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We have studied the (ground-state) cluster radioactive decays within the preformed cluster model (PCM) of
Gupta and collaborators [R. K. Gupta, in Proceedings of the 5th International Conference on Nuclear Reaction
Mechanisms, Varenna, edited by E. Gadioli (Ricerca Scientifica ed Educazione Permanente, Milano, 1988),
p. 416; S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989)]. The relativistic mean-field (RMF) theory is
used to obtain the nuclear matter densities for the double folding procedure used to construct the cluster-daughter
potential with M3Y nucleon-nucleon interaction including exchange effects. Following the PCM approach, we
have deduced empirically the preformation probability P0

emp from the experimental data on both the α- and exotic
cluster-decays, specifically of parents in the trans-lead region having doubly magic 208Pb or its neighboring nuclei
as daughters. Interestingly, the RMF-densities-based nuclear potential supports the concept of preformation for
both the α and heavier clusters in radioactive nuclei. P0

α(emp) for α decays is almost constant (∼10−2–10−3) for
all the parent nuclei considered here, and P0

c(emp) for cluster decays of the same parents decrease with the size of
clusters emitted from different parents. The results obtained for P0

c(emp) are reasonable and are within two to three
orders of magnitude of the well-accepted phenomenological model of Blendowske-Walliser for light clusters.
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I. INTRODUCTION

Cluster radioactivity (CR) is the spontaneous emission of
clusters heavier than the α particle. Since its first theoretical
prediction [1] in 1980 and experimental confirmation [2] in
1984, this phenomenon is now established for some 26 decays
with light to heavy (14C to 34Si) clusters from various actinides
(221Fr to 242Cm). Theoretically, two types of models have been
advanced, namely, (i) the unified fission models (UFM), such
as the analytic super-asymmetric fission model (ASAFM) of
Săndulescu, Poenaru, and Greiner [1], and (ii) the preformed
cluster models (PCM), like that of Gupta and collaborators
[3–7] based on collective potential energy surfaces. Some
effort has also gone into understanding it within the Hatree-
Fock-Bogoliubov mean-field theory [8] and the relativistic
mean-field (RMF) theory [9], treating it as an asymmetric
fission process (see, however, later a further discussion of
the work of Ref. [9]). Besides these two model approaches
(the UFM and PCM), semiempirical formulas have also been
proposed by different authors [10–13] for calculating the half-
life times T1/2 of exotic cluster decays, together with a unified
formula of T1/2 for both the α and cluster radioactivity [14].

Whereas Gamow theory for α decay uses the square well
potential, the UFM and PCM, advanced for the processes of
CR as well as α decay, use the more realistic nuclear interaction
potentials [15]. Furthermore, the UFM and PCM differ from
each other for their noninclusion or inclusion of preformation
or spectroscopic factors of the clusters being formed (or born)
before penetrating the confining interaction barriers. Thus, in
UFM, the preformation factor is taken to be unity, whereas in
PCM, Gupta and collaborators [3–7] assumed the clusters to be
preborn in the parent nucleus with certain probabilities P0

theo,
calculated theoretically by solving the stationary Schrödinger

equation for the dynamical flow of mass and charge. In
another preformed-cluster-based calculation, Blendowske and
Walliser [16] proposed for P0 a simple phenomenological
formula for light clusters (Ac � 28) as

P0
c = (P0

α)(Ac−1)/3, (1)

with the α preformation factor P0
α , for decay from an even or

odd parent, estimated as

(P0
α)even = 6.3 × 10−3 and (P0

α)odd = 3.2 × 10−3, (2)

respectively. These studies show that P0
c almost decreases

linearly with increase in the size or mass of the cluster.
Furthermore, the ratio P0

c/P0
α is shown to be very small,

indicating that P0
α is very large in comparison to P0

c. A recent
study [17] has shown that the scaling law given by Eq. (1)
between the preformation probability (spectroscopic) factor
and mass of the emitted cluster can be understood in terms of
the (Coulomb barrier and Q-value-based) fragmentation po-
tential, a fact well understood and very well exploited for quite
some time by Gupta and collaborators for calculating the theo-
retical preformation probabilities P0

theo in the PCM used here,
which also includes the nuclear potential [3–7,15], as already
mentioned. Yet in another microscopic density-dependent
cluster-daughter potential, calculated with the renormalized
M3Y nucleon-nucleon interaction plus exchange term, using
Fermi densities, the authors of Ref. [13] use for preformation
probability of clusters an exponential function of the product
of cluster and daughter charge numbers (P0 = 10−(aZcZd−b)),
or alone the mass number of the cluster (P0 = 10−(cAc−2)), with
parameters a, b, or c fitted to match the experimental data.
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The cluster preformation probability can also be estimated
empirically. The first empirical estimate of P0

c/P0
α was given

by Rose and Jones [2], ranging from 7 × 10−5 to 4 × 10−7,
in their pioneering experiment for the ground-state decay of
14C from 223Ra. In UFM, as already stated, the preformation
probability for α as well as cluster decay is assumed to be one
(i.e., P0

α = P0
c = 1), while using a more realistic interaction

potential (Coulomb + nuclear) and thus, in a way, treating the
CR process just as the barrier penetration process. In PCM,
together with the realistic interaction potential, the cluster-
preformation probability is also associated, thus including the
important nuclear structure information of the parent nucleus
and daughter products in the model. Within the UFM also,
the P0 has been shown to be formally the penetrability of the
internal part of the barrier, corresponding to still overlapping
fragments [18].

Because of the very importance of preformation (spectro-
scopic) factor from the point of view of including nuclear
structure information, in this paper, based on PCM, we use
the RMF theory whose calculated mass and charge densities
have already been shown by some of us and collaborators [19]
to support the clustering effects in various heavy parents with
observed cluster decays, along with the α-nucleus structure of
all the α nuclei (8Be to 32S) together with the halo structure of
neutron- and proton-rich isotopes of 6–14Be and odd-A 11–19B
nuclei [20]. In the following, for studying the ground-state
cluster radioactive decays, we have chosen the same nuclei
as in Ref. [19], and many more parents, from the trans-lead
region. The experimental data on decay constants for all the
parents considered here are taken from [15] for both the α

and cluster decays, supplemented by the recent review [21]
for cluster decays, with the additional data for 34Si decay of
242Cm taken from [22], and the very recent data for 14C and 15N
decays of 223Ac from [23] and the 34Si decay of 238U from [24].

Our methodology for the present study is to use the
RMF theory and the PCM, described briefly in Sec. II.
The cluster and daughter densities are calculated by using
the RMF formalism for spherical nuclei. Then, the M3Y
effective nucleon-nucleon interaction, supplemented by a zero-
range pseudopotential for exchange effects (M3Y + EX), is
folded [25,26] with the RMF calculated cluster and daughter
densities ρc and ρd , to obtain the nuclear interaction potential
Vn, to which is added the Coulomb potential VC for getting the
total interaction potential V (R) = Vn(R) + VC(R) between
the cluster and daughter nuclei. The Coulomb potential VC is
calculated here within the pointlike approximation [VC(R) =
ZcZde

2/R], though various prescriptions are available for
the finite-size effects of one or both nuclei, such as the one
in [13,27] for one spherical nucleus and that in [28] for
two spheres. However, the finite-size effects in the Coulomb
potential for spherical nuclei are found to be small [5,27],
and these are neglected here for simplicity. The WKB
penetration probability P is then calculated, to be used for
obtaining the decay constant λ within the PCM. In this way,
we determine the empirical preformation factor P0

emp for
the cluster decays. Apparently, it would be interesting to de-
termine P0 theoretically within the RMF theory itself, a step to
be carried out next. Moreover, by keeping in view the latest
cluster decay studies [6,7], the deformation effects of the nuclei

are also to be added in RMF densities. The calculated results
of our present study are presented in Sec. III, and a summary
of our work is given in Sec. IV.

II. THE RELATIVISTIC MEAN-FIELD THEORY AND THE
PREFORMED CLUSTER MODEL

In the RMF model [9,19], an effective Lagrangian is taken
to describe the nucleons interacting through the effective
meson and electromagnetic (e.m.) fields. The equations of
motion are obtained using the Euler-Lagrange variational
principle. A set of coupled equations result from replacing
the field operators by their expectation values. A set of Klein-
Gordon-type equations is yielded for mesons and photons
with sources having nucleonic currents and densities, and the
Dirac equation describing the nucleon dynamics is yielded
with potential terms having the e.m. and meson fields. This set
of RMF-generated equations is then solved self-consistently
to obtain the matter (neutron + proton) densities for the cluster
and daughter nuclei, to treat them further for obtaining the
nuclear interaction potential between them.

The Lagrangian density for a nucleon-meson many-body
system [19] is

L = ψi{iγ µ∂µ − M}ψi + 1

2
∂µσ∂µσ − 1

2
m2

σ σ 2

− 1

3
g2σ

3 − 1

4
g3σ

4 − gsψiψiσ − 1

4
�µν�µν

+ 1

2
m2

wV µVµ + 1

4
c3(VµV µ)2 − gwψiγ

µψiVµ

− 1

4
�Bµν . �Bµν + 1

2
m2

ρ
�Rµ . �Rµ − gρψiγ

µ�τψi . �Rµ

− 1

4
FµνFµν − eψiγ

µ (1 − τ3i)

2
ψiAµ. (3)

Here, the field for the σ meson is denoted by σ , that for the
ω meson by Vµ, and that for the isovector ρ meson by �Rµ.
Aµ denotes the electromagnetic field. The ψi are the Dirac
spinors for the nucleons whose third component of isospin is
denoted by τ3i . Here gs , gω, and gρ and e2/4π = 1/137 are
the coupling constants for σ , ω, and ρ mesons and photons,
respectively. g2, g3, and c3 are the parameters for the nonlinear
terms of σ and ω mesons, respectively. M is the mass of the
nucleon and mσ , mω, and mρ are the masses of the σ , ω, and ρ

mesons, respectively. �µν , �Bµν , and Fµν are the field tensors
for the V µ, �Rµ, and the photon fields, respectively.

From the relativistic Lagrangian, we obtain the field
equations for the nucleons and mesons. The set of coupled
equations is solved numerically by a self-consistent iteration
method using the NL3 parameter set [29], which is found to
be successful in giving the cluster structure of both the heavy
and light nuclei [19,20]. The scalar, baryon (vector), isovector,
and proton densities are, respectively,

ρs(r) =
A∑

i=1

ψ̄i(r)ψi(r),

ρ(r) =
A∑

i=1

ψ
†
i (r)ψi(r),
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ρ3(r) =
A∑

i=1

ψ
†
i (r)τ3iψi(r),

ρp(r) =
A∑

i=1

ψ
†
i (r)

(
1 − τ3i

2

)
ψi(r). (4)

The center-of-mass motion is estimated by the usual
harmonic oscillator formula Ec.m. = 3/4(41A−1/3). The root-
mean-square (rms) matter radius is defined as

〈rm
2〉 = 1

A

∫
ρ(r)r2dτ, (5)

where A is the mass number and ρ(r) is the spherical density.
We follow the prescription of Refs. [30,31] to take care of the
pairing interaction.

The nuclear interaction potential, Vn(R), between the clus-
ter and daughter nuclei, with the respective RMF calculated
nuclear matter densities ρc and ρd , is

Vn( �R) =
∫

ρc(�rc)ρd (�rd )v(|�rc − �rd + �R|≡s)d3rcd
3rd, (6)

obtained by using the well-known double folding procedure
[25,26] to the M3Y interaction, supplemented by a zero-range
pseudopotential representing the single-nucleon exchange
effects,

v(s) = 7999
e−4s

4s
− 2134

e−2.5s

2.5s
+ J00(E)δ(s). (7a)

This is denoted as M3Y + EX, with the exchange term given
as

J00(E) = −276(1 − 0.005E/Aα(c)) MeV fm3. (7b)

Here Aα(c) is the α-particle (or cluster) mass, and E, the energy
measured in the center-of-mass of the α- or cluster-daughter
nucleus system, is equal to the released Q value. Compared to,
say, the energies involved in high-energy α scattering, J00(E)
is practically independent of energy for the α- or cluster-decay
process and hence can be taken as −276 MeV fm3, an
approximation also used in the work of Ref. [27].

To account for the Pauli blocking effect, the density
dependence in the M3Y + EX interaction of Eq. (7a) was
introduced for the first time in Ref. [32] (where it is called
DDM3Y). More recently, in Ref. [33], the density dependence
in the M3Y + EX interaction is used in the following factorized
form, based on a functional form first proposed by Myers [34]:

v(s) =
(

7999
e−4s

4s
− 2134

e−2.5s

2.5s
+ J00(E)δ(s)

)

× ((
1 − ρc

2/3)(1 − ρd
2/3

))
, (7c)

which is shown in [33] to give the α-nucleus interaction
potential similar to that obtained for the original density-
dependent (DDM3Y) potential of Ref. [32] with exchange term
and Pauli blocking effects included, but with a normalization
factor C = 1.3. In a later work [35], such a normalization
factor is shown to vary in the range 1.0–1.5 for various α-
nucleus systems. In the present study, we set this normalization
constant to 1.0 since it will make a difference of only a small
factor to our deduced P0

emp values. It may be relevant to

mention here that the authors of Ref. [9] use Eq. (7c) with the
J00 term set to zero (i.e., DDM3Y without exchange effects)
for their cluster-decay studies within the UFM. Furthermore,
for α-decay studies, the work of Ref. [27] has shown that
neither the density dependence nor the exchange effects play
much of a role such that the results obtained with DDM3Y and
M3Y + EX or only M3Y are almost identical for α decays.
In our calculations, however, we have added the exchange
effects and use the M3Y + EX interaction. It may be noted
here that in our earlier brief reports of this work, made at some
conferences [36], we have stated by mistake that the interaction
used is DDM3Y, instead of M3Y + EX.

The decay constant λ in PCM is defined as [4]

λPCM = ln 2

T1/2
= ν0P0P, (8)

and in UFM is simply given by [5]

λUFM = ν0P. (9)

Here, P0 is the preformation probability of the cluster formed
in the parent nucleus, ν0 is the assault frequency, and P is the
WKB penetrability in relative separation R coordinate. Within
the PCM, an empirical estimate of the preformation factor can
be defined [5] as

P0
emp = λExpt

ν0P
= λExpt

λUFM
, (10)

the ratio between the experimental λExpt and calculated ν0P or
the λUFM.

The WKB penetration probability P of the cluster tunneling
through the interaction potential V (R) [=Vn(R) + VC(R)], as
shown in Fig. 1, having energy equal to the Q value of the
decay, is given by

P = exp

(
−2

h̄

∫ Rb

Ra

{2µ[V (R) − Q]}1/2dR

)
, (11)

with Ra , Rb as the turning points, satisfying V (Ra) = V (Rb) =
Q, µ = AdAc/(Ad + Ac) as the reduced mass, and Q =
BEp − (BEd + BEc). Here BEp, BEc, and BEd are the
experimental ground-state (g.s.) binding energies of the parent,
cluster, and daughter nuclei, respectively, taken from Audi
et al. [37]. For some nuclei, where experimental g.s. binding
energy is not available (e.g., for 204Pt, the daughter nucleus in
the 34Si decay of 238U), we have used the RMF calculated g.s.
binding energy (=1604.32 MeV, which is in close agreement
with the value given by Möller et al. [38], i.e., 1604.08 MeV).

In Eq. (8), ν0 is the impinging frequency with which the
cluster hits the barrier, and it is given by

ν0 = velocity

R0
= (2E2/µ)1/2

R0
, (12)

where R0 is the radius of parent nucleus and E2 is the kinetic
energy of the emitted cluster. The impinging frequency ν0 is
nearly constant ∼ 1021s−1 for all the observed α as well as
cluster decays. Since both the emitted cluster and daughter
nuclei are produced in the ground state, the entire positive Q

value of the decay is the total kinetic energy (Q = E1 + E2)
available for the decay process, which is shared between the
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FIG. 1. The double folded M3Y + EX potential Vn(R), the
Coulomb VC(R) (=ZcZde

2/R), and the total interaction potential
V (R) as a function of radial separation R between the cluster 14C and
daughter 208Pb nuclei for decay of 222Ra. The penetration path of the
cluster with an energy equal to the Q value of the decay is also shown
here.

two fragments, such that for the emitted cluster E2 = A1Q/A

and E1 (=Q − E2) is the recoil energy of the daughter
nucleus. Note that the total kinetic energy available for the
decay process is much less than the 20 MeV/nucleon limit
discussed in [27] for ignoring the density dependence of the
effective M3Y interactions without introducing much change
in α-decay calculations. Also, it should be recalled here that in
contrast to the present work based on the PCM, the RMF
study in Ref. [9] is based on UFM, with the impinging
frequency ν0 taken as a variable parameter, accounting for
the preformation factor P0 in Eq. (8) (see Eq. (5) in [9], which
depends on two adjustable parameters). However, as already
noted, it is a well-known fact (see, e.g., Ref. [15]) that ν0

is nearly constant for both the α and cluster decays and that
inclusion of P0 accounts for nuclear structure effects. In a more
recent calculation [39], performed for a density-dependent
M3Y nucleon-nucleon interaction with an improved WKB
method, ν0 is explicitly shown to be of the order of 1021 s−1

for the α decay of superheavy nuclei and is thus more like the
standard result. Furthermore, as already mentioned, since the
RMF density profiles support the cluster formations in heavy
nuclei [19] (just as in α nuclei [20]), it is not justified to ignore
the cluster preformation factor in any of the applications of the
RMF method.

III. CALCULATIONS AND DISCUSSION

As already stated in Sec. I, the calculations involve four
independent steps: First, the cluster and daughter matter

densities are calculated within the RMF method. Using the
double folding procedure, these are then folded with the
M3Y + EX interaction potential to obtain the nucleus-nucleus
potential. As a next step, the WKB penetration probability
P is calculated by using the experimental Q values for α

as well as cluster decays. Finally, the empirical estimates of
the preformation factors are made for different parent nuclei
chosen with doubly closed shell 208Pb or its neighboring nuclei
as the daughter products.

Figure 1 (solid line) illustrates the total interaction potential
V (R) for 14C decay of 222Ra, used to calculate the WKB
penetration probability P . The calculated P values, together
with the Q values and empirically estimated preformation
probabilities P0

emp, respectively, for α and cluster decays
from various parent nuclei, are given in Tables I and II. The
experimental data for the decay constant λExpt are also given
for each case. For some cases, only the upper limits are known,
which are used as such for the (upper limit) estimates of P0. It
is interesting to find in Table I that the empirically evaluated
α preformation probabilities P0

α(emp) are almost constant, of
the order of 10−2–10−3, for all the parent nuclei studied here.
This result suggests that a preformation factor P0

α is required
to match the experimental data on λα

Expt, and hence the nuclear
structure information is important here in this study.

Table II shows that the cluster preformation factor P0
c(emp)

decreases with increasing cluster size, in agreement with
earlier studies discussed in Sec. I. It is relevant to note in
Table I that, in comparison to P0

c(emp) for cluster decays
from the same parent nuclei in Table II, we get a very large
preformation factor P0

α(emp) for α decays, such that the ratio
P0

c(emp)/P0
α(emp), given in Table II, is very small, and it further

decreases with the increase in size of the cluster from 14C to
34Si, as expected. The P0

c(emp)/P0
α(emp) value for 14C decay

from 222Ra is quite close to the range of values obtained in
the first experiments of Rose and Jones [2] (=7 × 10−5 to
4 × 10−7, already mentioned in Sec. I). Furthermore, these
results are also in line with the previous studies based on the
PCM using the proximity potential [3–7].

Finally, in Fig. 2, we compare our calculated −log10P
c(emp)
0

as a function of cluster and parent mass (symbols) with the
results of a phenomenological model calculation [Eqs. (1)
and (2)] of Blendowske and Walliser [16]. Interestingly
enough, the two calculations match within two to three orders
of magnitude (compare symbols with dotted and dashed lines),
which is quite reasonable. The important point is that the
microscopic RMF formalism, combined with an effective
M3Y nucleon-nucleon interaction, supports the concept of
preformation of clusters in nuclei, introduced by Gupta and
collaborators in PCM for cluster radioactive decays [3,4].
It is relevant to mention here that we have carried out our
present study in the RMF formalism by assuming all the parent,
daughter, and cluster nuclei to be spherical. The deformation
effects in the RMF formalism for light nuclei are known to
exist [40], and they should be taken up next. The deformation
effects of nuclei have recently been shown to be important for
α and cluster decays [6,7], and thus they could also influence
our P0

emp estimates. Furthermore, the improvements suggested
in [39] for calculating the WKB penetration probability may
also be of interest.
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TABLE I. The WKB penetrability P , experimental decay constant λα
Expt, and the estimated P0

α(emp) = λα
Expt/ν0P for α decays of various

nuclei. The impinging frequency ν0 ∼ 1021 s−1 for each case. The Q values are calculated by using the experimental g.s. binding energies
from [37].

Parent Q (MeV) P λα
Expt (s−1) P0

α(emp)

221Fr 6.457 3.150 × 10−22 2.406 × 10−02 2.507 × 10−02

221Ra 6.881 5.190 × 10−21 2.310 × 10−02 1.412 × 10−03

222Ra 6.679 8.667 × 10−22 1.824 × 10−02 6.798 × 10−03

223Ra 5.979 8.479 × 10−25 7.016 × 10−07 2.831 × 10−04

224Ra 5.789 1.091 × 10−25 2.189 × 10−06 6.997 × 10−03

226Ra 4.871 6.691 × 10−31 1.378 × 10−11 7.863 × 10−03

223Ac 6.783 8.619 × 10−22 5.440 × 10−03 2.026 × 10−03

225Ac 5.935 1.844 × 10−25 8.022 × 10−07 1.500 × 10−03

226Th 6.451 1.479 × 10−23 3.739 × 10−04 8.368 × 10−03

228Th 5.520 4.427 × 10−28 1.152 × 10−08 9.353 × 10−03

230Th 4.770 1.228 × 10−32 2.755 × 10−13 8.708 × 10−03

230U 5.993 1.484 × 10−26 3.857 × 10−07 8.986 × 10−03

231Pa 5.150 1.078 × 10−30 6.728 × 10−13 2.334 × 10−04

232U 5.414 1.232 × 10−29 3.074 × 10−10 9.112 × 10−03

233U 4.909 9.197 × 10−33 1.384 × 10−13 5.782 × 10−03

234U 4.858 4.292 × 10−33 9.011 × 10−14 8.124 × 10−03

235U 4.678 2.552 × 10−34 3.132 × 10−17 4.848 × 10−05

236U 4.573 4.601 × 10−35 9.142 × 10−16 8.189 × 10−03

238U 4.270 2.023 × 10−37 4.846 × 10−18 9.957 × 10−03

237Np 4.958 6.823 × 10−33 1.030 × 10−14 5.807 × 10−04

236Pu 5.867 4.796 × 10−28 7.730 × 10−09 5.684 × 10−03

238Pu 5.593 1.743 × 10−29 2.513 × 10−10 5.225 × 10−03

241Am 5.638 1.156 × 10−29 5.102 × 10−11 1.600 × 10−03

242Cm 6.216 4.580 × 10−27 4.195 × 10−08 3.707 × 10−03

IV. SUMMARY OF RESULTS

In the present work, we have studied the α and exotic
cluster radioactive decay processes within the preformed
cluster model using the RMF densities. The RMF densities

are folded with the M3Y + EX interaction potential, using
the double folding procedure to obtain the nuclear interaction
potential. We have explored mainly the significance of the
preformation or spectroscopic factor in the two processes. In
line with previous studies, we find that the preformation factor
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FIG. 2. The empirical preformation proba-
bility P0

c(emp) for cluster decays from various
parents (symbols) compared with the model
calculations of Blendowske-Walliser [16] [solid
line, Eqs. (1) and (2)] and ones raised by the
factors of 102 and 103 (dot and dash lines,
respectively).
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TABLE II. Same as for Table I, but for cluster decays. Here, the ratio P0
c(emp)/P0

α(emp) is also given.

Decay Q (MeV) P λc
Expt (s−1) P0

c(emp) P0
c(emp)

P0
α(emp)

221Fr→14C+207Tl 31.292 1.500 × 10−27 1.203 × 10−15 2.240 × 10−10 8.938 × 10−09

221Ra→14C+207Pb 32.396 3.990 × 10−26 2.772 × 10−15 1.902 × 10−11 1.347 × 10−08

222Ra→14C+208Pb 33.050 2.933 × 10−25 6.749 × 10−12 6.251 × 10−09 9.196 × 10−07

223Ra→14C+209Pb 31.829 2.112 × 10−27 3.508 × 10−16 4.609 × 10−11 1.628 × 10−07

224Ra→14C+210Pb 30.536 8.536 × 10−30 9.413 × 10−17 3.131 × 10−09 4.476 × 10−07

226Ra→14C+212Pb 28.197 1.373 × 10−34 3.169 × 10−22 6.853 × 10−10 8.715 × 10−08

223Ac→14C+209Bi 33.065 3.863 × 10−26 1.741 × 10−13 1.226 × 10−09 6.051 × 10−07

223Ac→15N+208Pb 39.473 6.778 × 10−27 <1.197 × 10−15 <4.549 × 10−11 2.246 × 10−08

225Ac→14C+211Bi 30.476 7.514 × 10−31 1.043 × 10−19 3.950 × 10−11 2.633 × 10−08

226Th→14C+212Po 30.547 1.230 × 10−31 <3.477 × 10−16 <8.072 × 10−07 9.647 × 10−05

226Th→18O+208Pb 45.727 2.540 × 10−29 <3.477 × 10−16 <3.611 × 10−09 4.315 × 10−07

228Th→20O+208Pb 44.723 1.541 × 10−31 9.297 × 10−22 1.703 × 10−12 1.821 × 10−10

230Th→24Ne+206Hg 57.762 3.231 × 10−32 1.590 × 10−25 1.344 × 10−15 1.544 × 10−13

230U→22Ne+208Pb 61.388 3.154 × 10−29 4.243 × 10−19 3.408 × 10−12 3.792 × 10−10

231Pa→24Ne+207Tl 60.411 1.090 × 10−29 9.016 × 10−25 2.211 × 10−17 9.476 × 10−14

231Pa→23F+208Pb 51.844 1.698 × 10−32 1.682 × 10−25 2.800 × 10−15 1.200 × 10−11

230U→24Ne+206Pb 61.357 9.107 × 10−30 <4.243 × 10−19 <1.238 × 10−11 1.378 × 10−09

232U→24Ne+208Pb 62.311 2.696 × 10−28 2.720 × 10−21 2.661 × 10−15 2.920 × 10−13

232U→28Mg+204Hg 74.320 1.951 × 10−30 <1.549 × 10−23 <2.079 × 10−15 2.281 × 10−13

233U→24Ne+209Pb 60.486 9.222 × 10−31 9.965 × 10−26 2.897 × 10−17 5.011 × 10−15

233U→28Mg+205Hg 74.226 1.833 × 10−30 <1.799 × 10−28 <2.566 × 10−20 4.439 × 10−18

234U→24Ne+210Pb 58.826 4.411 × 10−33 5.956 × 10−26 3.683 × 10−15 4.534 × 10−13

234U→25Ne+209Pb 57.869 3.919 × 10−35 5.956 × 10−26 4.266 × 10−13 5.251 × 10−11

234U→26Ne+208Pb 59.465 1.659 × 10−32 5.956 × 10−26 1.013 × 10−15 1.246 × 10−13

234U→28Mg+206Hg 74.111 1.488 × 10−30 2.000 × 10−26 3.529 × 10−18 4.344 × 10−16

235U→28Mg+207Hg 72.159 5.202 × 10−33 <2.443 × 10−29 <1.250 × 10−18 2.577 × 10−14

236U→28Mg+208Hg 70.565 4.177 × 10−35 3.671 × 10−27 2.369 × 10−14 2.893 × 10−12

238U→34Si+204Pt 86.055 1.397 × 10−31 6.300 × 10−30 1.218 × 10−20 1.223 × 10−18

237Np→30Mg+207Tl 74.818 5.030 × 10−31 <1.854 × 10−28 <9.996 × 10−20 1.721 × 10−16

236Pu→28Mg+208Pb 79.670 1.802 × 10−26 1.469 × 10−22 2.063 × 10−18 3.630 × 10−16

238Pu→28Mg+210Pb 75.912 7.928 × 10−31 1.412 × 10−26 4.659 × 10−18 8.917 × 10−16

238Pu→30Mg+208Pb 76.824 7.262 × 10−30 1.412 × 10−26 5.209 × 10−19 9.970 × 10−17

238Pu→32Si+206Hg 91.192 2.311 × 10−26 3.468 × 10−26 3.827 × 10−22 7.325 × 10−20

241Am→34Si+207Tl 93.927 4.745 × 10−27 <3.775 × 10−26 <2.060 × 10−21 1.288 × 10−18

242Cm→34Si+208Pb 96.511 1.090 × 10−25 4.915 × 10−24 1.149 × 10−20 3.100 × 10−18

P0
α(emp) for α decay is nearly constant, and for cluster decay

P0
c(emp) decreases with the increase in size of the cluster, with

the ratio P0
c(emp)/P0

α(emp) being small, as expected.
In conclusion, this study shows the importance of the

preformation factor P0 for the exotic cluster radioactive

decays, introduced in the preformed cluster model of Gupta
and collaborators based on quantum mechanical fragmentation
theory. Apparently, it will be of great interest to see how
this quantity could be treated theoretically within the RMF
theory.
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