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With the increasing interest in using (d,p) transfer reactions to extract structure and astrophysical information, it
is important to evaluate the accuracy of common approximations in reaction theory. Starting from the zero-range
adiabatic wave model, which takes into account deuteron breakup in the transfer process, we evaluate the
importance of the finite range of the n-p interaction in calculating the adiabatic deuteron wave (as in Johnson
and Tandy) as well as in evaluating the transfer amplitude. Our study covers a wide variety of targets, as well as a
large range of beam energies. Whereas at low beam energies finite-range effects are small (below 10%), we find
these effects to become important at intermediate energies (20 MeV/u) calling for an exact treatment of finite
range in the analysis of (d,p) reactions measured at fragmentation facilities.
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I. INTRODUCTION

Since the early days of nuclear physics, transfer reactions
have been a preferred tool for studying spectroscopic proper-
ties of nuclei and have been widely used to determine single-
particle structure across the nuclear chart (e.g., Refs. [1–4]).
Such studies have allowed a better understanding of detailed
features of nuclear interactions. It was through a systematic
study of single-nucleon transfer on Sn isotopes that we now
understand the reduction of the spin-orbit strength when mov-
ing toward neutron-rich systems [4]. One would also like to use
the transfer reaction method to discriminate between effective
interactions used in the shell model, as suggested in the study of
(d,p) on Ni isotopes [5]. Nowadays the spectroscopy of exotic
nuclei can be studied using inverse kinematics. Pioneering
studies [6–10] hold promise for applying this technique more
broadly, especially in new-generation rare-isotope facilities,
where beam rates will be enhanced.

Another intriguing aspect of nuclear structure is the role of
correlations. The independent particle shell model of course
neglects all correlations. State-of-the-art shell models include
some correlations effectively through the residual interactions.
Electron knockout experiments have shown a 30% decrease in
the spectroscopic factors of closed-shell nuclei as compared to
the independent shell-model predictions, a reduction that is un-
derstood in terms of short-range correlations [11]. Reduction
factors from nuclear knockout experiments can be much larger,
depending on the difference between the neutron and proton
separation energies [12]. However, the physical reason for such
a large suppression is still unclear, long-range correlations
being a possibility [13]. What is most intriguing is that
spectroscopic factors from transfer reactions show no depen-
dence on the difference in neutron-proton separation energies.
Large surveys of ground-state spectroscopic factors from (d,p)
reactions [14], including nuclei with a wide range of separation
energies (0.5–19 MeV), show good agreement with large-scale
shell models using modern effective interactions.

The reconciliation of these results with those from knockout
experiments [15] is proving difficult and is the subject of

recent work on new approaches to the calculation of overlap
functions [13,16]. The resolution of these important physics
questions relies on the accuracy of the reaction model being
used. It is thus of paramount importance that the reaction
theory is well founded and uncertainties are well understood.
In this respect there have been a number of works looking at
specific aspects of the reaction theory used for the analysis of
(d,p) transfer data (uncertainties in the optical potentials [17],
coupling to excited states of the target [18], ambiguities owing
to the single-particle wave functions [19–21], and new ways of
calculating overlap functions [13,16]). In this work we explore
another aspect: the consequences of the non-zero range of the
n-p interaction. This interaction plays a key role in several
different ways.

Over the past four decades of work on (d,p) reactions,
different approximations were made, not only regarding
the optical potentials, the deuteron, and final single-particle
wavefunctions, but also in the reaction mechanism and the
evaluation of the transfer matrix element. It may thus be
confusing to realize the large range of spectroscopic factors
available in the literature. Systematic and consistent studies
[5,14,22,23] provide a much better overall assessment of the
situation. In Refs. [14,22] an extensive survey of ground-state
spectroscopic factors from charge Z = 3–24 was performed
using the same reaction model, the same global potentials
and the same single-particle parameters. With these same
assumptions, spectroscopic factors extracted from 235 sets of
(d,p) data were found consistent with shell-model predictions
to within ±20%. An identical study was performed on excited
states [23], and although there were a few unresolved cases
(such as the Ni isotopes), the overall agreement with shell
model was of the order of 40%. Ni isotopes were studied
separately [5] and a better overall description of these nuclei
was found with a modified effective interaction in the shell-
model calculations.

All these studies rely on the adiabatic distorted-wave
approximation (ADWA) developed by Johnson and Soper [24]
and the local energy approximation (LEA) [25] to take into
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account the finite range of the n-p interaction Vnp in evaluating
the (d, p) transition matrix.

In Ref. [24], a three-body theory for A(d, p)B was
developed taking into account deuteron breakup, which is
known to be important even for reactions on stable nuclei.
In Ref. [24] the zero-range approximation is made for the n-p
interaction. Then, the transfer matrix element reduces to a form
similar to the zero-range distorted wave Born approximation
(DWBA), where the scattering wave function in the incident
channel is calculated with an adiabatic potential consisting of
the sum of the proton and neutron potentials evaluated at half
the deuteron energy, instead of the deuteron optical potential
extracted from (d, d) data. ADWA typically decreases the
radius and diffuseness of the distorting potential [26] compared
with typical values for deuteron optical potentials deduced
from elastic deuteron scattering and often provides a better
description of the data [27].

An adiabatic theory including finite-range effects was
formally developed by Johnson and Tandy [28]. Using a
Weinberg expansion in the deuteron channel, Johnson and
Tandy arrive at a set of coupled-channel equations to describe
the relative motion of the center of mass of the neutron and
proton relative to the target. The solution of the coupled-
channels equations gives a three-body wave function that is
a coherent superposition of the bound (deuteron) and break-up
continuum states of the n-p system.

In this article we confine ourselves to the simplest version
of this theory in which only the first term in the Weinberg
expansion is retained. This assumes that the only significant
break-up components in the three-body wave function have
sufficiently small energies that inside the range of Vnp, the
relevant n-p scattering states have the same radial shape as
the deuteron ground-state wave function. When only the first
Weinberg term is included, the coupled equations reduce to an
optical-model-like equation for the three-body wave function
where the distorting potential is the sum of the neutron and
proton optical potentials multiplied by the neutron-proton
interaction and folded over the deuteron bound state. The effect
of other components [29] has been shown to be significant at
Ed = 88 MeV but their effects at lower energies are unknown.

In the early 1960s, it was already understood that finite-
range effects were important in (d,p) reactions; however,
owing to computational limitations, all calculations were
performed in zero range. A very popular procedure for
correcting a zero-range calculation was developed by Buttle
and Goldfarb [25]. The standard implementation of this
method, the so-called LEA, takes only the first term of the
expansion presented in Ref. [25]. For deuteron energies well
above the Coulomb barrier, it is not clear that this procedure is
sufficiently accurate. A simple estimate of the modification of
the Johnson and Soper potential because of a finite-range Vnp

was reported in Ref. [30].
In this work, we perform a systematic study of finite-range

effects in (d,p) reactions within the framework of ADWA. We
consider 26 (d,p) reactions on stable targets, involving nuclei
with masses in the range of A = 12–208 and deuteron energies
Ed = 2–70 MeV. We first study the finite-range effects on
the distorting potential in the incident channel following the
method of Johnson and Tandy [28]. In addition, we consider

finite-range effects in the evaluation of the transfer matrix
element and the accuracy of the LEA. We also explore the
implications of our study on reactions involving loosely bound
nuclei.

The article is organized in the following way: Reaction
theory is revised in Sec. II; results are presented in Sec. III and
further discussed in Sec. IV. Finally, conclusions are drawn in
Sec. V.

II. THEORY

Our starting point is a three-body model of the n + p + A

system (see Ref. [31], Chap.7). In this model the scattering
wave function �(+)(�r, �R) corresponding to a deuteron inci-
dent on a nucleus A is the solution of the inhomogeneous
differential equation

[E + iε − Tr − TR − UnA − UpA − Vnp]�(+)(�r, �R)

= ıεφd (�r) exp(ı �Kd · �R). (1)

Here Tr and TR are the total kinetic energy operators associated
with the n-p relative motion and the motion of the n + p

center of mass relative to the target, where �r = �rp − �rn and
�R = (�rn + �rp)/2. We take �rn and �rp to be the neutron and

proton coordinates relative to the center of mass of the target A.
In Eq. (1) the interactions UnA(�rn), UpA(�rp), and Vnp(�r)

are the neutron-target, proton-target and neutron-proton in-
teractions, respectively. The term proportional to ıε on the
right-hand side of Eq. (1) ensures that there is an incoming
wave only in the deuteron channel.

One way of calculating the exact (d,p) transition amplitude,
T , from �(+)(�r, �R) is to use the formulation of Timofeyuk and
Johnson [32]. In the limit ε → 0, the transition amplitude T

is given by

T = 〈φnAχ̃
(−)
pB |Vnp|�(+)〉, (2)

where φnA is the final state of the neutron-target system, and
χ̃

(−)
pB has a plane wave proton and an incoming scattered wave

distorted by U ∗
pA [32,33]. Note that in this formulation there

is no remnant term and the proton distorted wave is generated
by U ∗

pA, not U ∗
pB . Equation (4) neglects recoil effects of order

1/A which were evaluated in Ref. [32]. They are negligible
in all the cases discussed here except possibly for 12C. The
connection between this formulation and standard three-body
methods based on the Faddeev equations [34] is explained in
Ref. [33].

A more common expression for the transition amplitude for
this process is

T = 〈φnAχ
(−)
pB |Vnp + UpA − UpB |�(+)〉, (3)

where φnA is the final state of the neutron-target system
and χ

(−)
pB is a proton scattering wave distorted by U ∗

pB . In
the many-body generalization of Eq. (3) the remnant term
UpA − UpB is a function of the internal coordinates of A and
B and makes the interpretation of the transition amplitude
in terms of nuclear structure (overlap functions) much more
complicated than when Eq. (2) is used. This introduces into the
formulation an additional optical potential UpB and thus larger
uncertainties into the analysis because in most applications to
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exotic nuclei this potential is not well determined. Many of
the recent applications have used Eq. (3) and neglected the
remnant term UpA − UpB :

T = 〈φnAχ
(−)
pB |Vnp|�(+)〉. (4)

Neglecting the remnant term is a very good approximation for
all cases discussed here with the exception of 12C. Equation
(4) is the starting point for the present study.

The important realization in Refs. [24,28] is that with
Eq. (2) or Eq. (4), the full three-body wave function �(+)(�r, �R)
is only required within the range of the Vnp interaction. A
major simplification is achieved in the limit of the zero-range
approximation as then only �(+)(0, �R) is needed.

A. Johnson and Soper method

The method developed by Johnson and Soper [24] is based
on an expansion of the three-body wave function �(+)(�r, �R)
in the complete set of eigenstates of the n-p Hamiltonian:

(Tr + Vnp)φd (�r) = −εdφd (�r),
(5)

(Tr + Vnp)φk(�r) = +εkφk(�r).

Here φd (�r) is the deuteron wave function and scattering states
are represented by φk(�r). The three-body wave function is then
expanded as

�(+)(�r, �R) = φd (�r)χd ( �R) +
∫

d�kφ
(+)
k (�r)χk( �R). (6)

When this expansion is introduced in Eq. (1), and assuming
that the excitation energies of the deuteron are small compared
to the deuteron initial kinetic energy εk + εd � E, the three-
body equation for r = 0 reduces to an optical model equation,

[E + εd − TR − UJS(R)]χ JS
d ( �R) = 0, (7)

where the effective potential UJS does not describe deuteron
elastic scattering, but rather incorporates deuteron breakup
effects within the range of Vnp:

UJS(R) = UnA(R) + UpA(R). (8)

Within this model, the transfer amplitude reduces to

TJS = D0

∫
dR φ∗

nA( �R)χ∗
pB( �R)χ JS

d ( �R), (9)

where D0 is the zero-range constant of the deuteron.

B. The Johnson and Tandy generalization of the Johnson
Soper method

The Johnson and Tandy [28] approach again builds on the
fact that the three-body wave function is only needed within
the range of Vnp. While the continuum-discretized coupled-
channel (CDCC) method [35] uses a basis of eigenstates of
the n-p Hamiltonian which is complete for all values of the
n-p separation �r , as in Eq. (6), here the Weinberg basis is
introduced:

(Tr + αiVnp)φi(�r) = −εiφi(�r), (10)

with i = 1, 2, . . . and the orthonormality relation
〈φi |Vnp|φj 〉 = −δij . The Weinberg states (or Sturmians)
form a complete basis within the range of the Vnp interaction
and thus they are particularly suited to describing the problem
when using the transfer amplitude written as in Eq. (4). A
clear advantage of this basis as compared to Eq. (6) is that it
is square integrable.

The three-body wave function is then expanded as

�(+)(�r, �R) =
∞∑
i=1

φi(�r)χi( �R). (11)

When this expansion is introduced into the three-body equation
Eq. (1), one obtains a set of coupled-channel equations:

[E + iε − KR − Ūii( �R)]χi( �R)

= ıεδi1Nd exp(ı �Kd · �R) +
∑
j �=i

Ūij ( �R)χj ( �R). (12)

The coupling potentials are defined by Ūij ( �R) = Uij +
βij (αj − 1) and Uij ( �R) = −〈φi |Vnp(UnA + UpA|φj 〉, where
βij = 〈φi |V 2

np|φj 〉 and αj are the eigenvalues of the Wienberg
equation [Eq. (10)]. The normalization coefficient appearing
on the right-hand side of Eq. (12) is Nd = −〈φ1|Vnp|φd〉.

These coupled-channel equations can be solved exactly as
done in Ref. [29] but reduce to a much simpler form if only the
first term of the expansion Eq. (11) is necessary. In that case,
α1 = 1 and we can arrive at the following optical-model-type
equation:

[E + εd + iε − TR − U11(R)]χ JT
1 ( �R) = iεNd exp(ı �Kd · �R),

(13)

where now the potential is still related to the sum of the proton
and neutron potentials as in Johnson and Soper, but involves a
more complex folding procedure:

U11(R) = −〈φ1(�r)|Vnp(UnA + UpA)|φ1(�r)〉. (14)

Apart from the normalization, φ1 is the ground-state wave
function of the deuteron φd . Then the potential U11(R) can
also be written in terms of φd

U11(R) ≡ UJT(R) = 〈φd (�r)|Vnp(UnA + UpA)|φd (�r)〉
〈φd (�r)|Vnp|φd (�r)〉 . (15)

In this case the transfer amplitude is defined through the
six-dimensional integral:

T = 〈φnAχ
(−)
pB |Vnp

∣∣φ1χ
JT
1 ( �R)

〉
= 〈φnAχ

(−)
pB |Vnp

∣∣φd

[
χ JT

1 ( �R)/Nd

]〉
, (16)

where we have used |φd〉 = Nd |φ1〉.
We see from Eq. (13) that [χ JT

1 ( �R)/Nd ] is a distorted wave
generated by the potential U11 and normalized to an incident
wave of unit amplitude.

In the following section we compare the cross sections
obtained with Eqs. (9) and (16). We also disentangle the
separate effects of finite range in the potential U11, looking
specifically at the potentials from Eqs. (8) and (14) and that of
finite range in the evaluation of the transfer amplitude.
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III. RESULTS

We perform a systematic study of finite-range effects on
26 (d,p) reactions. In all our calculations we take the Reid [36]
interaction for Vnp and the Chapel Hill global parametrization
for the nucleon optical potentials [37]. In calculating the
potential of Eq. (15) we neglect the d-wave part of the φd . For
all cases here presented, the final bound single-particle state is
obtained using a potential with standard radius and diffuseness
r = 1.2 fm and a = 0.65 fm and adjusting the depth to the
known neutron separation energy of the corresponding final
state. In Sec. III A we show our results for the potential
and then present the results for the (d,p) cross sections in
Sec. III B.

A. Finite-range effects in the potentials

Johnson and Tandy potentials [Eq. (15)] are computed,
using a subroutine contained in the code TWOFNR [38] for
performing the r integrations needed, and compared with the
Johnson and Soper adiabatic potentials [Eq. (8)] for 26 cases.
To simplify the comparison, we fit the real part of the resulting
UJT to a volume Woods-Saxon shape and the corresponding
imaginary to a surface Woods-Saxon form. For all cases
studied we find that the most important difference between the
interactions UJT and UJS is a constant increase in diffuseness.
There is also a slight systematic decrease in radius. Differences
in the depths of the real and imaginary parts are more subtle and
vary from case to case. In Ref. [30], an approximate method of
estimating finite-range corrections to the adiabatic potential
was developed. In that method, the radius is fixed but an
increase in diffuseness is predicted with a decrease in the depth
of the potential. In Table I we show the percentage difference
of our numerically calculated UJT and the Wales and Johnson

TABLE I. Finite-range effects on the Johnson-Tandy distorting
potential [Eq. (15)]. In the third column the Wales and Johnson
potential is compared with the zero-range potential UJS and in the
fourth column the Johnson and Tandy UJT is compared with UJS. We
compare the diffuseness of the real and imaginary parts, aR and aI ,
as well as the depths of the real and imaginary parts V and Ws and
the corresponding radii rR and rI .

Target Parameter UWJ UJT

All aR +4% +7%
aI +3% +8–9%

12C V −5.6% −1.98%
rR 0% −1.25%
Ws −4.6% −4.52%
rI 0% +0.72%

48Ca V −2.1% −0.04%
rR 0% −0.93%
Ws −3.7% +1.6%
rI 0% −0.97%

208Pb V −0.7% +0.06%
rR 0% −0.35%
Ws −3.3% +1.2%
rI 0% −0.35%

approximate prescription UWJ [30], relative to the zero-range
Johnson and Soper potential UJS, for three reference cases.
Percentage differences are calculated at the radius for which
the potential is maximum.

The main feature of UJT compared to UJS is captured by
the Wales and Johnson prescription, namely, the increase in
the diffuseness in both the real and the imaginary part of the
interaction. However, the Wales and Johnson results differ
quantitatively from ours.

B. Finite-range effects in the transfer cross sections

Once the adiabatic potentials are defined, cross sections can
be obtained. The matrix element in Eq. (9) was evaluated using
the adiabatic wave function distorted by UJS and the zero-range
constant D0 was obtained from the Reid n-p interaction [36]
for consistency. The finite-range calculation Eq. (16) uses UJT

for the adiabatic wave function.
To assess the relative importance of the finite-range effect

in the adiabatic potential and that on the evaluation of the
transfer amplitude, we also perform a finite-range calculation
using UJS. Finally, given that the LEA method [25] has been
widely used in the past, we also perform a calculation where
Eq. (9) is evaluated using the Johnson and Soper adiabatic
potential UJS but making the local energy correction [25]. All
calculations are performed using the code FRESCO [39].

In Table II we quantify these effects for all the reactions
studied. All percentage differences are calculated at the first
peak of the angular distribution (with the exception of the
sub-Coulomb examples for which percentage differences are
calculated at backward angles) and are relative to the Johnson
and Soper approach Eq. (9):

(i) 	(LEA) shows the effect of finite range in the eval-
uation of the T matrix when the LEA is used in
conjunction with the Johnson and Soper model;

(ii) 	(FR-JS) shows the effect of finite range in the
evaluation of the T matrix when fixing the adiabatic
potential to UJS;

(iii) 	(FR-JT) shows the full finite-range effects when
finite range is taken into account properly in both the
evaluation of the T matrix and the adiabatic potential
(UJT);

(iv) 	(JS-JT) is the percentage difference between finite-
range calculations using UJT and UJS and therefore
shows the effect of including finite range in the adiabatic
potential.

In the Table II we indicate the angle at which the percentage
differences of cross sections were calculated.

In addition to the full table, we also select some angular
distributions that illustrate the various trends we observed,
presented in Figs. 1–3. Each plot contains four lines: a
dotted line corresponding to the zero-range Johnson and Soper
calculation, a dashed line corresponding to the local energy
correction to the T -matrix calculation with the Johnson and
Soper potential, a long-dashed line corresponding to a full
finite-range T -matrix calculation where UJS is used, and a
solid line corresponding to a finite-range T -matrix calculation
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TABLE II. Percentage differences of finite-range effects in (d,p)
reactions relative to the zero-range Johnson and Soper calculation
(* denotes cases for which no data are available). The target nucleus,
the deuteron incident energy in the laboratory (in MeV), and the
angle (in degrees) at which the percentage differences are evaluated
are given in the first, second, and third columns, respectively.

Target Ed θ 	(LEA) 	(FR-JS) 	(FR-JT) 	(JT-JS)

12C 4 25 +5.6% +5.5% +4.5% −1.0%
12C 12 13 +2.6% +2.9% −1.5% −4.3%
12C 19.6 10 +11% +13% +7.7% −4.2%
12C 56 6 −37% −27% −36% −12%
48Ca 2 180 +6.5% +6.3% +2.6% −3.5%
48Ca 13 12 +4.9% +3.8% −2.8% −6.2%
48Ca 19 8 +5.0% +4.0% −0.30% −4.1%
48Ca* 30 4 +7.3% +4.8% −2.3%
48Ca* 40 0 −5.4% −5.9% −10%
48Ca* 50 0 −1.9% −19% −18%
48Ca 56 0 −5.2% −6.5% −24% −18.6%
69Ga 12 14 +4.3% +4.7% −1.1% −5.49%
86Kr 11 25 +4.8% +5.5% −0.40% −5.63%
90Zr 2.7 138 +6.2% +7.3% +5.5% −1.7%
90Zr 11 26 +5.4% +5.0% −0.90% −5.6%
124Sn 5.6 175 +6.1% +11% +7.5% −2.8%
124Sn 33.3 0 +2.9% +4.6% 0% −4.4%
124Sn* 40 12 −1.1% −2.4% −1.4%
124Sn* 50 11 −3.9% −4.3% −0.44%
124Sn* 60 9 −11% −30% −21%
124Sn* 70 0 +5.1% −29% −44% −21%
208Pb 8 180 +6.1% +7.2% +6.1% −0.96%
208Pb 12 98 +5.7% +8.8% +2.2% −6.1%
208Pb* 20 30 +4.5% −2.3% −6.6%
208Pb* 40 9 +1.4% −6.9% −8.1%
208Pb* 60 0 +0.14% −8.8% −9.0%
208Pb* 80 0 −62% −86% −63%

with the finite-range adiabatic potential UJT. Data are also
presented whenever available, but only as an indication that
the ingredients of our model are realistic and therefore the
magnitude of the finite range effects reliable. It is not the
purpose of this work to extract spectroscopic information for
these systems.

We first look at sub-Coulomb transfer reactions, which are
usually rather insensitive to the nuclear optical potential. In
Fig. 1(a) we show 48Ca(d,p)49Ca at Elab = 2 MeV and in
Fig. 1(b) 208Pb(d,p)209Pb at Elab = 8 MeV. In both cases, the
effects of finite range are only a few percent (3% in 48Ca
and 6% in 208Pb), and these are mostly attributable to the
approximation in the evaluation of the T matrix and not from
the adiabatic potential. In this case, LEA is able to capture
most of the finite-range effects. In the sub-Coulomb energy
regime, for all cases studied, errors in using the Johnson and
Soper potential with the LEA are below 5%.

Most of the available (d,p) data on stable systems was
taken at energies above the Coulomb barrier for 10- to 20-MeV
deuterons. In Fig. 2(a) we show results for 69Ga(d,p)70Ga at
Elab = 12 MeV, in Fig. 2(b) 86Kr(d,p)87Kr at Elab = 11 MeV,
and in Fig. 2(c) 208Pb(d,p)209Pb at Elab = 20 MeV. The overall
effect of finite range in all three cases is very small (−1% for
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FIG. 1. (Color online) Angular distributions for (d,p) at sub-
Coulomb energies. (a) 48Ca(d,p)49Ca(g.s.) Ed = 2 MeV (data from
[40]) and (b) 208Pb(d,p)209Pb(g.s.) Ed = 8 MeV (data from [41]).
Comparison of zero-range Johnson and Soper model (dotted line),
the LEA Johnson and Soper model (dashed line), a finite-range
calculation of the transfer amplitude using the Johnson and Soper
adiabatic wave (long-dashed line), and the full finite-range results
(solid line).

the 69Ga, 0.4% for the 86Kr, and 6% in 208Pb), although it
results from the cancellation of the two separate effects, the
finite range in the deuteron potential, which reduces the cross
section and the finite-range effect in the evaluation of the T

matrix, which increases the cross section. No simple addition
rule for these two effects was found. Here, the LEA begins to
show larger deviations from the full finite-range calculation.

Finally, we also consider reactions at higher energies
(50- to 80-MeV deuteron energy). Only two data sets are
available, namely, for 12C and 48Ca, but we also include a study
for 124Sn and 208Pb to ensure that our results are not biased by
lower-mass systems. All cases studied at these energies reveal
that finite-range effects are large and reduce the cross section.
In Fig. 3(a) we show the angular distributions for 12C(d,p)13C
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FIG. 2. (Color online) Angular distributions for (d,p) at energies
slightly above the Coulomb barrier. (a) 69Ga(d,p)70Ga(g.s.) Ed =
12 MeV (data from [42]), (b) 86Kr(d,p)87Kr(g.s.) Ed = 11 MeV
(data from [43]), and (c) 208Pb(d,p)209Pb(g.s.) Ed = 20 MeV (data
from [44]). Comparison of zero-range plus Johnson and Soper method
(dotted), the LEA plus Johnson and Soper method (dashed), a
finite-range calculation of the transfer amplitude using the Johnson
and Soper adiabatic potential (long-dashed), and the full finite-range
results (solid line).
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FIG. 3. (Color online) Angular distributions for (d,p) at high
energies. (a) 12C(d,p)13C(g.s.) Ed = 56 MeV (data from [45]),
(b) 48Ca(d,p)49Ca(g.s.) Ed = 56 MeV (data from [46]), and (c)
124Sn(d,p)125Sn(g.s.) Ed = 70 MeV. Comparison of zero-range plus
Johnson and Soper method (dotted), the LEA plus Johnson and Soper
method (dashed), a finite-range calculation of the transfer amplitude
using the Johnson and Soper adiabatic potential (long-dashed), and
the full finite-range results (solid line).
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at Elab = 56 MeV, in Fig. 3(b) those for 48Ca(d,p)49Ca at
Elab = 56 MeV, and in Fig. 3(c) those for 124Sn(d,p)124Sn at
Elab = 70 MeV. The overall effect of finite range at the peak of
the distribution is −36% for 12C, −24% for 48Ca, and −43.5%
for 124Sn. It is the finite range in the adiabatic potential that
is the dominant cause for these large changes although the
finite-range effect in the evaluation of the T matrix is still
important and should not be neglected. In addition, for these
higher energies, we find that the LEA method breaks down and
for the heavier systems this approximation can in fact provide
a correction in the opposite direction to the full finite-range
calculation.

Because it is the adiabatic scattering wave function that is
mostly responsible for the large differences, we investigated
the radial behavior of the scattering wave functions using either
UJT or UJS for the partial waves which contribute the most to the
transfer cross section. We specifically looked at the properties
of the integrand of Eq. (16) in the zero-range approximation,
where it has a simpler form. We found that the percentage
difference comes from subtle cancellations and cannot be
well illustrated in the partial wave expansion. Intuitively, one
might argue that because the energies are larger, the dominant
contribution to the transfer cross section comes from smaller
impact parameters and thus sensitivity to the range of Vnp

should be larger.
To ensure that our results are general, in particular that they

will still be applicable to reactions in which the final bound
state has a large spatial extension, we performed additional
calculations for a fictitious 48Ca(d,p)49Ca setting the valence
neutron angular momentum in the final bound state to � = 0
state and varying the binding energy Sn = 0.1–6 MeV. The
overall findings did not change: Regardless of the loosely
bound nature of the final nucleus, or the angular momentum in
the final bound state, the effects of finite range in the transfer
cross section are modest for low energies and become very
important for the higher energies.

IV. DISCUSSION

The overall features obtained in this work can be best
summarized in Fig. 4, where the two separate effects of finite
range are plotted as a function of beam energy for (d,p)
reaction on four different targets; solid symbols provide the
percentage effect of including finite range in the evaluation
of the matrix element relative to a zero-range T -matrix
calculation with a Johnson and Soper potential in both
cases, and the open symbols correspond to the effect of
including finite-range effects in the distorting potential in
the incident channel wave. The figure summarizes the results
already given in Table II. From this figure we can see that
at low energy, finite-range results differ by less than 10%
from zero-range matrix element with a Johnson and Soper
adiabatic potential. However, as the incoming deuteron energy
increases, finite-range effects become very important and can
dominate the result. The energy at which the transition occurs
depends nonlinearly on the charge and the mass of the system.
For practical purposes we find the transition to be around
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−70

−50

−30

−10
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%
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12
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48
Ca

124
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Pb

FIG. 4. (Color online) Systematic finite range effect as a function
of beam energy. Open symbols give the effect in the incident channel
distorted wave, and solid symbols are the effect in the evaluation of
the matrix elements.

20 MeV/u for lighter systems and 30 MeV/u for the heavy
systems.

To facilitate the practical analysis of experiments, we
searched for a global correction factor, a factor that would
estimate the finite-range effect as a function of target charge,
mass, and beam energy. Although for a given target one could
always find a function F (Ed ) representing the finite-range
correction, no consistent dependence in mass and charge was
found for the parameters of the various fits.

It is important to remember that the exact inclusion of
deuteron finite-range effects requires the solution of a coupled-
channel equations Eq. (12) and here we truncated the Weinberg
expansion to the first term to simplify the problem. The full
equations were solved in Ref. [29] for 66Zn. It would be
interesting to extend this study to better determine the range
of validity of the truncation here used.

V. CONCLUSION

We perform a systematic study of the effects of deuteron
finite range in (d,p) reactions, within a formalism that
includes the coherent effects of deuteron breakup through an
adiabatic potential in the incident channel. We use the adiabatic
formalism developed by Johnson and Soper [24] in zero range
and compare with the finite-range generalization of Tandy and
Johnson [28]. We analyze separately the effects of finite-range
in the adiabatic distorting potential and finite range in the
evaluation of the transfer matrix element. We also test the LEA
which is widely used as an estimate of finite-range corrections
to zero-range transfer cross sections. We performed (d,p)
calculations to determine angular distributions for a wide range
of beam energies as well as a variety of targets, from A = 12
to A = 208.

For sub-Coulomb reactions, the percentage difference
between the finite-range and the zero-range cross sections at
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the peak of the angular distribution relative to the zero-range
Johnson and Soper prediction is within 10% for all cases
studied, and the LEA provides an estimate within a few percent
of the full finite-range calculation. However, as the beam
energy increases, finite-range effects become more important.
For intermediate energies (E < 20 MeV/u for A < 50 and
E < 30 MeV/u for heavier nuclei), including the finite range
of the n-p interaction in the adiabatic scattered wave function
reduces the cross section while including finite range in the
evaluation of the transfer amplitude increases the cross section.
Both effects are significant, although strong cancellations may
occur. At higher energies, both finite-range effects have the

same sign, reducing the transfer cross section. In this case we
find the total effect of finite range to be very important. Our
results also suggest that at these higher energies, the LEA is
no longer adequate.
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