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The low-momentum interaction Vlow-k derived from realistic models of the nucleon-nucleon interaction is
presented in a separable form. This separable force is supported by a contact interaction to achieve the saturation
properties of symmetric nuclear matter. Bulk properties of nuclear matter and finite nuclei are investigated
for the separable form of Vlow-k and two different parametrizations of the contact term. The accuracy of the
separable force in Hartree-Fock calculations with respect to the original interaction Vlow-k is discussed. For a
cutoff parameter � of 2 fm−1, a representation by a rank-2 separable force yields sufficient accuracy, while higher
ranks are required for larger cutoff parameters. The resulting separable force is parametrized in a simple way to
allow for an easy application in other nuclear structure calculations.
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I. INTRODUCTION

The evaluation of bulk properties of finite nuclei and nuclear
matter that starts from realistic models of the nucleon-nucleon
(NN ) interaction is a major challenge in modern nuclear
physics. Since the exact form of the interaction resulted from
the underlying theory of the strong interaction remains un-
known, one usually has to deal with realistic models developed
so as to fit experimental data for free NN scattering up to the
threshold for pion production and properties of the deuteron
[1–4]. It was performed by obtaining a best fit for a large
number of adjustable parameters by using several thousands of
experimental points so that there existed several quite different
potential models, which were commonly used. A general
feature of such realistic interactions is strong short-range
and tensor components, which cannot be handled within the
standard perturbation theory. Different approaches have been
suggested to overcome this problem: the Bethe-Brueckner-
Goldstone expansion [5], the correlated basis functions [6],
the quantum Monte Carlo [7], and the self-consistent Green’s
function theory (see, e.g., Ref. [8]). These methods were
successfully applied to describe bulk properties of nuclear
matter [9], pairing gaps of nucleons [10], weak response [11],
and shear viscosity of nuclear matter [12]. However, these
approaches remain very complex to be applied directly to a
description of finite nuclei, as well as inhomogeneous nuclear
matter, also known as the pasta phase, which exists in the inner
crust of neutron stars. Alternatively, they have been combined
either to phenomenological approaches through a local density
approximation [13], or as an input for a density-functional
approach [14]. In these approaches, adjustable parameters
need, however, to be determined.

In addition to the realistic interactions, various phenomeno-
logical models have been developed, such as the Skyrme
interaction [15], and have been adjusted to describe the
experimental data for the ground states of finite nuclei and
the empirical saturation point of symmetric nuclear matter.
A simple parametrization of such phenomenological forces

through the local single-particle (s.-p.) densities allows a sim-
ple solution of the Hartree-Fock (HF) equations [16]. Finally,
these models have been successfully used for predictions of
equations of state (EoS) of nuclear matter and description of
the pasta phase within the Wigner-Seitz cell approximation
[17]. In neutron stars, these models are extrapolated far from
the condition where it has been adjusted and might, in some
cases, become unstable [18]. The instabilities of these models
could, however, be corrected such as they reproduce the
features of a G matrix in nuclear matter [19].

An alternative method, which is based on realistic NN

interactions and allows us to perform HF calculations sim-
ilar to the phenomenological forces, is the low-momentum
interaction Vlow-k . The basic idea of Vlow-k is to separate
the predictions for correlations at low momenta, which are
constrained by the NN scattering matrix below the pion
threshold, from the high-momentum components, which may
strongly depend on the underlying model of realistic NN

interaction. By introducing a cutoff � in momentum space,
one separates the Hilbert space into a low-momentum and
a high-momentum part. The renormalization technique (see,
e.g., Refs. [20–24]) determines an effective Hamiltonian,
which must be diagonalized within the model space (below
the cutoff). With the cutoff in the range of � = 2 fm−1, Vlow-k
becomes model independent, and reproduces the deuteron
binding energy, the low-energy phase shifts, and the half-on-
shell T matrix with the same accuracy as the initial realistic
interaction. This model independence demonstrates that the
low-momentum physics does not depend on details of the
high-momentum dynamics.

In spite of its obvious advantages, Vlow-k potential still
remains a quite complicated object. On one hand, it is nonlocal
and, therefore, is represented as a matrix element in momentum
space for each partial-wave channel. This nonlocality increases
the computational time in HF iterations, and prevents the use
of Vlow-k if the number of nucleons is too large, such as in
the Wigner-Seitz cells present in the crust of neutron stars,
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for instance [17]. On the other hand, the renormalization
technique used to produce Vlow-k seems not to be trivial.
The resulting interaction is given as a matrix table, which
is not an easy-to-use form and prevents this potential from
being popular. A possible alternative is to find a separable
representation of Vlow-k , since it significantly simplifies a
many-body calculation [25,26]. Moreover, recent calculations
of triton-binding energies demonstrate Vlow-k can be very good
approximated by a low-rank separable force for low values of
the cutoff � [27]. We investigate the separability of Vlow-k by
using the diagonalization of the matrix in momentum space
for each partial-wave channel. It allows us to find a low-rank
separable form of Vlow-k , which can be used in HF calculations
of nuclear matter as well as finite nuclei.

The Vlow-k HF calculations demonstrate a monotonic
increase of the binding energy of symmetric nuclear matter as
a function of the nucleon density, thus, it cannot reproduce the
empirical saturation point [28,29]. Therefore, we supplement
Vlow-k by a simple density-dependent contact term, which
accounts for a three-body correlation. This contact term is
adjusted to reproduce the saturation property of symmetric
matter.

The paper is organized as follows. In Sec. II, we discuss
the model space technique used to produce Vlow-k and outline
the procedure to determine the separable representation. In
Sec. III, we sum up all results and suggest a simple fit for
the separable representation of Vlow-k as well as two different
parametrizations of the contact term, adjusted for the fitted
potential.

II. MODEL OF THE N N INTERACTION

The main idea of Vlow-k interaction is to disentangle the low-
momentum or long-range part of a realistic NN interaction,
which is fairly well described in terms of meson exchange,
from the high-momentum or short-range part, where quark
degrees of freedom are getting important. In other words,
one defines a model space, which accounts for the low-
momentum degrees of freedom and renormalizes the effective
Hamiltonian for this low-momentum regime to account for
the effects of the high-momentum components, which are
integrated out.

In practice, the Vlow-k interaction can be derived either
by using model space methods (such as Lee-Suzuki [21] or
Okubo [22]) or through a renormalization-group treatment
[20]. Both approaches are essentially equivalent and lead to
the same energy-independent potential [23]. In the following,
we will use the model space technique to disentangle these
parts based on the unitary model operator approach (UMOA).
This approach has frequently been described in the literature
[24,28,30]. Therefore, we will restrict the presentation only to
basic equations, which will define the nomenclature.

To determine the model space, the low-momentum sub-
space of Hilbert space, one defines a projection operator P̂ ,
which projects onto this model space. The complement of
the subspace will be defined by the projection operator Q̂,
in such a way that the whole space is covered by these two
operators. Thus, they satisfy the following relations P̂ + Q̂ =

1, P̂ 2 = P̂ , Q̂2 = Q̂, P̂ Q̂ = 0 = Q̂P̂ . The UMOA defines a
unitary transformation Û in such a way that the transformed
Hamiltonian does not couple the P̂ and Q̂ spaces, that is,

Q̂Û−1Ĥ Û P̂ = 0. (1)

Now, the effective two-body interaction of Hermitian type can
be determined in terms of unitary transformation Û as

Veff = Vlow-k = Û−1(ĥ0 − v̂12)Û − ĥ0, (2)

where v̂12 stands for the bare NN interaction. The operator ĥ0

denotes the one-body part of the two-body system and contains
the kinetic energy of the interacting particles. It is important
to notice that, in any case, ĥ0 commutes with the projection
operators P̂ and Q̂. As shown by Suzuki [24], the operator Û

is expressed as

Û = (1 + ω̂ − ω̂†)(1 + ω̂ω̂† + ω̂†ω̂)−1/2, (3)

where an operator ω̂ fulfills relations ω̂ = Q̂ω̂P̂ and ω̂2 =
ω̂†2 = 0. To evaluate the matrix elements of this operator ω̂,
one should first solve the two-body eigenvalue equation,

(ĥ0 + v̂12)|�k〉 = Ek|�k〉. (4)

From eigenstates |�k〉, we determine those eigenstates |�p〉,
which have the largest overlap with the P̂ space. Afterwards
the respective matrix elements of ω̂ and Û may be defined
in terms of P̂ (Q̂) eigenstates. This matrix element of Û can
then be used to determine the matrix elements of the effective
interaction Veff in P̂ space (for details, see Refs. [28,30]).
In this manner, one obtains the effective Hamiltonian Ĥeff =
ĥ0 + V̂eff . Diagonalizing it in the low-momentum model space
(P̂ space), one obtains eigenvalues, which are identical to
the diagonalization of the original Hamiltonian ĥ0 + V̂ in
the complete space. Moreover, the solution of the Lippmann-
Schwinger equation for NN scattering phase shifts, which use
Vlow-k with a cutoff � yields the same phase shifts as obtained
from original interaction v̂12 without a cutoff. If the underlying
interaction is a realistic interaction, fitted to reproduce the
experimental phase shifts below �, these phase shifts will also
be reproduced by Vlow-k .

If the cutoff � is chosen around � = 2 fm−1, the resulting
Vlow-k is found to be essentially model independent (i.e., is
independent of the underlying realistic interaction v̂12). In this
sense, Vlow-k is unique and, as it reproduces the NN scattering
phase shifts, it can also be regarded as a realistic interaction
as, for example, the CD-Bonn [1] or Argonne V18 [2]
potentials.

Originally, Vlow-k is nonlocal and is defined in terms of
matrix elements on a basis of NN states labeled by relative
momentum for pairs of nucleons. Thus, for each partial-wave
channel, there exists a matrix, which represents Vlow-k(k, k′)
on a mesh of N discretized relative momenta k and k′ in the
range 0 � k, k′ � �. Since this matrix is real and symmetric
with respect to k, k′, one can diagonalize it so that it can be
written as a sum of N real eigenvalues multiplied with the
respective eigenvectors,

Vlow-k(k, k′) =
N∑

i=1

aif
∗
i (k)fi(k

′), (5)
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where N is the number of mesh points and the dimension of the
Vlow-k matrix. The eigenvectors fi(k) satisfy the orthogonality
relation,

2

π

∫ �

0
dk k2fi(k)fj (k) = δij . (6)

In the following, we will omit the symbol of complex
conjugation because all eigenvectors are real. The last equality
Eq. (5) is nothing else but the general definition of a separable
potential of the rank N . If the rank of the separable potential
equals the dimension of the matrix Vlow-k(k, k′), all information
is exactly restored from the eigenvalues ai and eigenvectors
fi . As we will see later, some eigenvalues ai can be zero or
negligibly small so that one can reduce the rank of the separable
interaction by taking only the n eigenvalues with the largest
absolute values into account. It leads to a new approximated
separable interaction V

[n]
low-k(k, k′):

Vlow-k(k, k′) � V
[n]

low-k(k, k′) =
n∑

i=1

aifi(k)fi(k
′), (n � N ).

(7)

The low-rank separable representation of the NN interaction
leads to significant simplifications in many-body calculations.

The effective interaction Vlow-k as well as its separable
form is nonlocal and is defined in terms of matrix elements in
momentum space. It implies that the HF calculations have to
be performed in a Hilbert space by using an appropriate basis
|α〉, |β〉, . . . . The HF Hamiltonian is then expressed in terms of
the matrix elements between these basis states 〈α|HHF|β〉, and
the HF s.-p. states |�n〉 are expressed through the expansion
coefficients on the basis,

|�n〉 =
∑

α

|α〉〈α|�n〉 =
∑

α

cnα|α〉. (8)

The part of the HF Hamiltonian, which originates from Vlow-k ,
can be expressed in terms of two-body matrix elements by

〈α|Hlow-k|β〉 =
∑
γ,δ

〈αγ |Vlow-k|βδ〉ργδ, (9)

where ργδ is the s.-p. density matrix. To investigate the bulk
properties of finite nuclei, we perform HF calculations within
the spherical Wigner-Seitz cell by assuming a plane-wave s.-p.
basis [31,32].

III. RESULTS AND DISCUSSION

In the following, we discuss results for symmetric nuclear
matter as well as finite nuclei obtained from HF calculations.
These calculations are performed in the model space, which
is defined by a cutoff parameter � in the two-body scattering
equation, which employs the corresponding low-momentum
interaction Vlow-k , which is derived from the CD-Bonn [1]
interaction by using the technique described in Sec. II. The
NN interaction has been restricted to partial waves with total
angular momentum J � 6.

We start our discussion with the comparison of the
eigenvalues ai obtained from diagonalization of a 20 × 20
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FIG. 1. (Color online) Top: Nonzero eigenvalues ai of the 1S0

channel. Bottom: Nonzero eigenvalues ai of the 3S1-3D1 channel.

matrix of Vlow-k(k, k′) in the 1S0 channel. The resulting nonzero
eigenvalues are shown in the top panel of Fig. 1 for different
values of �. As discussed previously, Vlow-k interaction
becomes model independent at � = 2 fm−1. At this value of
the cutoff parameter �, the diagonalization procedure yields
only 11 nonzero eigenvalues, in other words, Vlow-k interaction
in the 1S0 channel is a separable interaction of the 11th rank
or, by following Eq. (5), one can write

V
[11]

low-k(k, k′) = Vlow-k(k, k′). (10)

The nonzero eigenvalues are essentially independent of N , the
dimension of the matrix, which represents Vlow-k . Furthermore,
one can notice that many of the nonzero eigenvalues are,
nevertheless, very small, and only some of them (e.g., at
i = 1, 2, 20) carry the main piece of information about the
interaction model. This gives rise to a substantial lowering
of the rank of the separable potential, as shown in Eq. (7).
With the increase of the cutoff �, the absolute values of the
eigenvalues increase as well; and, as a consequence, the rank
n of the separable form V

[n]
low-k defined in Eq. (7) has to be

increased to achieve reasonable accuracy. By increasing �,
more information about the short-range components of the
underlying bare interaction is included, which requires a larger
rank in the separable representation of the interaction. This is
in line with the findings of Bogner et al. [33] who explored
the finite-rank expansion of the low-momentum interaction by
means of a Weinberg eigenvalue analysis.

In the case of the coupled channels, such as the 3S1-3D1

channel, the dimension N of the Vlow-k matrix is twice as large
if one keeps the number of mesh points in each channel the
same as for the uncoupled partial waves. It turns out that the
number of nonzero eigenvalues also increases as shown in
the lower panel of Fig. 1. It is obvious that the rank of the
separable potential should be higher than for the 1S0 channel.
It is a general feature that coupled channels require higher
rank separable interaction than the uncoupled ones [34]. Also,
one observes pairs of positive and negative eigenvalues, which
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FIG. 2. (Color online) Squared deviation of the separable
V

[n]
low-k(k, k′) from the original Vlow-k(k, k′) in the 1S0 channel for

different values of the cutoff parameter �.

have about the same absolute value. This picture remains for
higher values of �. As we will see later, this symmetry between
positive and negative eigenvalues will play a crucial role in the
convergence of the separable form V

[n]
low-k to the initial Vlow-k

with an increase in rank.
To determine a minimal rank for a reliable separable

approximation in each channel, we calculate the square
deviation η of the separable form V

[n]
low-k from the original

potential Vlow-k for each rank n:

η =
∑
k,k′

∣∣Vlow-k(k, k′) − V
[n]

low-k(k, k′)
∣∣2

/∑
k,k′

|Vlow-k(k, k′)|2.

(11)

In Fig. 2, the deviation for the 1S0 channel at different values
of the cutoff � is shown. At � = 2 fm−1, one observes a
fast convergence to zero deviation already at the rank n = 2.
The growth of the cutoff monotonically increases the rank of
the separable potential. At � = 3 fm−1, one may expect good
accuracy starting from n = 5.

The deviation η for the 3S1-3D1 channel is displayed in
Fig. 3. First, at low n, the absolute value of the deviation
is 1 order of magnitude higher than for the uncoupled 1S0

channel. By increasing the rank, one observes a nonmonotonic
oscillating decrease of η, specially for high �. As we have
seen, the diagonalization of the channel 3S1-3D1 yields both
positive and negative eigenvalues, which are symmetrically
distributed over i so that they form pairs with very similar
absolute values. By assuming the odd rank, we take either
the uncompensated positive or the negative eigenvalue into
account. This eigenvalue will be compensated in the next
(even) rank, and accuracy will be significantly improved.

The deviation η for other channels at � = 2 fm−1 is shown
in Figs. 4 and 5. In the following, we choose the second rank
approximation for the uncoupled channels (n = 2) and the
third rank for the coupled one (n = 3). In the following, the
respective separable version of Vlow-k will be referred to as
V

[2,3]
low-k .
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FIG. 3. (Color online) Squared deviation of the separable
V

[n]
low-k(k, k′) from the original Vlow-k(k, k′) in the 3S1-3D1 channel for

different values of the cutoff parameter �.

Now, let us turn to the binding energy of symmetric nuclear
matter, which is displayed in Fig. 6. The HF calculations,
which use V

[2,3]
low-k (dashed line), essentially yield the same result

as the one that employs the original Vlow-k interaction (solid
curve). The deviation does not exceed 1% at the saturation
density ρ0 and 1.7% at the density 2ρ0. We also compared the
binding energy of pure neutron matter for both potentials and
found that the discrepancy is less than 1% for the same range
of densities.

However, neither of the two calculations yields a saturation
point (i.e., a minimum in the energy versus the density plot),
as was observed before [29,35]. This absence of saturation is
one of the main problems in calculations of nuclear matter,
which employ Vlow-k . It cannot be cured by the inclusion of
correlations beyond the HF approximation (e.g., by means
of the Brueckner-Hartree-Fock approximation [28]). Recent
relativistic calculations by van Dalen and Müther demonstrate
that saturation can be achieved within the Vlow-k approach by
inclusion of relativistic effects in dressing the Dirac spinors,
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channels at � = 2 fm−1.
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channels at � = 2 fm−1.

which are used to evaluate the underlying realistic interaction
[36].

All results obtained so far indicate that V
[2,3]

low-k is an accu-
rate low-rank separable representation of Vlow-k interaction.
However, to make it accessible to other users, it should be
parametrized in a simple form. Here, we suggest the fitting
function for all fi(k) in all channels,

fi(k) = αi + [βi exp (γik
δi ) + µi] sin (kσi + λi), (12)

which contains seven parameters for each partial-wave channel
and each fi(k). In Table I, we summarized all parameters of
the separable fitted form for uncoupled channels, while all
parameters for the coupled channels are shown in Table II.
By using the values from both tables, one can reproduce the
fitted version of V

[2,3]
low-k for a given partial-wave channel. In

the following, we will identify the respective separable fitted
potential as V

[2,3]
fit .
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FIG. 6. (Color online) Energy per nucleon of symmetric nuclear
matter as a function of the density. Results of the Vlow-k interaction
(solid line) compared with the separable form V

[2,3]
low-k (dashed line)

and the respective fitted form V
[2,3]

fit (dashed-dotted line).

To check the accuracy of our fit, we perform HF calculations
of nuclear matter that employ V

[2,3]
fit . The respective binding

energy as a function of the density of symmetric nuclear matter
is displayed in Fig. 6 by a dashed-dotted line. One observes
that, at up to saturation density ρ0 � 0.16 fm−3, the fitted
potential V

[2,3]
fit reproduces the results of V

[2,3]
low-k (red dashed),

while at higher densities, it becomes slightly less bound and
lies closer to the original Vlow-k (solid). Thus, the deviation
of the fitted separable potential V

[2,3]
fit from Vlow-k does not

exceed 1% of the binding energy. By not going into detail, we
mention that the deviation rises mainly from the 3S1-3D1 and
the 3P2-3F2 coupled channels.

As we have already seen from Fig. 6, Vlow-k interaction
as well as its separable form V

[2,3]
fit does not describe the

empirical saturation point. To achieve the saturation in nuclear
matter, one has to add three-body interaction terms or a density-
dependent two-nucleon interaction. Therefore, we support the
low-momentum interaction by a simple contact interaction,
which has been chosen by following the notation of the Skyrme
interaction [15,16],

�ν = �ν0 + �ν3, (13)

with

�ν0 = 1
4 t0

[
(2 + x0)ρ2 − (2x0 + 1)

(
ρ2

n + ρ2
p

)]
, (14)

and

�ν3 = 1
24 t3ρ

α
[
(2 + x3)ρ2 − (2x3 + 1)

(
ρ2

n + ρ2
p

)]
, (15)

where ρp and ρn are the local densities of nucleons, while the
total matter density is denoted as ρ = ρp + ρn. The values of
α and x0 were fixed at α = 0.5, x0 = 0.0, while t0, t3, and x3

were fitted in such a way that HF calculations that use Vlow-k
or V

[2,3]
fit plus the contact term of Eq. (13) reproduce both

the empirical saturation point of the symmetric nuclear matter
and the symmetry energy at saturation density. By following
Ref. [32], the contact interaction produced for Vlow-k will be
labeled by CT, and the respective interaction model will be
labeled Vlow-k + CT. For the fitted potential V

[2,3]
fit , we suggest
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FIG. 7. (Color online) Energy per nucleon of symmetric nuclear
matter as a function of the density. Results of Vlow-k + CT interaction
(solid line) compared with the fitted separable form V

[2,3]
fit + CT1

(dashed line) and V
[2,3]

fit + CT2 (dashed-dotted line).
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TABLE III. Parameters of the contact interaction defined in
Eq. (13). The set CT was produced for Vlow-k [32], while CT1 and
CT2 supply V

[2,3]
fit .

Interaction t0 (MeV fm3) t3 (MeV fm3+3α) x3

CT −584.1 8330.7 −0.5
CT1 −548.0 7890.13 −0.5
CT2 −565.467 8180.0 −0.5

two possible parametrizations: CT1 and CT2. Their parameters
and properties of nuclear matter are shown in Tables III
and IV, respectively. The interaction V

[2,3]
fit + CT1 gives the

binding energy per nucleon of symmetric nuclear matter
E/A = −16.1 MeV at the density ρ0 = 0.16 fm−3. The HF
calculations of nuclear matter (see Fig. 7) for V

[2,3]
fit + CT1

give results (dashed line) very similar to the nonseparable
initial interaction Vlow-k + CT (solid line). However, in the
calculation of finite nuclei, we observe a deviation of about
0.12 MeV in the binding energy of light nuclei, such as 16O
(see Table V). The picture can be improved if we assume
that the saturation density is not defined exactly and allow for
a small deviation. Along this line, the second parametrization
CT2 was produced. The interaction V

[2,3]
fit + CT2 gives E/A =

−16.0 MeV at the density ρ0 = 0.156 fm−3. This corresponds
to a small shift of the saturation point with respect to the initial
Vlow-k interaction (see Fig. 7). It allows us to improve the
accuracy in the binding energies of finite nuclei: One can notice
that the contact interaction CT2 leads to a better description
than CT1. However, by comparing the rms charge radii of
nuclei in Table V, we see that, due to the shift in saturation
density, the interaction V

[2,3]
fit + CT2 yields larger radii than

the interaction V
[2,3]

fit + CT1.
For all models considered here, the compressibility mod-

ulus at saturation density is in the range 240.5 � K �
258 MeV. This means that the respective EoS displayed in
Fig. 7 are rather soft, at least at densities up to about two times
the saturation density. Such a prediction of a soft EoS is in
agreement with data extracted from heavy-ion reactions. For
example, heavy-ion data for transverse flow [41] or from kaon
production [42] support the picture of a soft EoS in symmetric
nuclear matter. This value for the compressibility modulus
is also in agreement with that of the Skyrme interaction,
which correctly reproduces the breathing mode in nuclei (giant
isoscalar resonance) [43].

It is interesting to notice that the accuracy obtained with our
semiempirical models for the comparison of binding energies
and radii of representative nuclei (cf. Table V) is comparable

TABLE IV. Bulk properties of symmetric nuclear matter derived
from Vlow-k and its separable representation. They are supplemented
by the respective contact interaction.

Interaction ρ0 (fm−3) E/A(ρ0) (MeV) K (MeV)

Vlow-k + CT 0.16 −16.0 258

V
[2,3]

fit + CT1 0.16 −16.1 241.9

V
[2,3]

fit + CT2 0.156 −16.0 240.5

TABLE V. The binding energy per nucleon and rms charge radii
of finite nuclei. Experimental data taken from Refs. [37–40].

Interaction 16O 40Ca 48Ca 60Ca 208Pb

E/A (MeV)
Vlow-k + CT −7.91 −8.57 −8.42 −7.75 −7.76

V
[2,3]

fit + CT1 −7.79 −8.56 −8.35 −7.78 −7.76

V
[2,3]

fit + CT2 −7.84 −8.58 −8.37 −7.79 −7.76

Experiment −7.98 −8.55 −8.67 – −7.87
rch (fm)

Vlow-k + CT 2.79 3.50 3.54 3.68 5.51

V
[2,3]

fit + CT1 2.81 3.51 3.55 3.68 5.52

V
[2,3]

fit + CT2 2.82 3.53 3.58 3.71 5.56

Experiment 2.74 3.48 3.47 – 5.50

to that of the widely used Skyrme interactions, such as SLy4,
for instance, while the number of free parameters is only 3
(t0, t3, x3). The number of empirical data needed to adjust
the interaction is, therefore, reduced compared to empirical
nuclear interactions; and the interaction model we propose
contains interesting features of the complex bare potential such
as, for instance, the tensor matrix elements. Studies of T = 0
and T = 1 pairing channels as well as the properties of exotic
nuclei will be addressed in future applications of our model.

IV. SUMMARY AND CONCLUSION

In the past decade, it has become popular to perform nuclear
structure calculations by using the low-momentum NN

interaction Vlow-k (see, for instance, the recent Refs. [44,45]).
This interaction is constructed from a realistic NN interaction
by introducing a cutoff � in the relative momenta of the
interacting nucleons. We used a model space technique on
the basis of the unitary model operator approach to separate
the low-momentum and the high-momentum parts of the
initial CD-Bonn interaction. The cutoff parameter � was
fixed at � = 2 fm−1 so that a Vlow-k was obtained, which was
essentially independent of the underlying bare NN interaction.

The resulting Vlow-k interaction is nonlocal and is defined
in terms of matrix elements in momentum space for each
partial-wave channel. This allows us to use a diagonalization
method to express the matrix elements in a separable form.
We investigate the separability in different channels with an
increase of the cutoff �. It was found that, at � = 2 fm−1, the
low-momentum interaction can accurately be approximated by
a low-rank separable interaction. This separable interaction is
parametrized to make it accessible for other nuclear structure
calculations.

A density-dependent contact interaction is added to repro-
duce the saturation property of the infinite nuclear matter. HF
calculations, which use this interaction model, also reproduce
the bulk properties of finite nuclei with good accuracy.
Therefore, we are able to define an effective interaction, which
is based on a realistic NN interaction, reproduces the bulk
properties of nuclear matter as well as finite nuclei, and
is easy to use. In contrast to effective interactions, which

014315-8
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originate from a pure phenomenological approach such as,
for example, the various versions of the Skyrme interaction,
this interaction model should also be valid for nuclei far away
from the valley of stability and approaches going beyond the
HF approximation and accounts for pairing or more complex
correlations [46].
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School Hadrons in Vacuum, in Nuclei and Stars (Basel,
Graz, Tübingen) and Grant No. Mu 705/5-2 of the Deutsche
Forschungsgemeinschaft (DFG) and by CompStar, a Re-
search Networking Programme of the European Science
Foundation.
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