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Importance of momentum dependent interactions at the energy of vanishing flow
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We study the balance energy (Ebal) as a function of combined system mass for different colliding geometries,
which range from central to semiperipheral ones. We find that Ebal follows a power law behavior (∝Aτ ) at all
colliding geometries. We also study the effect of momentum dependent interactions on Ebal as well as on its mass
dependence. We find that the inclusion of momentum dependent interactions changes the value of τ drastically
at peripheral geometries in agreement with other calculations.
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I. INTRODUCTION

The collective transverse in-plane flow [1–3] has been
used extensively over the past three decades to study the
properties of hot and dense nuclear matter [i.e., the nuclear
matter equation of state (EOS) as well as the in-medium
nucleon-nucleon (nn) cross section]. This has been reported
to be highly sensitive toward the above-mentioned properties
as well as toward the entrance channel parameters such as
combined mass of the system [4], colliding geometries [5],
and incident energy of the projectile [6]. The dependence of
the collective flow on the above-mentioned parameters has
revealed very interesting physics, especially the beam-energy
dependence, which has also led to its disappearance. At lower
incident energies, the dominance of the attractive mean field
prompts the scattering of the particles into negative deflection
angles, thus, by producing negative flow, whereas frequent
nn collisions and repulsive mean field at higher incident
energies result in the emission of particles into positive
deflection angles and, hence, yield positive flow. While going
through the incident energies, collective transverse in-plane
flow disappears at a particular incident energy termed the
balance energy (Ebal) or energy of vanishing flow (EVF)
[7]. The Ebal has been studied experimentally as well as
theoretically over a wide range of mass, which ranges from
12C + 12C to 238U + 238U at different colliding geometries and
has been found to vary drastically as a function of combined
mass of the system [8–13] as well as a function of the impact
parameter [9,14–18].

A power law mass dependence (∝Aτ ) of Ebal was also
reported in the literature [8–13]. Earlier power law parameter
τ was supposed to be close to −1/3 (which results from the
interplay between the attractive mean field and repulsive nn
collisions) [8], whereas recent studies showed a deviation from
the above mentioned power law [9–13], where τ was close to
−0.45. Recently, Sood and Puri [12], reported a power law
mass dependence ∝1/

√
A for heavier nuclei, which suggested

the increasing importance of the Coulomb interactions.
It is well established that both collective flow as well as

its disappearance depend crucially on the colliding geometry
[9,14–19]. The energy of vanishing flow increases linearly
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with the increase in the impact parameter [9,16,17]. This
effect, however, depends on the mass of the system [9]. As
a consequence, the mass dependence of Ebal is also expected
to vary strongly with the colliding geometry. The momentum
dependent interactions (MDI) are also known to have sizable
effects on the collective flow as well as on its disappear-
ance [13,14,17,18,20–22] in addition to multifragmentation
[23–25] and particle production [26]. Recently, Sood and
Puri [13] presented a systematic study for understanding the
role of MDI in transverse flow as well as on its disappearance
for the full range of mass (from 12C + 12C to 197Au + 197Au).
They found that for a given incident energy, the impact of the
MDI is different in different system masses. Here, we plan to
extend that study to peripheral colliding geometries.

Our aim is to study the mass dependence of Ebal over the
range of colliding geometries, which range from the central to
the semiperipheral ones and to study the impact of MDI on Ebal

as well as on its mass dependence. For the present study, we
use the quantum molecular dynamics (QMD) model [27–29].

II. THE MODEL

In the QMD model, each nucleon propagates under the
influence of mutual interactions. The propagation is governed
by the classical equations of motion:

ṙi = ∂H

∂pi

; ṗi = −∂H

∂ri

, (1)

where H stands for the Hamiltonian, which is given by

H =
A∑
i

p2
i

2mi

+
A∑
i

(
V

Skyrme
i + V Yuk

i + V Coul
i + V mdi

i

)
. (2)

The V
Skyrme
i , V Yuk

i , V Coul
i , and V mdi

i in Eq. (2) are, respectively,
the Skyrme, Yukawa, Coulomb, and momentum dependent
potentials. The MDI are obtained by parametrizing the term
taken from the measured energy dependence of the nucleon-
nucleus optical potential. It can be parametrized as

V MDI
ij = t4 ln2[t5(pi − pj )2 + 1] δ (ri − rj ). (3)

Here, t4 = 1.57 MeV and t5 = 5 × 10−4 MeV−2. The final
form of the momentum dependent potential reads as

UMDI = δ · ln2[ε(ρ/ρ0)2/3 + 1]ρ/ρ0. (4)
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FIG. 1. The time evolution of 〈pdir
x 〉 as well

as its decomposition into 〈pdir
x 〉mean field and

〈pdir
x 〉collision. The results in 1(a) (1(b)) is for

Hard40 (HMD40) EOS. Solid (dotted) lines rep-
resent 〈pdir

x 〉 below (above) Ebal.

A parametrized form of the local plus momentum dependent
potential is given by

U = α

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ

+ δln2[ε(ρ/ρ0)2/3 + 1]ρ/ρ0. (5)

III. RESULTS AND DISCUSSION

For the present study, we simulated events for the
reactions of 20Ne + 20Ne, 40Ca + 40Ca, 58Ni + 58Ni, 131Xe +
131Xe, and 197Au + 197Au over the range of colliding geome-
tries, which vary from central to semiperipheral ones. We use
hard (labeled as Hard) and hard with MDI (HMD) equations
of state (EOS). We use a constant isotropic cross section of
40 mb strength. There are several methods in the literature
to define the nuclear transverse in-plane flow. In most of

the studies, the Ebal is extracted from (px/A) plots, where
one plots (px/A) as a function of Yc.m./Ybeam. By using the
linear fit to the slope, one can find the so-called reduced
flow. Naturally, the energy at which the reduced flow passes
through zero is called the Ebal. Alternatively, one can also
use a more integrated quantity directed transverse momentum
〈pdir

x 〉, which is defined as [11,27,29,30]

〈
pdir

x

〉 = 1

A

A∑
i=1

sgn{y(i)}px(i), (6)

where y(i) and px(i) are, respectively, the rapidity and the
momentum of the ith particle. The rapidity is defined as

Y (i) = 1

2
ln

�E(i) + �pz(i)
�E(i) − �pz(i)

, (7)

FIG. 2. Ebal as a function of combined mass
of system. Solid (open) diamonds are for HMD
(Hard) EOS. Lines are power law fit ∝Aτ .
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FIG. 3. τ as a function of the reduced impact parameter. Symbols
have the same meaning as in Fig. 2. Lines are of linear fit
∝m(b/bmax).

where �E(i) and �pz(i) are, respectively, the energy and the
longitudinal momentum of the ith particle. In this definition,
all the rapidity bins are taken into account. It, therefore,
presents an easier way to measure the in-plane flow rather
than complicated functions such as (px/A) plots. It has been
shown in Ref. [11] that the disappearance of flow occurs at the
same incident energy in both cases by showing the equivalence
between px/A and 〈pdir

x 〉 as far as Ebal is concerned. It is
worth mentioning that Ebal has the same value for all fragment
types [16,31–33]. Furthermore, the apparatus corrections and
acceptance do not play any role in the calculation of the
EVF [4,33].

In Fig. 1, we display 〈pdir
x 〉 as a function of the reaction time

for the collisions of 58Ni + 58Ni by using Hard (top panel)
and HMD EOS (bottom panel) at energies around Ebal for
semicentral colliding geometry. The lines are explained in the
caption for Fig. 1. It has been argued in Ref. [30] that the flow
at any point during the reaction can be divided into the parts
that emerge from the (attractive) mean field potential and the
(repulsive) nn collision contributions. We have also decom-
posed the transverse momentum (〈pdir

x 〉) into the contributions
created by the mean field [〈pdir

x 〉mean field (dashed line)] and
binary nn collisions [〈pdir

x 〉collision (dashed-dotted line)]. This
extraction, which is developed from the simulations of the
QMD model, is performed as follows [30]: Here at each time
step during the collision, momentum transferred by the mean
field and the binary collision is analyzed separately. Naturally,
we get two values at each time step, which can be followed
throughout the reaction. The total transverse momentum can
be obtained by adding both these contributions. From Fig. 1,
we see that 〈pdir

x 〉 saturates at around 100 fm/c. Also, the
flow caused by the binary collisions is +ve, whereas the mean
field is −ve. If we compare Figs. 1(a) and 1(b), we see the
inclusion of MDI decreases the absolute values of flow caused
by collisions as well as mean field. The suppression of nn

collisions caused by MDI happens because the inclusion of
MDI accelerates nucleons in the transverse direction during the
initial phase of the reaction, which leads to the lower density
that results in fewer nn collisions. Since MDI are attractive for
lower relative momenta and are repulsive for higher ones, at
energies around 100 MeV/nucleon, MDI changes sign (i.e.,
turns from attractive to repulsive), thus, reducing the absolute
value of mean field flow (or increasing the flow because of
mean field).

In Fig. 2, we display Ebal as a function of combined
mass of the system for Hard and HMD EOS. Various
symbols are explained in the caption. The lines are power law
fit (∝Aτ ). Figures 2(a)–2(c) are, respectively, for b/bmax =
0.3, 0.45, and 0.6. From the figure, we see that Ebal follows the
power law behavior at all colliding geometries. The values of
τ are −0.34 ± 0.04 (−0.32 ± 0.01), −0.49 ± 0.04 (−0.34 ±
0.01), and −0.76 ± 0.04 (−0.36 ± 0.04), respectively, at
b/bmax = 0.3, 0.45, and 0.6 for Hard40 (HMD40) EOS. From
the figure, we see that the value of τ for Hard40 increases
drastically as one goes from central to semiperipheral colliding
geometries. This is because Ebal increases approximately
linearly with the increase in the impact parameter [9,14–16],
which is caused by the decrease in the number of nn binary
collisions. However, the increase in Ebal with impact parameter
is different for different masses. The effect is stronger in lighter
masses compared to heavier ones [9]. This changes the slope
drastically. However interestingly, the value of τ for HMD40

almost remains constant as one goes from b/bmax = 0.3 to 0.6.
This is because of the fact that, in lighter systems, since Ebal

is large, the effect of MDI is large and because of its repulsive
nature, it suppresses the Ebal by a large amount. Whereas in
heavier systems, its effect is reversed because of the small value
of Ebal, where it enhances Ebal. It is worth mentioning here
that, at a fixed incident energy, the effect of MDI is different
for different system masses as shown by Sood and Puri [13].
In Fig. 3, we display τ as a function of colliding geometry.
Symbols have the same meaning as in Fig. 2. Lines represent
linear fit ∝m b

bmax
. From the figure, we see drastic changes in the

values of m for τHard40 , whereas for τHMD40 , m remains almost
constant.

IV. SUMMARY

In summary, we have studied Ebal as a function of combined
mass of the system for different colliding geometries, which
range from central to semiperipheral. We find that Ebal follows
a power law behavior (∝Aτ ) at all colliding geometries.
We have also studied the effect of MDI on Ebal as well
as its mass dependence. We find that the inclusion of
MDI changes the value of τ drastically at higher colliding
geometries.
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