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Off-shell behavior of nucleon self-energy in asymmetric nuclear matter
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The off-shell behavior of the nucleon self-energy in isospin-asymmetric nuclear matter is investigated within
the framework of the relativistic Dirac-Brueckner-Hartree-Fock approach based on projection techniques. The
dependence of the Dirac components of the self-energy on momentum as well as energy is evaluated for symmetric
as well as asymmetric nuclear matter. Special attention is paid to the various contributions to the momentum
dependence of the real and imaginary part of the optical potential. The consequences to the different definitions
of the effective nucleon mass and particle spectral functions are discussed.

DOI: 10.1103/PhysRevC.82.014319 PACS number(s): 21.65.Cd, 21.60.−n, 21.30.−x, 24.10.Cn

I. INTRODUCTION

The investigation of isospin-asymmetric nuclear matter is
receiving a lot of attention because the exploration of nuclear
systems outside the valley of stable nuclei are of high interest
for astrophysical and nuclear-structure studies. In the field of
astrophysics, these investigations are important for the physics
of supernova explosions [1] and neutron stars [2–4], whereas in
the field of nuclear structure they are of interest in the study of
neutron-rich nuclei [5,6]. The new generation of radioactive-
beam facilities, for example, the future GSI facility FAIR in
Germany or SPIRAL2 at GANIL in France, facilitates this
kind of nuclear-structure studies. Off-shell effects are crucial
to describe the data obtained from the collisions occurring in
these radioactive-beam experiments.

The theoretical models that are used to make predictions on
the equation of state (EoS) of nuclear matter can roughly be di-
vided in the following three classes: phenomenological density
functionals, effective field theory (EFT) approaches, and ab
initio approaches. Phenomenological density functionals are
based on effective density-dependent interactions with usually
between six and fifteen parameters. The EFT approaches lead
to a more systematic expansion of the EoS in powers of the
Fermi momentum kF , respectively the density, with a small
number of free parameters. The parameters of these models
are typically adjusted to reproduce the properties of normal
nuclei. Therefore, extrapolations outside the valley of stable
nuclei must be considered with some scepticism.

Ab initio approaches, such as the Brueckner-Hartree-
Fock (BHF) and the Dirac-Brueckner-Hartree-Fock (DBHF)
approaches, are based on high-precision free-space nucleon-
nucleon interactions and the nuclear many-body problem is
treated microscopically. These approaches are more ambitious,
because the predictions for the nuclear EoS are essentially
parameter free. Therefore, they also have a higher predictive
power for exotic nuclear systems.

Although nonrelativistic ab initio calculations were able to
describe the nuclear saturation mechanism qualitatively, they
failed quantitatively. Three-body forces were included in these
nonrelativistic microscopic calculations to fit the empirical
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saturation point of symmetric nuclear matter as well as the
properties of light nuclei. A major breakthrough was achieved
when the first relativistic DBHF calculations were performed
[7–9]. They could describe the saturation properties of nuclear
matter without any need to introduce a three-nucleon force. In
fact, it has been argued that the three-nucleon forces required
in nonrelativistic calculations have to be introduced to simulate
the change of the Dirac spinors in the nuclear medium, which
is contained in relativistic calculations [10].

Beside this success of predicting the empirical saturation
point, also the strength of the spin-orbit term in the single-
particle spectrum of finite nuclei and the momentum depen-
dence of the optical potential for nucleon-nucleus scattering
[11,12] were considered as fingerprints of relativistic effects
in nuclear-structure physics at low energies.

However, relativistic microscopic DBHF investigations of
isospin-asymmetric nuclear matter are rather rare [13–17].
Furthermore, all these studies are restricted to the on-shell
behavior of nucleon properties in contrast to some microscopic
nonrelativistic investigations, which do include the study of
off-shell behavior of these properties in isospin-asymmetric
nuclear matter [18,19]. Only in isospin-symmetric nuclear
matter is some attention paid to off-shell behavior in the
framework of relativistic microscopic studies [21,22]. This
means that in microscopic relativistic frameworks, the off-shell
behavior of nucleon properties in isospin-asymmetric nuclear
matter has not been investigated so far.

In this work, we describe the off-shell behavior of nu-
cleon properties in isospin-asymmetric nuclear matter in
the relativistic DBHF approach using the Bonn A potential
and its bare NN matrix elements V [23]. Furthermore, the
optimal representation scheme for the T matrix, the subtracted
T -matrix representation, is applied. In this framework, the
dependence of the off-shell behavior of nucleon properties
on the nuclear asymmetry is explored. Properties considered
are the optical potential, spectral functions, single-particle
energies, and masses. Our predictions are compared to those of
nonrelativistic calculations. Quantities of special interest are
the k-mass and the E-mass, because a rigorous distinction
between these two masses can only be obtained from the
knowledge of the off-shell behavior of the optical potential.

The plan of this article is as follows. The relativis-
tic DBHF approach is discussed in Sec. II. Furthermore,
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Sec. III is devoted to the covariant representation of the in-
medium T matrix in connection with the nucleon self-energy
components depending on energy and momentum. The results
are presented and discussed in Sec. IV. Finally, we end with a
summary and a conclusion in Sec. V.

II. DBHF APPROACH

In this section, the relativistic Brueckner approach is
discussed. The approach is roughly based on the ones in
Refs. [16,17], with the exception of some modifications to
separate the momentum and energy dependence. First, a
general overview is given, followed by a discussion of the
modifications.

In the relativistic Brueckner approach, the in-medium
interaction of the nucleons is treated in the ladder approxi-
mation of the relativistic Bethe-Salpeter (BS) equation:

T = V + i

∫
V QGGT, (1)

where T denotes the T matrix, V is the bare nucleon-nucleon
interaction, and Q is the Pauli operator. The Green’s function
G describes the propagation of dressed nucleons in nuclear
matter. Furthermore, it fulfills the Dyson equation:

G = G0 + G0�G, (2)

where G0 is the free nucleon propagator. The self-energy � in
the Hartree-Fock (HF) approximation is given by

� = −i

∫
F

(T r[GT ] − GT ). (3)

The coupled set of Eqs. (1)–(3) presents a self-consistency
problem and has to be iterated until convergence is reached.

To solve the self-consistency problem, some approxima-
tions have to be made in the iteration procedure. The first one
is the quasiparticle approximation; that is, the imaginary part
of the self-energy Im� is neglected. In addition, the “reference
spectrum approximation” [24] is applied; that is, the effective
mass of the nucleon is assumed to be entirely density depen-
dent (k = |k| = kF ). Furthermore, the two-particle propagator
iGG in the BS equation is replaced by the Thompson prop-
agator to reduce the four-dimensional BS integral equation,
Eq. (1), to the three-dimensional Thompson equation. After a
partial wave projection onto the |JMLS〉 states, this Thomas
equation reduces to a set of one-dimensional integral equations
over the relative momentum. To achieve this reduction to the
one-dimensional integral equations, the Pauli operator Q is
replaced by an angle-averaged Pauli operator Q [8]. For more
details, we refer to [16,17].

At the end of the iteration procedure, we keep the explicit
momentum and energy dependence in contrast to Refs. [16,17],
in which the starting energy is replaced by its on-shell value.
In this way, one obtains the nucleon self-energy

�(k, ω) = �s(k, ω) − γ0�o(k, ω) + γ · k�v(k, ω),

(4)

as a function of the absolute momentum k = |k| and energy ω.
Apart from a real part, these self-energy components contain
an imaginary part, which also can be calculated at the end of

the iteration procedure. These components of the self-energy
are easily determined by taking the respective traces [8,25]

�s = 1

4
tr[�], �o = −1

4
tr[γ0 �], �v = −1

4|k|2 tr[γ · k �].

(5)

The other quantities, such as the effective Dirac mass, single-
particle energy, and the optical potential, can be obtained from
these self-energy components.

III. COVARIANT REPRESENTATION AND
THE SELF-ENERGY COMPONENTS

Because the T -matrix elements are determined in the two-
particle c.m. frame, a representation with covariant operators
and Lorentz invariant amplitudes in Dirac space is the most
convenient way to Lorentz transform the positive-energy-
projected T matrix from the two-particle c.m. frame into
the nuclear-matter rest frame [8]. The restriction to positive-
energy states causes ambiguities, because pseudoscalar (ps)
and pseudovector (pv) components cannot uniquely be disen-
tangled in on-shell scattering. Therefore, some freedom in the
choice of this representation exists. The different choices of
representations such as the ps representation and the complete
pv representation are elaborately discussed in Refs. [16,17,26].
Only the complete pv representation succeeds in reproducing
the HF nucleon self-energy, applying pv mesons such as the
π and η meson as bare interaction. However, this complete pv
representation fails to reproduce the HF nucleon self-energy
if meson exchange potentials are applied other than that of pv
mesons. In contrast, the ps representation reproduces the HF
self-energy for these other mesons. Because the influence of
the pv mesons, in particular that of the π meson, is dominantly
given by the single-meson exchange, this ambiguity can be
minimized by separating the single-π and -η exchange from
the full T matrix. The contributions stemming from the
single-π and -η exchange are then given in the complete pv
representation, whereas for the remaining part of the T matrix,

TSub = T − Vπ,η, (6)

the ps representation is chosen. In this case, the final nuclear-
matter bulk properties depend only moderately on the repre-
sentation scheme, as discussed in Ref. [26]. This representation
scheme, using the ps representation as well as the complete
pv representation, is the optimal representation scheme so far
and is called the subtracted-T -matrix representation scheme
[16,17,26].

For the ps representation, the following set of five linearly
independent covariants,

S = 11 ⊗ 12, (7)

V = (γ µ)1 ⊗ (γµ)2, (8)

T = (σµν)1 ⊗ (σµν)2, (9)

A = (γ5)1(γ µ)1 ⊗ (γ5)2(γµ)2, (10)

P = (γ5)1 ⊗ (γ5)2, (11)

are used in isospin-symmetric nuclear matter. The inter-
changed invariants are defined as [27] S̃ = S̃S, Ṽ = S̃V,
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T̃ = S̃T, Ã = S̃A, and P̃ = S̃P with operator S̃ exchanging
particles 1 and 2, that is, S̃u(1)σ u(2)τ = u(1)τ u(2)σ . In
isospin-asymmetric nuclear, one needs an additional covariant
for the np channel. It is defined as

I = 11 ⊗ (γ · k)2 + (γ · k)1 ⊗ 12. (12)

Taking the single nucleon momentum k = (0, 0, |k|) along the
z axis, then we have for the self-energy components in the ps
representation scheme

�ij
s (|k|, ω) = 1

4

∫ kFj

0

d3q
(2π )3

m∗
j

E∗
q,j

[
4F

ij

S − F
ij

S̃
− 4F

ij

Ṽ
− 12F

ij

T̃

+ 4F
ij

Ã
− F

ij

P̃
+ 4(1 − δij )

k∗µq∗
µ − m∗2

j

m∗
j

F
ij

I

]
,

(13)

�ij
o (|k|, ω) = 1

4

∫ kFj

0

d3q
(2π )3

[
−4F

ij

V + F
ij

S̃
− 2F

ij

Ṽ
− 2F

ij

Ã

−F
ij

P̃
+ 4(1 − δij )m∗

j

E∗
k,i − E∗

q,j

E∗
q,j

F
ij

I

]
, (14)

and

�ij
v (|k|, ω) = 1

4

∫ kFj

0

d3q
(2π )3

q · k
|k|2E∗

q,j

[
−4F

ij

V + F
ij

S̃
− 2F

ij

Ṽ

−2F
ij

Ã
− F

ij

P̃
− 4(1 − δij )m∗

j

|k| − qz

qz

F
ij

I

]
,

(15)

where k
∗µ

i = (E∗
k,i , 0, 0, |k|). A relation exists between our

definition of the energy ω and E∗
k,i = ω + �i

o(|k|, ω) + M .
Furthermore, the Lorentz invariant amplitudes F have a
dependence on the absolute momentum |k| as well as the
energy ω.

In the complete pv representation applied to the contribu-
tions stemming from the single-π and -η exchange, one first
applies the identities

1
2 (T + T̃) = S + S̃ + P + P̃, (16)

V + Ṽ = S + S̃ − P − P̃, (17)

to replace tensor and vector covariants. Next, the ps covariant
P = (γ5)1 ⊗ (γ5)2 in the T -matrix representation is replaced
by the pv covariant,

PV = (γ5γµ)1p
µ

m∗
i + m∗

j

⊗ (γ5γµ)2p
µ

m∗
i + m∗

j

, (18)

with pµ = kµ − qµ. The contributions to the self-energy
components are then given by

�ij
s (|k|, ω) = 1

4

∫ kFj

0

d3q
(2π )3

m∗
j

E∗
q,j

[
4g

ij

S − g
ij

S̃
+ 4g

ij

A

+ m∗2
j + m∗2

i − 2k∗µq∗
µ

(m∗
i + m∗

j )2
g

ij

P̃V

+ 4(1 − δij )
k∗µq∗

µ − m∗2
j

m∗
j

g
ij

I

]
, (19)

�ij
o (|k|, ω) = +1

4

∫ kFj

0

d3q
(2π )3

[
g

ij

S̃
− 2g

ij

A

− 2E∗
k,i

(
m∗2

j − k∗µq∗
µ

) − E∗
q,j

(
m∗2

j − m∗2
i

)
E∗

q,j

(
m∗

i + m∗
j

)2 g
ij

P̃V

+ 4(1 − δij )m∗
j

E∗
k,i − E∗

q,j

E∗
q,j

g
ij

I

]
, (20)

and

�ij
v (|k|, ω) = 1

4

∫ kFj

0

d3q
(2π )3

q · k
|k|2E∗

q,j

[
g

ij

S̃
− 2g

ij

A

− 2k∗
z

(
m∗2

j − k∗µq∗
µ

) − qz

(
m∗2

j − m∗2
i

)
qz

(
m∗

i + m∗
j

)2 g
ij

P̃V

− 4(1 − δij )m∗
j

|k| − qz

qz

g
ij

I

]
, (21)

where the new amplitudes g are defined as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

g
ij

S

g
ij

S̃

g
ij

A

g
ij

PV

g
ij

P̃V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 1

4

⎛⎜⎜⎜⎜⎜⎜⎜⎝

4 −2 −8 0 −2

0 −6 −16 0 2

0 −2 0 0 −2

0 2 −8 4 2

0 6 −16 0 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

F
ij

S

F
ij

V

F
ij

T

F
ij

P

F
ij

A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(22)

and g
ij

I = F
ij

I .
Finally, the total neutron and proton self-energies including

all channels can be written as

�n(|k|, ω) = �nn(|k|, ω) + �np(|k|, ω);

�p(|k|, ω) = �pp(|k|, ω) + �pn(k, ω), (23)

respectively.

IV. RESULTS

In the following, we present the results for the off-
shell properties of isospin-symmetric and asymmetric nuclear
matter obtained from the DBHF approach based on projection
techniques. The applied projection is the subtracted T -matrix
representation scheme. Furthermore, the nucleon-nucleon
potential used is Bonn A. The presented results are obtained
from calculations performed at a density of nB = 0.181 fm−3

in isospin-symmetric nuclear matter and with the asymmetry
parameter of β = (nn − np)/nB = 0.5 in isospin-asymmetric
nuclear matter.

A. Self-energy

The energy and momentum dependencies of the imaginary
part of the self-energy components at the saturation density of
our EoS in isospin-symmetric nuclear matter are depicted in
Fig. 1.
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FIG. 1. (Color online) The imaginary part of the self-energy com-
ponents calculated in isospin-symmetric nuclear matter at a density
of nB = 0.181 fm−3. Left: energy dependence; right: momentum
dependence.

Because only particle-particle ladders are included in
the solution of the BS equation (1), which defines the T

matrix, these imaginary self-energy components are dif-
ferent from zero for energies above the Fermi energy of
−26.5 MeV. For energies just above this threshold, the
imaginary part of the scalar component �s as well as of the
timelike vector component �0 are negative, which implies that
they tend to compensate each other in the Dirac equation for
the upper component. At larger values for the energy ω, the
difference �s − �0 essentially remains constant. This is very
different from results obtained within a simple σω model [28],
indicating that the iterated π exchange terms are dominating
the two-particle–one-hole contributions to the self-energy
when a realistic interaction model is used. The imaginary part
of the spacelike vector component �v is rather small.

An example for energy and momentum dependence of the
real part of the nucleon self-energy is shown in Fig. 2.
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FIG. 2. (Color online) The real part of the self-energy components
calculated in isospin-symmetric nuclear matter at density of nB =
0.181 fm−3. Left: energy dependence; right: momentum dependence.

In the energy dependence, a small enhancement appears just
above the Fermi energy of −26.5 MeV, where the imaginary
self-energy components turn nonzero. However, the energy
dependence of the real part of nucleon self-energy is still rather
weak. The moment dependence shows a very smooth behavior.
The degree of sensitivity of the self-energy components on
energy ω and momentum k shown in Fig. 2 is relevant for the
“reference spectrum approximation” used in the iteration pro-
cedure, because strong momentum and energy dependencies
question the validity of the reference spectrum approximation.
However, the energy and momentum dependencies of the
self-energy components can be characterized as rather weak,
as can be seen in Fig. 2. One must keep in mind, however, that
Fig. 2 shows two quantities, �s and �0, which are big and
compensate for each other to a large extent when inserted into
the Dirac equation. Therefore, a weak dependence of these
components can get magnified in solving the Dirac equation.
Therefore, in the following, we use these momentum- and
energy-dependent components but discuss combinations of
these components that are relevant for nuclear physics at low
energies.

B. Optical potentials and spectral functions

An interesting quantity is the Schrödinger equivalent optical
potential. This potential is obtained when the Dirac equation
is reduced to an equivalent Schrödinger equation for the large
component of the Dirac spinor. Therefore, it can be identified
with the nonrelativistic optical potential for a nucleon inside
the nuclear medium. This potential,

U (|k|, ω) = �s(|k|, ω) − 1

M
kµ�µ(|k|, ω)

+ �2
s (|k|, ω) − �2

µ(|k|, ω)

2M
, (24)

can be obtained from the relativistic self-energy components in
Eq. (4). Of special interest is the on-shell value of this optical
potential, which means that we consider the case ω = ε(|k|)
with the single-particle energy defined in (27). Results for the
real part of this optical potential are displayed in Fig. 3 (solid
line).

What determines the momentum dependence of this op-
tical potential? If one ignores the energy and momentum
dependencies of relativistic self-energy components using, for
example (k = |k| = kF and ω = εF , one obtains a momentum
dependence as presented by the dash-dotted line in Fig. 3.
This momentum dependence is a relativistic feature because
it originates from the reduction of the Dirac equation to the
nonrelativistic Schrödinger equation. That is why we have
labeled this curve as the Dirac dependence.

If in a next step the momentum dependence of the
relativistic components of the self-energy is taken into account
(keeping ω = εF ), the dashed line is obtained. We see that the
inclusion of this nonlocality in space, which mainly originates
from the Fock exchange term in the self-energy, tends to
enhance the momentum dependence of the optical potential
(see dashed line, labeled “Dirac and momentum dependence”).

The effects of the momentum dependence are partly
compensated if the energy dependence of the self-energy is
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FIG. 3. (Color online) The real part of the on-shell optical
potential as defined in Eq. (24) for ω = ε(|k|) for symmetric
nuclear matter at fixed nuclear density nB = 0.181 fm−3. The various
approximations are discussed in the text.

also considered. The full result is rather close to the Dirac-only
approach, in particular close to the Fermi surface.

The energy dependencies of the neutron and proton optical
potentials in isospin-asymmetric nuclear matter with an asym-
metry parameter of β = 0.5 are plotted in Fig. 4 for various
values of the momentum k.

The lower panels show the corresponding imaginary parts
of these potentials. These imaginary parts are identical to zero
for energies ω less than the corresponding Fermi energy, that is,
ω < εF . At energies just above the Fermi energy, they initially
decrease with a steep negative slope and then seem to stabilize.
This stabilization is identical to the example of symmetric
nuclear matter, as we discussed before in connection with
Fig. 1. It should be recalled, however, that at smaller energy,
the main contribution originates from the imaginary part of
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FIG. 4. (Color online) The energy dependence of the optical
potential for neutrons (left panels) and protons (right panels) in
isospin-asymmetric nuclear matter with an asymmetry parameter of
β = 0.5 at fixed nuclear density nB = 0.181 fm−3. The real part
(upper panels) and the imaginary part (lower panels) of the nucleon
optical potential are plotted for various momenta.

�s , whereas at energies ω > 200 MeV, the vector component
�0 tends to dominate. The momentum dependence of the
imaginary part is rather weak.

The real part of the optical potential gets more attractive
with increasing energy until one reaches values of the energy
at which the imaginary part is different from zero. The real
part then turns less attractive at higher energies. Therefore,
the energy dependence of the real part of the optical potential
displays a minimum at energies just above the Fermi energies,
as can be seen in the upper panels of Fig. 4. Such a minimum
around the Fermi energy is also found in the self-energy from
nonrelativistic BHF calculations [29]. Another observation
made from Fig. 4 concerns the momentum dependence. It
is found that the real part of optical potential becomes less
attractive with increasing momenta.

In isospin-asymmetric nuclear matter, the properties of
neutrons and protons differ from each other, as one can see by
comparing the panels on the left and right sides of Fig. 4. The
real part of the proton optical potential is more attractive than
that of the neutron optical potential in neutron-rich matter.
Also, the absolute values for the imaginary part are larger
for protons than for the neutrons. These results are easy to
understand because the proton-neutron interaction is stronger
than the neutron-neutron or proton-proton interactions.
Therefore, the protons are exposed to a stronger mean field,
which is caused mainly by the interaction with the large
number of neutrons around.

The real and imaginary parts of the optical potential can
also be used to determine the spectral function for the particle
strength from its nonrelativistic definition,

Sp(|k|, ω)

= − 1

π

ImU (|k|, ω)

[ω − k2/2M − ReU (|k|, ω)]2 + [ImU (|k|, ω)]2
,

(25)

for ω > εF . It represents the probability that a nucleon with
momentum k = |k| and energy ω can be added to the ground
state. Figure 5 displays the spectral functions for protons
and neutrons in isospin-asymmetric nuclear matter with an
asymmetry parameter of β = 0.5 at fixed nuclear density of
nB = 0.181 fm−3.

The upper part of this figure shows the particle strength
for momenta below the corresponding Fermi momenta for
protons and neutrons. In the independent-particle model,
states with these momenta would be completely occupied and
the particle strength is identical to zero. Because, however,
the Brueckner G matrix accounts for particle-particle ladders,
the BHF and also the DBHF self-energies include the effects
of two-particle–one-hole terms, which lead to a nonvanishing
imaginary part for ω > εF . Because of these two-particle–
one-hole components, we observe a nonvanishing spectral
particle strength for momenta below kF . From the upper part
of Fig. 5, we can see that the larger values of the imaginary
part of the proton optical potential displayed in Fig. 4 lead
to larger values for the proton spectral functions than for the
neutron spectral functions. This has also been observed in
nonrelativistic calculations of asymmetric nuclear matter [19].
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FIG. 5. (Color online) Particle spectral functions for nucleons
with k ∼ 0.5 kFi in the upper part and k ∼1.5 kFi in the lower
panel as a function of energy ω in isospin-asymmetric nuclear matter
with an asymmetry parameter of β = 0.5 at fixed nuclear density of
nB = 0.181 fm−3.

This nonvanishing particle strength for momenta below
kF should be accompanied by a depletion of the occupation
number below 1 for these states. Note, however, that the
BHF approach and the DBHF approximation are not number
conserving. Because they do not account for hole-hole ladder
terms, one does not obtain a spectral distribution for energies
ω < εF . The depletion of the occupation numbers for the hole
states (k < kF ), however, can be determined from the single-
particle strength at the quasiparticle poles of the single-particle
Green’s function [20]:

z(k = |k|) =
{

1 −
(

∂ReU (|k|, ω)

∂ω

)
ω=ε(|k|)

}−1

. (26)

Because the energy dependence of the real part of the optical
potential in neutron-rich matter is larger for the protons than
for the neutrons (see Fig. 4), we obtain larger depletions for the
protons than for the neutrons. While the neutron occupation
number varies between 0.95 for k ≈ 0.5kFn and 0.87 for
k ≈ kFn, the corresponding numbers for the proton are 0.87
(k ≈ 0.5kFp) and 0.8 (k ≈ kFp). The stronger proton-neutron
interaction yields a larger depletion for the protons than for
the neutrons in neutron-rich matter.

The lower panel of Fig. 5 shows the particle-strength
distribution for momenta larger than the Fermi momentum.
The imaginary part of the self-energy leads to a broad
distribution of the single-particle strength.

C. Single-particle energy

The relativistic expression of the single-particle energy is
given by

ε(|k|, ω) = −�o(|k|, ω) + [1 + �v(|k|, ω)]

×
√

k2 +
(

M + �s(|k|, ω)

1 + �v(|k|, ω)

)2

− M. (27)

0 100 200
ω [MeV]

-80

-60

-40

-20

0

20

S
in

gl
e-

pa
rt

ic
le

 e
ne

rg
y 

[M
eV

]

sym. case
neutron
proton

0 1 2 3 4

k [fm
-1

]

-100

0

100

200

300

S
in

gl
e-

pa
rt

ic
le

 e
ne

rg
y 

[M
eV

]

sym. case
neutron
proton

FIG. 6. (Color online) Energy and momentum dependence of
the single-particle energy. The neutron (dashed line) and proton
(dash-dotted line) single-particle energies are depicted for isospin-
asymmetric nuclear matter with an asymmetry parameter of β = 0.5
at a fixed nuclear density of nB = 0.181 fm−3. The nucleon single-
particle energy in isospin-symmetric nuclear matter (solid line) is
also given. Left: energy dependence at k = kFi . Right: momentum
dependence at ω = εFi .

Energy and momentum dependence of the single-particle
energy in isospin-symmetric and -asymmetric nuclear are
plotted in Fig. 6.

The energy dependence of the single-particle potential in
the left panel displays a minimum at energies just above the
Fermi energies, which is related to the small enhancement in
the real part of the self-energy. In the right panel, a rough
quadratic dependence of the single-particle energy on the
momentum k is found. Such a quadratic dependence is often
assumed in nonrelativistic calculations [29],

ε ≈ k2

2M∗ + C. (28)

Furthermore, in Fig. 6 the neutron has a higher single-particle
energy than the proton because of its less attractive potential
in neutron-rich matter.

D. Effective mass

A common concept in the field of nuclear physics is the
effective mass. However, the expression of an effective nucleon
mass has been used in various connections in many-body
physics and to denote different quantities. This includes the
nonrelativistic effective mass m∗

NR and the relativistic Dirac
mass m∗

D .
The Dirac mass is a genuine relativistic quantity and can

only be obtained from relativistic many-body approaches. The
effective Dirac mass accounts for medium effects through the
scalar part of the self-energy. It is given by

m∗
D(|k|, ω) = M + Re�s(|k|, ω)

1 + Re�v(|k|, ω)
. (29)

The energy and momentum dependency of this Dirac mass are
plotted in Fig. 7.
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FIG. 7. (Color online) Energy and momentum dependence of the
Dirac mass. The neutron (dashed line) and proton (dash-dotted line)
Dirac masses are depicted for isospin-asymmetric nuclear matter with
asymmetry parameter β = 0.5 at a fixed nuclear density of nB =
0.181 fm−3. The nucleon Dirac mass in isospin-symmetric nuclear
matter (solid line) is also given. Left: energy dependence at k = kFi .
Right: momentum dependence at ω = εFi .

The maximum in the Dirac mass just above the Fermi
energy in the left panel in Fig. 7 originates from the small
enhancement in the scalar self-energy. In the right panel,
the smooth behavior of the momentum dependence can be
observed. In addition, it can be observed that the effective
Dirac mass of the proton is larger than that of the neutron.
This result of the larger proton Dirac mass in neutron-rich
matter has been mentioned in previous DBHF calculations
based on projection techniques [14,16,17,30–32].

In contrast, the nonrelativistic mass is the result of a
quadratic parametrization of the single-particle spectrum
mentioned in Sec. IV C [see Eq. (28)]. It is a measure of the
nonlocality of the single-particle potential U . Therefore, the
effective nonrelativistic mass is given by

m∗
NR[|k|, ω = ε(|k|, ω)]

=
[

1
M

+ 1
|k|

∂U [|k|, ω = ε(|k|, ω)]

∂|k|
]−1

. (30)

The nonlocality of U can be due to nonlocalities in space,
which results in a momentum dependence, or in time, which
results in an energy dependence. To separate both effects, these
two types of nonlocalities have been characterized by the k-
mass,

m∗
k(|k|, ω) =

[
1
M

+ 1
|k|

∂U (|k|, ω)

∂|k|
]−1

, (31)

and by the E-mass,

m∗
E(|k|, ω) = M

[
1 − ∂U (|k|, ω)

∂ω

]
, (32)

respectively. These masses can be determined from both, as
well relativistic as nonrelativistic approaches.

In Fig. 8, the presented masses at the on-shell point, that
is, ω = ε(|k|, ω), are obtained from our relativistic DBHF
calculation using Eq. (24).
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FIG. 8. (Color online) The effective nonrelativistic mass (solid
lines), the effective k-mass (dashed lines), and the effective E-mass
(dash-dotted lines) at the on-shell point, that is, ω = ε(|k|, ω), for neu-
trons and protons as obtained from relativistic DBHF calculations for
isospin-asymmetric nuclear matter at a density of nB = 0.181 fm−3

and a proton abundance of 25 % (β = 0.5).

The pronounced peak of the nonrelativistic mass slightly
above kF , as is also seen in nonrelativistic Green’s function cal-
culations [33] and BHF calculations [19,34,35], is reproduced.
This peak structure of the nonrelativistic mass is the result of
subtle cancellation effects of the scalar and vector self-energy
components in the relativistic framework. Therefore, a very
precise method is required to determine variations of the
self-energy, because they are small compared to their absolute
scale. The applied projection techniques are the adequate tool
for this purpose, whereas the extraction of mean self-energy
components from a fit to the single-particle potential [15] is
not able to resolve such a structure at all.

Another issue concerns isospin-asymmetric properties, that
is, the proton-neutron mass splitting. Although the Dirac
mass derived from the DBHF approach has a proton-neutron
mass splitting of m∗

D,n < m∗
D,p as can be seen from Fig. 7,

the nonrelativistic mass derived from the DBHF approach
shows the opposite behavior, that is, m∗

NR,n > m∗
NR,p, which

is in agreement with the results from nonrelativistic BHF
calculations [18,19]. This has been investigated earlier in the
works of Refs. [31,32]. However, the k-mass and E-mass
from these relativistic approaches are not considered in these
works, because the determination of these two masses requires
the knowledge of the off-shell behavior of the single-particle
potential U .

These k-masses and E-masses obtained from our rela-
tivistic DBHF calculations are plotted in Fig. 8 for isospin-
asymmetric nuclear matter at a density of nB = 0.181 fm−3

and an asymmetry parameter of β = 0.5. The effective k-
mass, which corresponds to the nonlocalities in space of
single-particle potential, are mainly generated by exchange
Fock terms. It can be observed that the resulting k-mass is a
smooth function of the momentum, which is also in agreement
with results from nonrelativistic calculations [29]. Another
observation is that the effective k-mass for the protons is
significantly below the corresponding value for the neutrons
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at all momenta. This result also is in agreement with results
obtained from nonrelativistic BHF calculations [19,35].

The effective E-mass represents the nonlocality in time.
This nonlocality in time is generated by Brueckner ladder
correlations due to the scattering to intermediate states, which
are off-shell. These are mainly short-range correlations that
generate a strong momentum dependence with a characteristic
enhancement of the E-mass slightly above the Fermi surface,
as can be observed in Fig. 8. The maximum value is even higher
than the bare mass M . This peak structure is also observed
in the case of nonrelativistic calculations [19,29,34–36].
Therefore, the enhancement of the nonrelativistic mass is due
to the effective E-mass. Because the effective E-mass is not
strong enough to compensate for the effects of the k-mass, the
effective nonrelativistic mass for neutrons remains larger than
the corresponding one for protons.

V. SUMMARY AND CONCLUSION

In this work, we describe the off-shell behavior of nu-
cleon properties in isospin-asymmetric nuclear matter in the
relativistic DBHF approach based on projection techniques
using the Bonn A potential. In addition, the optimal repre-
sentation scheme for the T matrix, the subtracted T -matrix
representation, is applied. At the end of the iteration procedure,
we keep not only the momentum dependence but also the
explicit energy dependence of the relativistic components of
the self-energy for our investigation of the off-shell behavior
of nucleon properties in isospin-asymmetric nuclear matter.
These off-shell effects are relevant for reactions occurring in
radioactive beam experiments.

An issue considered is the off-shell behavior of the optical
potential and the related spectral function. Because the BHF
approximation does not account for hole-hole ladder terms,
the imaginary part of the relativistic self-energy components
are identical to zero for energies below the Fermi energy.
As a consequence, also the imaginary part of the optical
potential and spectral function are identical to zero in this
energy range. However, these quantities yield non-negligible
values above the Fermi energy. The real part of the optical
potential yields nonzero values in the entire energy range
considered and displays a minimum at energies just above
the Fermi energies. Furthermore, the real and the imaginary
parts of the proton optical potential are much stronger than
those of the neutron optical potential in neutron-rich matter.
This is due to the stronger proton-neutron as compared to the
neutron-neutron and proton-proton interactions. These larger

values of the imaginary part of the proton optical potential
also lead to larger values for the particle spectral functions of
hole states and the corresponding depletions of the occupation
numbers for the hole states. This behavior has also be observed
in nonrelativistic BHF calculations [19].

Another issue is the behavior of the nonrelativistic mass,
which can be determined from relativistic as well as non-
relativistic approaches. The pronounced peak of the on-shell
nonrelativistic mass slightly above kF, which is typical for
nonrelativistic calculations [19,34,35], is reproduced in our
relativistic calculation. This nonrelativistic mass is a measure
of the nonlocality in space and in time. Nonlocalities in space,
which result in a momentum dependence, are characterized
by the k-mass, whereas nonlocalities in time, which result
in an energy dependence, are characterized by the E-mass.
Therefore, even the determination of the on-shell values of
these quantities require the knowledge of the off-shell behavior
of the single-particle potential. The effective k-mass shows a
smooth behavior, whereas the E-mass exhibits a large peak
slightly above the Fermi surface. Therefore, the observed
strong enhancement of the nonrelativistic mass is due to
the behavior of the E-mass. These predictions of the k and
E-masses are in agreement with results from nonrelativistic
calculations [29].

An observation concerning the isospin effects of these quan-
tities is that the effective k-mass for the protons is significantly
below the corresponding value for the neutrons. Because the
effective E-mass is not strong enough to compensate for
the effects of the k-mass, the effective nonrelativistic mass
for neutrons remains larger than the corresponding one for
protons. This result for the nonrelativistic mass splitting, which
is opposite to the Dirac mass splitting of m∗

D,n < m∗
D,p [31,32],

is in agreement with the results from nonrelativistic BHF
calculations [18,19].

Therefore, in the framework of the relativistic DBHF
approach, we are able to obtain results for the off-shell
behavior of nucleon properties in isospin-symmetric as well
as isospin-asymmetric nuclear matter. These results for the
nucleon properties such as nucleon optical potentials, spectral
functions, single-particle energies, and effective masses can
be applied in the description of nucleon-nucleon collisions
occurring in radioactive beam experiments.
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[13] S. Ulrych and H. Müther, Phys. Rev. C 56, 1788 (1997).
[14] F. de Jong and H. Lenske, Phys. Rev. C 58, 890 (1998).
[15] D. Alonso and F. Sammarruca, Phys. Rev. C 67, 054301 (2003).
[16] E. N. E. van Dalen, C. Fuchs, and A. Faessler, Nucl. Phys. A

744, 227 (2004).
[17] E. N. E. van Dalen, C. Fuchs, and A. Faessler, Eur. Phys. J. A

31, 29 (2007).
[18] W. Zuo, I. Bombaci, and U. Lombardo, Phys. Rev. C 60, 024605

(1999).
[19] K. S. A. Hassaneen and H. Müther, Phys. Rev. C 70, 054308
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