximation in which only positive
energy projections are taken into account, one can isolate
the on-shell part of the propagator by adding and subtracting
Eon

i γ 0 term to /pi as follows:

/pi + m = /pon
i + m + (

Eoff
i − Eon

i

)
γ 0, (8)

where Eoff
i = Md − √

m2
n + p2

r and Eon
i = √

mp + p2
r , where

mn and mp are the masses of the proton and neutron,
respectively.2 Now we can separate the PWIA amplitude into
on- and off-shell parts in the following way:

〈sf , sr |Aµ

0 |sd〉 = 〈sf , sr |Aµ

0,on|sd〉 + 〈sf , sr |Aµ

0,off|sd〉, (9)

where

〈sf , sr |Aµ

0,on|sd〉

= −ū(pf , sf )�µ
γ ∗p

/pon
i + m

p2
i − m2

· ū(pr, sr )�DNNχs
d , (10)

and

〈sf , sr |Aµ

0,off|sd〉

= −ū(pf , sf )�µ
γ ∗p

(
Eoff

i − Eon
i

)
γ 0

p2
i − m2

· ū(pr, sr )�DNNχs
d .

(11)

2In further discussion, we neglect the difference between proton
and neutron masses, denoting them by m.
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For the on-shell part of the amplitude, using

/pon
i + m =

∑
si

u(pi, si)ū(pi, si) (12)

and the definition [49,50]

�
sd

d (s1, p1, s2, p2) = − ū(p1, s1)ū(p2, s2)�sd

DNNχsd(
p2

1 − m2
)√

2
√

(2π )32
(
p2

2 + m2
) 1

2

,

(13)

one obtains

〈sf , sr |Aµ

0,on|sd〉 =
√

2
√

(2π )32Er

∑
si

J
µ

N,on(sf , pf ; si, pi)

×�
sd

d (si, pi, sr , pr ), (14)

where

J
µ

N,on(sf , pf ; si, pi) = ū(pf , sf )�µ

γ ∗Nu(pi, si). (15)

For the off-shell part of the scattering amplitude, one observes
that the relation

ū(p2, s2)�DNNχsd = −
∑
s1

u(p1, s1)�sd

d (s1, p1, s2, p2)

2m

× (
p2

1 − m2)√2
√

(2π )32
(
p2

2 + m2
) 1

2

(16)

satisfies Eq. (13). Inserting it into Eq. (11), one obtains

〈sf , sr |Aµ

0,off|sd〉 =
√

2
√

(2π )32Er

∑
si

J
µ

N,off(sf , pf ; si, pi)

×�
sd

d (si, pi, sr , pr ), (17)

where

J
µ

N,off(sf , pf ; si, pi)

= ū(pf , sf )�µ

γ ∗Nγ 0u(pi, si)
Eoff

i − Eon
i

2m
, (18)

and Eoff
i = Md − Eon

i and Eon
i =

√
m2 + p2

i .

One can combine on- and off-shell parts of the PWIA
scattering amplitudes in the following form:

〈sf , sr |Aµ

0 |sd〉 =
√

2
√

(2π )32Er

∑
si

J
µ

N (sf , pf ; si, pi)

×�
sd

d (si, pi, sr , pr ), (19)

where

J
µ

N (sf , pf ; si, pi) = J
µ

N,on(sf , pf ; si, pi)

+ J
µ

N,off(sf , pf ; si, pi). (20)

The preceding form of the electromagnetic current, together
with Eqs. (15) and (18), represents our off-shell approximation.
It is worth noting that the first, “on-shell” part of this current
corresponds to the widely used “De Forest” approximation
[51]. In the DeForest approximation because of the absence
of the second term the gauge invariance is violated and
the current conservation is restored by expressing J0 or Jz

components through each other with different assumptions for
the nucleon spinors and electromagnetic vertices. The latter
introduces more uncertainty because imposed relations are not
unique. As a result, one generates several forms of the off-shell
electromagnetic currents [51].

The additional “off-shell” part of the electromagnetic
current in Eq. (20) obtained in our approximation reduces
the uncertainty of choosing on-shell nucleon spinors which
is inherent to the De Forest approximation. The total current
in Eq. (20) is conserved because it is derived from the gauge
invariant amplitude of Eq. (6). Therefore, our approximation
does not violate gauge invariance and no additional conditions
are needed to restore the current conservation.

Note that our approximation is analogous to the one used
in hadronic physics within light-cone approximation (see,
e.g., [52]), in which case an off-shell “γ +” component of
the fermion propagator is isolated in a manner similar to that
done for the γ 0 component in our case.

2. Forward elastic final-state interaction amplitude

We start by applying effective Feynman diagram rules to
the diagram of Fig. 1(b), which yields

〈sf , sr |Aµ

1 |sd〉 = −
∫

d4p′
r

i(2π )4

ū(pf , sf )ū(pr, sr )FNN [/p′
r + m][/pd − /p′

r + /q + m]

(pd − p′
r + q)2 − m2 + iε

× �
µ

γ ∗N [/pd − /p′
r + m]�DNNχsd

[(pd − p′
r )2 − m2 + iε]

(
p′2

r − m2 + iε
) , (21)

were FNN represents the invariant pn → pn scattering ampli-
tude that can be expressed as follows:

FNN (s, t) =
√

s(s − 4m2)fNN (s, t), (22)

where s is the total invariant energy of the scattering pn system
and the fNN scattering amplitude is defined in such a way that
ImfNN = σtot. Furthermore, we use the following four-vectors

defined as

p′
i = pd − p′

r and p′
f = pd − p′

r + q. (23)

We first integrate by d0p′
r through the positive energy pole of

the spectator nucleon propagator at the intermediate state:

∫
d0p′

r

p′2
r − m2 + iε

= −i
2π

2E′
r

. (24)
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This integration allows us to use /p′
r + m =∑

s ′
r
u(p′

r , s
′
r )ū(p′

r , s
′
r ). For /pd − /p′

r we use a relation
similar to Eq. (8). The same could be done for /pd − /p′

r + /q.
However, for large values of q the off-shell part in Eq. (8)
is suppressed by |�q|−q0

|�q| and in the large-Q2 limit its
contribution is negligible. Thus, we can use the on-shell
relation, /pd − /p′ + /q + m = ∑

s ′
f
u(p′

f , s ′
f )ū(p′

f , s ′
f ) for the

knockout nucleon spinors in the intermediate state. Using the
preceding representations of the spinors, the definitions of
the deuteron wave function [Eq. (13)], and electromagnetic
current [Eq. (20)] for the scattering amplitude of Eq. (21), we
obtain

〈sf , sr |Aµ

1 |sd〉 = −
√

2(2π )
3
2

∑
s ′
f ,s ′

r ,si

×
∫

d3p′
r

(2π )3

√
2E′

r

√
s(s − 4m2)

2E′
r [(pd − p′

r + q)2 −m2 + iε]

×〈pf , sf ; pr, sr |f NN (t, s)|p′
r , s

′
r ; p′

f , s ′
f 〉

· Jµ

N (s ′
f , p′

f ; si, p
′
i) · �

sd

d (si, p
′
i , s

′
r , p

′
r ).

(25)

Next, we consider the propagator of the knockout proton
in the intermediate state, using the condition of quasielastic
scattering

(q + pd − pr )2 = p2
f = m2, (26)

one obtains

(pd − p′
r + q)2 − m2 + iε = 2|q|(p′

r,z − pr,z + � + iε),

(27)

where

� = q0

|q| (Er − E′
r ) + Md

|q| (Er − E′
r ). (28)

Furthermore, using the relation

1

p′
r,z − pr,z + � + iε

= −iπδ[p′
r,z − (pr,z − �)]

+P
∫

1

p′
r,z − (pr,z − �)

(29)

and performing integration over p′
r,z, we split the scattering

amplitude into two terms, one containing on-shell and the
other off-shell pn → pn scattering amplitudes as follows:

〈sf , sr |Aµ

1 |sd〉

= i
√

2(2π )
3
2

4

∑
s ′
f ,s ′

r ,si

∫
d2p′

r

(2π )2

√
2Ẽ′

r

√
s(s − 4m2)

2Ẽ′
r |q|

×〈pf , sf ; pr, sr |f NN,on(t, s)|p̃′
r , s

′
r ; p̃′

f , s ′
f 〉

· Jµ

N (s ′
f , p′

f ; si, p̃
′
i) · �

sd

d (si, p̃
′
i , s

′
r , p̃

′
r )

−
√

2(2π )
3
2

2

∑
s ′
f ,s ′

r ,si

P
∫

dp′
r,z

2π

∫
d2p′

r

(2π )2

×
√

2E′
r

√
s(s − 4m2)

2E′
r |q|

× 〈pf , sf ; pr, sr |f NN,off(t, s)|p′
r , s

′
r ; p′

f , s ′
f 〉

p′
r,z − p̃′

r,z

× J
µ

N (s ′
f , p′

f ; si, p
′
i) · �

sd

d (si, p
′
i , s

′
r , p

′
r ), (30)

where p̃′
r = (pr,z − �,p′

r,⊥), Ẽ′
r = √

m2 + p̃′2
r , p̃′

i = pd −
p̃′

r , and p̃′
f = p̃′

i + q.
For numerical estimates of the preceding amplitudes, one

needs on- and off-shell pn → pn amplitudes as an input.
In the high-energy limit in which the helicity conservation
of small-angle NN scattering is rather well established, the
on-shell amplitude is predominantly imaginary and can be
parameterized in the form

〈pf , sf ; pr, sr |f NN,on(t, s)|p̃′
r , s

′
r ; p̃′

f , s ′
f 〉

= σ
pn
tot (i + α)e

B
2 t δsf ,s ′

f
δsr ,s ′

r
, (31)

where σ
pn
tot (s), B(s), and α(s) are found from fitting of

experimental data on elastic pn → pn scattering. For the
effective laboratory momentum range of up to 1.3 GeV/c, the
SAID parametrization [53] of pn amplitudes can be used. In our
numerical estimates, the SAID parametrization is implemented,
similar to Ref. [37], by expressing them through the Saclay
(a, b, c, d, and e [54]) amplitudes (see also the discussion
for the parametrization of the charge-exchange amplitude in
Sec. II C3). We used cubic spline to interpolate between
the central (spin-conserving) part of the SAID amplitudes (at
t = 0) and the amplitude parameterized in the diffractive
form at laboratory momenta �2 GeV/c. In the same way
we interpolated the slope factor and the real part of the
central amplitude. For the spin-flip part we extrapolated the
SAID amplitudes to the �1.3 GeV/c region assuming that
their magnitudes decrease with the invariant energy as 1√

sNN
.

The latter corresponds to the assumption that the spin-flip
amplitudes are attributable to the pion exchange.3

The situation is more uncertain for the half-off-shell part of
the f NN,off amplitude. In the present calculations we use the
following parametrization:

f NN,off = f NN,oneB(m2
off−m2), (32)

where m2
off = (Md − E′

r + q0)2 − (p′
r + q)2. Overall, we ex-

pect that our calculation will not be reliable in situations
in which the contribution from the off-shell part of the
rescattering is dominant. However, in the high-Q2 limit this
contribution is only a small correction.

Completing this section it is worth noticing that in addition
to the appearance of the � factor [Eq. (28)] in the GEA which
does not enter in conventional Glauber approximation (see

detailed discussion in Ref. [10]), the new factor,
√

s(s−4m2)
2E′

r |q|
entering the elastic FSI amplitude [Eq. (30)] is also unique
to the GEA. Within conventional Glauber approximation, in

3Note, however, that in the Q2 > 1 GeV2 region the contribution
of spin-flip FSI effects in the unpolarized cross section is a small
correction.
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which Fermi motion of the scatterers is neglected, this factor
is equal to one. However, within the GEA it appears as a
consequence of the covariant form of the initial scattering
amplitude. Calculation of this factor for our kinematics yields

√
s(s − 4m2)

2E′
r |q| =

√(
2−x
x

Q2 + m2
D

)(
2−x
x

Q2
)

2E′
r |q| , (33)

which decreases with x → 2. Thus, for the x > 1 and large-Q2

kinematics, the GEA predicts an additional suppression of FSI
as compared to the conventional Glauber approximation.

3. Charge-exchange final-state interaction amplitude

To complete the calculation of the total amplitude, we need
to include the contribution from charge-exchange rescattering,
which can be obtained from Eq. (30) after the substitutions
corresponding to Fig. 1(c). Namely, one needs to switch the
proton and neutron lines in the initial and intermediate states
of the scattering, replace proton electromagnetic current with
the neutron and fNN with the charge-exchange scattering
amplitude f chex

NN . One obtains

〈sf , sr |Aµ

1,chex|sd〉

= i
√

2(2π )
3
2

4

∑
s ′
f ,s ′

r ,si

∫
d2p′

r

(2π )2

√
2Ẽ′

r

√
s(s − 4m2)

2Ẽ′
r |q|

× 〈pf , sf ; pr, sr |f chex,on(t, s)|p̃′
r , s

′
r ; p̃′

f , s ′
f 〉

· Jµ
n (s ′

f , p′
f ; si, p̃

′
i) · �

sd

d (si, p̃
′
i , s

′
r , p̃

′
r )

−
√

2(2π )
3
2

2

∑
s ′
f ,s ′

r ,s1

P
∫

dp′
r,z

2π

∫
d2p′

r

(2π )2

×
√

2E′
r

√
s(s − 4m2)

2E′
r |q|

× 〈pf , sf ; pr, sr |f chex,off(t, s)|p′
r , s

′
r ; p′

f , s ′
f 〉

p′
r,z − p̃′

r,z

× Jµ
n (s ′

f , p′
f ; si, p

′
i) · �

sd

d (si, p
′
i , s

′
r , p

′
r ). (34)

Here the charge-exchange rescattering amplitude f chex
NN , similar

to the elastic FSI case, is taken from the experimental
measurements. The off-shell extrapolation of the rescattering
amplitude is also done similar to Eq. (32). For numerical
estimates in the high-energy region we use the following
parametrization of the Saclay amplitudes [55]:

a = N

3
[g(p) + 2g(q)],

b = N

3
[−g(p) − 6f (q)g(q) + 4g(q)],

c = N

3
[−3f (p)g(p) + 2g(p) − 2g(q)], (35)

d = N [−f (p)g(p) + 2f (q)g(q)],

e = 0,

where g(x) = ( �2

x2+�2 )2, f (x) = x2

x2+µ2 , and N =
( m
mπ

)2 2√
s

f 2
π

4π
(�2−µ2

�2 )2, with � = 748 MeV, f 2
π

4π
= 0.079,

and µ = mπ = 140 MeV. The transferred momenta are
defined as p2 = −t and q2 = −u. Note that the preceding
defined amplitudes are real, which follows from the
assumption that charge-exchange scattering is attributable to
the pion exchange. These amplitudes are interpolated with the
cubic Spline fit to the corresponding SAID amplitudes at lower
energies.

4. Deuteron wave function

The deuteron wave function in Eq. (13) in general represents
a solution of the Bethe-Salpeter-type equation. To fix the
normalization of the wave function, we need to relate an
expression that contains the deuteron wave function [as it is
defined in Eq. (13)] to a well-defined quantity characterizing
the deuteron. One such quantity is the deuteron elastic charge
form factor GC , which at Q2 → 0 limit approaches one; that
is, GC(Q2 = 0) = 1 (see, e.g., Ref. [56]). The latter could be
related to the deuteron elastic scattering amplitude as follows:

1

4Md

1∑
s ′
d=sd=−1

〈p′
d , s

′
d |Aµ=0(Q2)|pd, sd〉|Q2→0 = GC(0) = 1,

(36)

where 〈p′
d , s

′
d |Aµ|pd, sd〉 is the elastic γ ∗d → d ′ scattering

amplitude corresponding to the diagram of Fig. 2.
Applying the same effective Feynman diagram rules used

earlier for 〈p′
d , s

′
d |Aµ|pd, sd〉, one obtains

〈p′
d , s

′
d |Aµ|pd, sd〉 = −

∑
p,n

∫
d4pr

i(2π )4
χs ′

d ,†�†
DNN

× /p2 + m

p2
2 − m2 + iε

�
µ

γ ∗N
/p1 + m

p2
1 − m2 + iε

×�DNNχsd
/pr + m

p2
r − m2 + iε

. (37)

Further derivations within the virtual nucleon approxima-
tion follow steps similar to those seen in Secs. II C1 and II C2.
We first evaluate dp0

r integral by the pole value of the spectator
nucleon propagator, then separate the on- and off-shell parts in
the numerator of interacting nucleon propagators and introduce
deuteron wave function according to Eq. (13). In this case,
the electromagnetic current of the nucleon is fully off-shell
because the struck nucleon is bound in both initial and final
states of the reaction. This results in the following expression

p r

p p
1 2

FIG. 2. (Color online) Elastic γ ∗d → d ′ diagram.
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for the elastic scattering amplitude:

〈p′
d , s

′
d |Aµ|pd, sd〉 = 4

∑
p,n

∑
s2,s1,sr

∫
d3pr�

s ′
d†

d (s2, p2, sr , pr )

× ū(p2, s2)

[
I + Eoff

2 − Eon
2

2m
γ0

]

×�
µ

γ ∗N

[
I + Eoff

1 − Eon
1

2m
γ0

]

× u(p1, s1)�sd

d (s1, p1, sr , pr ). (38)

Neglecting the second-order off-shell terms in the preceding
equation [i.e., (Eoff−Eon

2m
)2], one obtains

〈p′
d , s

′
d |Aµ|pd, sd〉 = 4

∑
p,n

∑
s2,s1,sr

∫
d3pr�

s ′
d†

d (s2, p2, sr , pr )

× J̃
µ

N �
sd

d (s1, p1, sr , pr ), (39)

where

J̃
µ

N (s2, p2; s1, p1)

= J
µ

N,on(s2, p2; s1, p1) + J
µ

N,off

(
s2, p

off
2 ; s1, p1

)
+ J

µ

N,off

(
s2, p2; s1, p

off
1

)
. (40)

Here the on- and off-shell parts of electromagnetic current are
defined in Eqs. (15) and (18). In the preceding equation, the
notation poff in the argument of JN,off indicates which nucleon
is considered as off-shell.

Using now the fact that for the proton and neutron
F1p(n)(Q2 = 0) = 1(0) and using Eqs. (15) and (18), one
obtains

J̃ µ=0
p

∣∣
Q2→0 = 2Eoff

1 ,
(41)

J̃ µ=0
n

∣∣
Q2→0 = 0.

Using these relations and inserting Eq. (39) into Eq. (36), one
obtains

1∑
sd=−1

∫ ∣∣�sd

d (p)
∣∣2 2Eoff

Md

d3p = 1, (42)

where Eoff = Md −
√

m2 + p2. It is worth mentioning that
the preceding normalization coincides with the normalization
obtained from the baryon number conservation sum rule
[44,45,57–61] for deep inelastic scattering off the deuteron,∫

|�d (α, pt )|2αd3p = 1, (43)

where α = Md−
√

m2+p2−pz

m
is the light-cone momentum frac-

tion of the deuteron carried by the struck nucleon. As
mentioned in Sec. II B, in virtual nucleon approximation owing
to unaccounted non-nucleonic degrees of freedom, the wave
function defined according to Eq. (13) will not satisfy the
energy-momentum sum rule which expresses the requirement
that the sum of the light-cone momentum fractions of all the
constituents of the nucleus equals one.

For numerical estimates we model the deuteron wave
function to satisfy Eq. (42) in the following form [45,59]:

�d (p) = �NR
d (p)

Md

2(Md −
√

m2 + p2)
, (44)

which provides a smooth transition to the nonrelativistic wave
function �NR in the small momentum limit.

5. Total amplitude and the differential cross section

The total scattering amplitude consists of the sum of PWIA,
forward, and charge-exchange FSI amplitudes:

〈sf , sr |Aµ|sd〉 = 〈sf , sr |Aµ

0 |sd〉 + 〈sf , sr |Aµ

1 |sd〉
+ 〈sf , sr |Aµ

1,chex|sd〉. (45)

Using this amplitude, the differential cross section is calculated
as follows:

d5eσ

dE′
e, de′df

= α2E′
e

q4Ee

· 1

6

∑
sf ,sr ,sd ,s1,s2

×
∣∣Jµ

e Jd,µ

∣∣2

2MdEf

p2
f∣∣ pf

Ef
+ pf −q cos(θpf ,q )

Er

∣∣ , (46)

where

Jµ
e = ū(k2, s2)γ µu(k1, s1) (47)

and

J
µ

d = 〈sf , sr |Aµ|sd〉√
2(2π )32Er

. (48)

For numerical estimates we use the electromagnetic current
of the nucleon in the form

�µ = F1(Q2)γ µ + F2(Q2)

2m
iσµ,νqν, (49)

where F1 and F2 are Dirac form factors and for their evaluation
the available phenomenological parametrizations are used
[62]. For the deuteron wave function we use the approximation
of Eq. (44) with the nonrelativistic wave function calculated
based on the Paris potential [4]. The pn scattering amplitude
is parameterized in the form of Eq. (31) and its off-shell
extrapolation in the form of Eq. (32). Also, for fpn in the
lower momentum range (plab � 1.3 GeV/c) we use the SAID

parametrization [53] based on the pn scattering phase shifts.

III. OBSERVABLES

The main quantity that we consider for numerical estimates
is the ratio of the calculated cross section which includes total
amplitude of Eq. (45) to the cross section calculated within
PWIA:

R = σ

σ PWIA
, (50)

where σ ≡= dσ
dE′

e,de′ dpf df
. This ratio allows us to clearly

distinguish between kinematics in which PWIA dominates
R ≈ 1 from kinematics in which FSI is dominated by
screening R < 1 or single rescattering R > 1 effects (see, e.g.,
Refs. [31,40,63]).
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Considering the numerical estimates of the ratio R, we dis-
cuss four main effects that characterize our present theoretical
approach. These are the unfactorization of the electromagnetic
interaction in the FSI amplitude, the off-shell effects in the FSI,
the effects of charge-exchange rescatterings, and the off-shell
effects in the electromagnetic interaction of the bound nucleon.

In our estimates we study the dependence of R on the angle
of the recoil neutron relative to �q for different values of neutron
momenta. We perform our calculations for two values of Q2 (2
and 6 GeV2) which allows us to also assess the Q2 dependence
of the considered effects.

Finally, we present the comparisons with the first experi-
mental data on the deuteron electrodisintegration at large Q2.

A. Nonfactorization effects

In Fig. 3 we compare the calculations of R with and without
factorization approximations for the electromagnetic current
in the FSI amplitude. The factorization approximation will
result in the so-called distorted wave impulse approximation
(DWIA) widely used in the literature.

As the figure shows the factorization (or DWIA) approx-
imation is applicable for up to pr � 300 MeV/c or for the
kinematics in which the FSI amplitude is smaller than the
PWIA term. The factorization approximation breaks down
in kinematics dominated by the rescattering process at pr �
400 MeV/c. As the comparisons show, the unfactorization
predicts a larger FSI amplitude which can be understood
based on the fact that in this case the electromagnetic current
which enters in the rescattering amplitude of Eq. (30) is
defined at smaller values of bound nucleon momenta than
the electromagnetic current in the PWIA term [Eq. (19)]. Our
current results agree qualitatively with the previous analysis
of nonfactorization effects presented in Ref. [33].
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FIG. 3. (Color online) Dependence of ratio R on the recoil
angle of the neutron for different values of pr = 100, 200, 300,
400, 500 MeV/c and Q2 = 2, 6 GeV2. Solid line, unfactorized
approximations; dashed line, factorized approximations.

Figure 3 shows also that the factorization approximation
is Q2-dependent and somewhat improves with an increase of
Q2. This is a rather important feature which should be taken
into account in color transparency (CT) studies for double
scattering kinematics, in which case the Q2 dependence of the
peak of the ratio R is studied to extract the CT signal (see,
e.g., Refs. [31,63,64]). Our comparisons in Fig. 3 show that
the unfactorized approximation should be used as a baseline
for identification of the CT signature in the Q2 dependence of
the FSI contribution of the deuteron breakup cross section.

B. Off-shell FSI effects

Next we consider the contribution to the FSI amplitude
owing to the principal value part of Eq. (30). This term depends
on the half-off shell NN scattering amplitude, which is a
largely unknown quantity. Therefore, the reliability of our
calculations depends on the magnitude of the principal value
term. In Fig. 4 we compare the calculations in which only the
pole (on-shell) term of the FSI amplitude is included with the
calculations which contain both pole (on-shell) and principal
value (off-shell) terms of the FSI amplitude. For the half-off
shell fpn amplitude we use the approximation of Eq. (32). An
important observation that can be made from Fig. 4 is that
the off-shell rescattering effects diminish with an increase of
Q2. This is consistent with our earlier observation [11,12] that
the distances that the virtual nucleon propagates before the
rescattering decreases significantly with an increase of Q2 at
fixed values of x.

C. Charge-exchange rescattering effects

Owing to the fact that the charge-exchange rescattering
amplitude is predominantly real, it will interfere mainly with
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FIG. 4. (Color online) Dependence of ratio R on the recoil angle
of the neutron for different values of pr and Q2 = 2, 6 GeV2.
The recoil neutron momenta are the same as in Fig. 3. Solid line,
unfactorized calculation with the pole term only in the FSI amplitude;
dashed line, unfactorized approximations with both pole and principal
value terms in the FSI amplitude.
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FIG. 5. (Color online) Dependence of ratio R on the recoil angle
of the neutron for different values of pr and Q2 = 2, 6 GeV2.
The recoil neutron momenta are the same as in Fig. 3. Solid line,
unfactorized approximation with the pole term only forward pn →
pn rescattering; dashed line, unfactorized approximation including
the pole terms for both forward pn → pn and charge-exchange
pn → np rescattering amplitudes.

the real part of the forward elastic FSI amplitude which is a
small parameter at large energies. One can see from Fig. 5
that the charge-exchange rescattering dominates at kinematics
in which the rescattering defines the overall magnitude of the
cross section.

However, it is a rather well-known fact that, owing to
the dominant pion-exchange nature of charge-exchange pn

scattering, its cross section decreases linearly with an increase
of the invariant energy s as compared to the forward pn

elastic scattering cross section. As a result, one expects that
with an increase of Q2 the charge-exchange rescattering term
will become a small correction. This can be seen from the
calculation for Q2 = 6 GeV2 kinematics in Fig. 5.

D. Off-shell electromagnetic interaction effects

The preceding evaluations of the d(e, e′p)n cross sections
demonstrate that in the large Q2 limit the property of the
scattering is defined mainly by the PWIA and forward angle
on-shell FSI terms. The angular distribution has a very
characteristic shape in which one can identify kinematics
dominated by PWIA or FSI. Calculations also show that the
forward or backward kinematics of the recoil nucleon are best
suited for isolating the PWIA term, which subsequently allows
us to study the structure of the electromagnetic current of the
bound nucleon and the deuteron wave function at large values
of internal momenta.

We now concentrate on the effects related to the fact that
the proton in the deuteron becomes increasingly off-shell at
large values of recoil neutron momenta in forward or backward
directions.
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FIG. 6. (Color online) Ratio of PWIA cross sections calculated
using on-shell and off-shell approximations for the electromagnetic
current of the proton. The curves, from top to bottom, correspond
to recoil neutron momenta of 100, 200, 300, 400, 500, 600, and
700 MeV/c, respectively.

As follows from Eqs. (15), (18), and (20), the off-shell
part of the electromagnetic current will diminish the overall
magnitude of the electromagnetic interaction. Because the off-
shellness grows with an increase of the initial momentum of
the struck nucleon, it will result in the suppression of the
electromagnetic interaction strength of deeply bound nucleons.
As follows from Fig. 6, the off-shell effects have a weak Q2

dependence and to disentangle them from the effects related to
the high-momentum component of the deuteron wave function
would require measurements covering an extended angular
and recoil momentum range. Figure 6 also shows that the
forward direction of recoil nucleon momenta represents the
most optimal kinematic region for minimizing the off-shell
effects for electromagnetic interaction.

Note that polarization measurements will provide addi-
tional observables for separating current and wave-function
effects. For example, measurements of the cross section
asymmetries similar to Ref. [65] at large recoil momenta will
be more sensitive to the structure of the electromagnetic current
because wave-function effects largely cancel out in the ratios
defining the asymmetry.

E. Comparison with experimental data

In the past few years three experiments [25–27] produced
first data at relatively large Q2 kinematics.

The first experiment [25] probed the Q2 = 0.665 GeV2

and x ≈ 1 kinematics and provided very accurate data. The
measured value of Q2 is marginal for the application of the
GEA. However, as Fig. 7 shows, the comparison yields a
surprisingly good agreement with the data. Figure 7 compares
the reduced cross section defined as follows:

σred = dσ

dE′
e, de′dpf df

·
∣∣ pf

Ef
+ pf −q cos(θpf ,q )

Er

∣∣
σCC1 · p2

f

, (51)
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FIG. 7. (Color online) Missing momentum dependence of the
reduced cross section. The data are from Ref. [25]. Dashed line, PWIA
calculation; dotted line, PWIA + only pole term of forward FSI;
dash-dotted line, PWIA + forward FSI; solid line, PWIA + forward
and charge-exchange FSI; and solid line with squares, same as the
previous solid line, plus the contribution from the mechanism in
which the proton is a spectator and the neutron was struck by the
virtual photon.

where the differential cross section is defined according
to Eq. (46) and σCC1 is the off-shell electron-proton cross
section defined in Ref. [51]. Note that in this calculation
for fpn amplitude we use SAID [53] parametrization for
both elastic and charge-exchange pn scatterings which fit
the elastic pn scattering data for laboratory momenta up
to 1.3 GeV/c. Because of the relatively low energy and
momentum transfers involved in the reaction, the calculation
shows a substantial contribution from the off-shell as well
as charge-exchange parts of the FSI amplitude (difference
between dotted, dash-dotted, and solid lines in Fig. 7). It is
worth noting that our main goal is to calculate disintegration
reaction in kinematics well above the region where SAID

parametrization can be used. Thus, we are not pretending to
improve further the calculation in the smaller Q2 � 1 GeV2

region and the present calculation is for illustration purposes
only to ascertain how well eikonal approximation works for
intermediate, Q2 ∼ 1 GeV2, kinematics.

However, it is interesting that our calculation is in
agreement with the observations of Refs. [27,38] that the
theory overestimates the low-recoil-momentum part of the
cross section [Fig. 7(b)], where we expect that theoretical
uncertainties are well under the control. Our preliminary
estimates demonstrate that this discrepancy could be accounted
for by inclusion of the contribution of two-photon exchange
effects in the overall amplitude of the scattering [66].

The second experiment [26] covered the Q2 range from
2–5 GeV2. However, owing to the low statistics, the data are
integrated over the ranges of the recoil nucleon momenta.

Comparing with these data, we performed the same kine-
matic integrations as the experiment did. The results are shown
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FIG. 8. (Color online) Dependence of the differential cross
section on the direction of the recoil neutron momentum. The data
are from Ref. [26]. Dashed line, PWIA calculation; dotted line,
PWIA + pole term of forward FSI; dash-dotted line, PWIA + forward
FSI; solid line, PWIA + forward and charge-exchange FSI. The mo-
mentum of the recoil neutron is restricted to 200 < pr < 300 MeV/c.
The labels 2, 3, 4, and 5 correspond to the values of Q2 = 2 ± 0.25,
3 ± 0.5, 4 ± 0.5, and 5 ± 0.5 GeV2.

in Figs. 8 and 9. Despite these integrations, we still can make
several important observations from these comparisons.

(i) First, the angular distribution clearly exhibits an eikonal
feature, with the minimum (Fig. 8) or maximum
(Fig. 9) at transverse kinematics owing to the FSI.
The most important result is that the maximum of
FSI is at recoil angles of 70◦, in agreement with the
GEA prediction of Refs. [31,40]. A similar result was
independently obtained also in Ref. [67]. Note that the
conventional Glauber theory predicted 90◦ for the FSI
maximum.

(ii) The disagreement of the calculation with the data
at θr > 70◦ appears to be attributable to the isobar
contribution at the intermediate state of the reaction.4

This region corresponds to x < 1 and it is kinematically
closer to the threshold of �-isobar electroproduc-
tion. The comparisons also indicate that the relative
strength of the �-isobar contribution diminishes with
an increase of Q2 and at neutron production angles
θr → 180◦.

(iii) The forward direction of the recoil nucleon momentum,
being far from the �-isobar threshold, exhibits a rela-
tively small contribution owing to FSI. This indicates
that the forward recoil angle region is best suited for
studies of PWIA properties of the reaction such as the
off-shell electromagnetic current and deuteron wave
function.

Finally, the results of the experiment of Ref. [27] are
currently in the final stages of analysis. Because in this

4The importance of the �-isobar contribution was pointed out
earlier in Ref. [36].
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FIG. 9. (Color online) Dependence of the differential cross
section on the direction of the recoil neutron momentum. The data
are from Ref. [26]. Dashed line, PWIA calculation; dotted line,
PWIA + pole term of forward FSI; dash-dotted line, PWIA + forward
FSI; solid line, PWIA + forward and charge-exchange FSI. The mo-
mentum of the recoil neutron is restricted to 400 < pr < 600 MeV/c.
The labels 2, 3, 4, and 5 correspond to the values of Q2 = 2 ± 0.25,
3 ± 0.5, 4 ± 0.5, and 5 ± 0.5 GeV2, respectively. The data sets and
calculations for 4 and 5 are multiplied by 0.5 and 0.25, respectively.

experiment the disintegration reaction is measured at forward
recoil angles and at Q2 up to 3.5 GeV2, we expect that it will
allow us to further check the validity of our claim that the
forward angular region is best suited for studies of the PWIA
properties of the reaction.

IV. CONCLUSIONS

Within the virtual nucleon approximation we developed a
theoretical framework for calculation of high Q2 exclusive
electrodisintegration of the deuteron at large values of recoil
nucleon momenta. The scattering amplitude is derived based
on the GEA, in which case each amplitude is calculated based
on effective Feynman diagram rules. Because of the covariant
formulation of the problem, the electromagnetic current is

gauge invariant from the beginning. By isolating the off-shell
part in the electromagnetic current, we introduced an approach
that allows us to express the bound nucleon current separately
through the on-shell and of-shell parts.

Next, we derived the FSI amplitude based on the GEA and
expressed it through the on-shell and off-shell rescattering
parts. No factorization approximation is assumed in the
calculation of the FSI amplitude. The calculation of FSI also
includes the amplitude owing to the charge-exchange FSI.

We performed numerical analysis of the obtained formulas
to identify the level of uncertainties owing to the factors
included in the calculations. Overall, our conclusion is that
with an increase of Q2 all the uncertainties related to the
off-shell FSI and charge-exchange rescattering became small
and the total scattering amplitude is determined by the PWIA
and on-shell elastic NN rescattering.

We compared our calculations with the first experimen-
tal data at large Q2 deuteron electrodisintegration. These
comparisons revealed a rather surprising agreement with low
Q2 = 0.665 GeV2 data, which indicates the wider range of
applicability of the present approximation.

Comparisons with higher Q2 data (�2 GeV2) at the wider
range of recoil nucleon momenta and angles demonstrate the
important role that the intermediate �-isobar production plays
in electrodisintegration reaction at backward angles close to
the � production threshold.

However, at forward recoil angles where FSI effects are
restricted, the calculations show greater sensitivity to the
PWIA structure of the electrodisintegration reaction. Fur-
ther experiments will allow us to confirm that this region
is most suitable for probing the bound nucleon electro-
magnetic current and the deuteron wave function at small
distances.
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