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Effective contact pairing forces from realistic calculations in infinite homogeneous nuclear matter
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Nonempirical effective contact pairing forces to be used in self-consistent mean-field calculations are presented.
These pairing forces, constructed so as to reproduce exactly any given microscopic pairing gaps in infinite
homogeneous nuclear matter for any isospin asymmetry, are given in analytical form. As a by-product, this work
provides an analytical solution of the BCS gap equations which could be applied to describe various many-body
systems.
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I. INTRODUCTION

Self-consistent mean-field calculations using effective in-
teractions have been very successful in describing the prop-
erties and the dynamics of a wide range of nuclei [1]. One
of the most popular effective interactions are zero-range
interactions of the Skyrme type because of the fast numerical
computations which can thus be performed [2]. Even though
Negele and Vautherin [3] showed a long time ago how to obtain
effective interactions using nuclear many-body methods, a
more empirical approach has usually been followed. A specific
parametric form of the effective interaction is postulated and
the unknown parameters are determined a posteriori so as to
reproduce a set of nuclear data selected according to a specific
purpose. The nonuniqueness of the fitting procedure has thus
led to a large number of different parametrizations. Some of
them may yield very different predictions when applied outside
the domain where they were fitted [4].

This situation is particularly unsatisfactory for nuclear
astrophysical applications which require the knowledge of
nuclear masses for nuclei so neutron rich that there is no
hope of measuring them in the foreseeable future; such nuclei
play a vital role in the r process of nucleosynthesis [5]
and are also found in the outer crust of neutron stars [6].
Extrapolations far beyond the neutron drip line are required for
the description of the inner crust of neutron stars where nuclear
clusters are embedded in a sea of superfluid neutrons [7].
Such environments cannot be reproduced in the laboratory.
However, many astrophysical phenomena observed in neutron
stars are precisely related to the physics of these outer layers
[8]. The need for more reliable extrapolations of these nuclear
models has motivated recent efforts to construct nonempirical
effective interactions and more generally microscopic nuclear
energy density functionals [9]. Unfortunately, such ab initio
nuclear energy density functionals able to reproduce existing
experimental nuclear data with the same degree of accuracy as
phenomenological interactions are not yet available.

For the time being, a reasonable approach is to fit these
phenomenological interactions with as many available nuclear
data as possible, not only from experiments but also from
realistic calculations in infinite homogeneous nuclear matter.
Very accurate nuclear mass models based on the Hartree-
Fock-Bogoliubov (HFB) method with zero- and finite-range
effective forces have thus been recently developed [10,11]. In

particular, in our model HFB-17 [12,13], we have achieved
our best fit ever to essentially all the available experimental
mass data, the rms deviation for the set of 2149 measured
masses of nuclei with N and Z � 8 [14] being only 0.581 MeV.
Significant improvements compared to our previous models
have been made possible by a better treatment of pairing
correlations first introduced in Ref. [15] and extended in Refs.
[12,13]. The effective interaction used in the pairing channel
was constrained to reproduce the 1S0 pairing gaps as obtained
by microscopic calculations using realistic nucleon-nucleon
interactions. We have recently applied these effective forces
to study the properties of the neutron superfluid phase in the
inner crust of neutron stars [16].

The effective pairing interaction associated with our nuclear
mass models requires the evaluation of one-dimensional
integrals. Although its numerical implementation is straight-
forward, using such interaction could become computationally
costly for large-scale calculations such as the determination of
fission barriers. In this article, a more tractable expression of
the pairing interaction is presented by calculating the underly-
ing integrals analytically. We consider effective interactions of
the Skyrme type in the particle-hole channel. However, results
can be easily generalized to other kinds of interactions.

II. EFFECTIVE DENSITY-DEPENDENT CONTACT
PAIRING FORCE

The pairing interaction that we consider here acts only
between nucleons of the same charge state q (q = n or p

for neutron or proton, respectively) and is given by

vpair(r i , r j ) = 1
2 (1 − Pσ )vπq[ρn(r), ρp(r)]δ(r i j ), (1)

where Pσ is the two-body spin-exchange operator, r i j =
r i − r j , and r = (r i + r j )/2. Owing to the zero range of this
interaction, a cutoff has to be introduced in the gap equations
to avoid divergences (for a review of the various prescriptions,
see, for instance, Ref. [17]). In this work we include all
single-particle states whose energy lies below λq + ε�, where
λq is the chemical potential and ε� is an energy cutoff.
Although microscopic calculations in semi-infinite nuclear
matter suggest that pairing in nuclei is a surface phenomenon
[18], the density dependence of the pairing force is still poorly
known. It is generally assumed that vπq[ρn, ρp] depends only
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on the isoscalar density ρ = ρn + ρp and is often parametrized
as [19]

vπq[ρn, ρp] = V �
πq

[
1 − ηq

(
ρ

ρ0

)αq
]

, (2)

where ρ0 is the nuclear saturation density while V �
πq , ηq ,

and αq are adjustable parameters. The superscript � on
V �

πq is a reminder that the pairing strength depends very
strongly on the cutoff used in the gap equations (in principle,
changing the cutoff modifies also the other parameters but
the effects are usually ignored). Effective interactions with
ηq = 0 (ηq = 1) have been traditionally referred to as volume
(surface) pairing. The parameters in Eq. (2) are usually
fitted directly to experimental data. The standard prescription
is to adjust the value of the pairing strength V �

πq to the
average gap in 120Sn [20]. However, this does not allow an
unambiguous determination of the remaining parameters ηq

and αq . Systematic studies of nuclei seem to favor a so-called
mixed pairing with ηq ∼ 0.5 and 1/2 � αq � 1 [21,22].

Even though such forces have been widely applied in
nuclear structure calculations with some success, they lack
a direct connection with realistic nucleon-nucleon forces. The
reliability of these forces far beyond the domain where they
were fitted is therefore not guaranteed. In particular, pairing
forces fitted only to finite nuclei generally yield unrealistic
pairing gaps in infinite nuclear matter [15,23], thus rendering
their application to neutron-star crusts unreliable. Garrido
et al. [24] proposed to determine the parameters of the pairing
interaction in Eq. (2) by fitting the 1S0 pairing gaps in infinite
symmetric nuclear matter as obtained by the realistic Paris
potential in the BCS approximation. The parametric form
Eq. (2) has been recently extended by Margueron et al. [25],
who introduced an isospin dependence in the pairing strength
to reproduce the 1S0 pairing gaps in both symmetric nuclear
matter and pure neutron matter as obtained from Brueckner
calculations [26]. This approach assumes that the pairing
interaction between two nucleons inside a nucleus is locally
the same as the pairing interaction between two nucleons in
infinite uniform matter. This should not be confused with the
so-called “local density approximation,” which supposes that
the pairing field 
(r) appearing in the HFB equations (see,
for instance, Appendix A of Ref. [15]) is locally the same
in finite nuclei and in infinite nuclear matter. Even though
the coupling to surface vibrations is expected to contribute to
pairing [27], a local pairing theory seems a reasonable first
step [28,29]. Finite size effects can be subsequently taken into
account by introducing density gradient terms in the expression
of the effective pairing force, as suggested in Ref. [30] in the
general framework of the density functional theory. Effective
pairing forces with density gradients have been implemented
in Ref. [31].

The drawback of using a phenomenological pairing force to
fit microscopic pairing gaps in infinite uniform matter is that
the functional form of the associated pairing strength is not
a priori known. In particular, different pairing gaps require
different expressions of vπq[ρn, ρp], which can hardly be
guessed owing to the highly nonlinear character of pairing
correlations [32,33]. It should also be remarked that the

parameters of the pairing force depend on the effective
interaction used in the particle-hole channel because effective
masses appear in the gap equations. Fitting the parameters of
the effective interaction to essentially all experimental nuclear
masses in both the particle-hole and the particle-particle chan-
nels while simultaneously reproducing microscopic pairing
gaps in infinite uniform matter would thus be an extremely
onerous numerical task.

III. MICROSCOPICALLY DEDUCED CONTACT
PAIRING FORCE

Actually, as shown in Refs. [12,13,15], the density and
isospin dependence of the pairing strength can be calculated
exactly for any given 1S0 pairing-gap function 
q[ρn, ρp] by
solving directly the HFB equations in infinite uniform matter,
yielding

vπq[ρn, ρp] = − 8π2

Iq(ρn, ρp)

(
h̄2

2M∗
q (ρn, ρp)

)3/2

, (3)

where M∗
q (ρn, ρp) is the nucleon effective mass and

Iq(ρn, ρp) =
∫ µq+ε�

0
dξ

√
ξ√

(ξ − µq)2 + 
q(ρn, ρp)2
. (4)

The expression of M∗
q (ρn, ρp) for Skyrme forces can be found,

for instance, in Appendix A of Ref. [15]. In Eq. (4), µq = λq −
Uq is a reduced chemical potential (Uq being the mean field
potential) which can be obtained by imposing the conservation
of the nucleon particle number density

ρq =
(

2M∗
q

h̄2

)3/2 ∫ +∞

0

dξ

4π2

√
ξ

⎛
⎝1 − ξ − µq√

(ξ − µq)2 + 
2
q

⎞
⎠ .

(5)

However, it is usually a very good approximation to replace
µq in Eq. (4) with the Fermi energy

ε
(q)
F = h̄2k2

Fq

2M∗
q

, (6)

where kFq = (3π2ρq)1/3 is the Fermi wave number. The
approximation µq � ε

(q)
F holds provided 
q � ε

(q)
F , which is

typically the case [34].
Using Eq. (3) instead of a phenomenological expression

such as Eq. (2) guarantees that in infinite uniform matter
the microscopic pairing gaps 
q(ρn, ρp) will be exactly
reproduced. It also ensures that the pairing strength is suitably
renormalized for any change in the energy cutoff. The price
to be paid is the evaluation of the one-dimensional integral
[Eq. (4)], for the neutron density ρn(r) and proton density
ρp(r) at all points inside the nucleus. The computational
cost becomes significant in fully self-consistent 2D and 3D
calculations [6]. However, we will now show that these
numerical integrations can be avoided by making use of the
weak-coupling approximation.

The integrand in Eq. (4) is all the more peaked around
ξ = µq � ε

(q)
F because 
q is small compared to ε

(q)
F . This
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suggests to expand the integrand in powers of 
q/ε
(q)
F , leading

to

Iq =
√

ε
(q)
F

+∞∑
n=0

Ĩq
(n)

, (7)

where the dimensionless coefficients Ĩq
(n)

are defined by

Ĩq
(n) = (2n)!

(1 − 2n)(n!)2

(
−
q

4ε
(q)
F

)n ∫ ε�/
q

−ε
(q)
F /
q

xndx√
1 + x2

. (8)

In the weak-coupling approximation 
q � ε
(q)
F and 
q � ε�,

only the first coefficient in Eq. (7) is usually retained, that is,

Iq �
√

ε
(q)
F Ĩq

(0)
. This approximation is equivalent in taking a

constant density of single-particle states in the gap equations.
Calculating the integral Ĩq

(0)
and keeping lowest-order terms

in 
q/ε
(q)
F and 
q/ε�, Eq. (8) thus yields

Ĩq
(0) � ln

(
4ε

(q)
F ε�


2
q

)
. (9)

Inserting Eq. (9) in Eq. (3) and solving for 
q leads to the
familiar expression (note that vπq < 0)


(0)
q = 2

√
ε

(q)
F ε� exp

(
2π2h̄2

vπqM∗
q kFq

)
. (10)

Even though the weak-coupling approximation provides good
results in the case of conventional BCS superconductivity [35],
it is less accurate in the nuclear context because of the
large number of states involved in the pairing mechanism.
Nevertheless, the higher-order coefficients in Eq. (8) can be
easily evaluated. Calculating the integrals Ĩq

(n)
, keeping as

before lowest-order terms in 
q/ε
(q)
F and 
q/ε�, and summing

all coefficients, we find

+∞∑
n=1

Ĩq
(n) � 2

√
1 + y − 2 ln

[
1

4
(1 +

√
1 + y)

]
− 4, (11)

where y = ε�/ε
(q)
F . Adding Eqs. (9) and (11) in Eq. (7) leads

to

Iq =
√

ε
(q)
F

[
2 ln

(
2ε

(q)
F


q

)
+ �

(
ε�

ε
(q)
F

)]
, (12)

with

�(x) = ln(16x) + 2
√

1 + x − 2 ln(1 + √
1 + x) − 4. (13)

The highly nonlinear character of the pairing phenomenon is
evident in Eqs. (3) and (12). These equations also show that
the density dependence of the pairing strength is intimately
related to the choice of the pairing cutoff. The contribution
of the latter is entirely contained in the function �(x). It can
also be seen from Eqs. (3) and (12) that the pairing strength
vanishes whenever the pairing gap 
q goes to zero at finite
density, as expected.

Note that as a by-product we have also obtained a more
accurate expression of the pairing gap. Substituting Eq. (12)
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FIG. 1. Neutron pairing strength vπn[ρn, ρp], as defined by
Eq. (3), vs nucleon number density ρ in symmetric nuclear matter
using the effective interaction underlying the nuclear mass model
HFB-17 [12,13]. The symbols are the results of numerically integrat-
ing Eq. (4). The dashed and solid lines were obtained using Eqs. (9)
(12), respectively.

in Eq. (3) yields


q = 
(0)
q exp

(
1
2�(y)

)
y−1/2, (14)

where y = ε�/ε
(q)
F .

We have tested the validity of the analytical expression
given by Eq. (12) as compared to the numerical integration of
Eq. (4) using the effective interactions underlying our HFB-17
nuclear mass model [12,13]. The pairing force used in this
model was adjusted so as to reproduce the 1S0 pairing gaps
in both symmetric nuclear matter and pure neutron matter as
obtained from Brueckner calculations using the Argonne V 18
nucleon-nucleon potential [26]. The pairing cutoff was fixed
at ε� = 16 MeV. As can be seen in Figs. 1 and 2, Eqs. (3) and
(12) provide a very good estimate of the pairing strength for all
densities and different isospin asymmetries. The figures also
show that keeping only the first term in Eq. (7) with Ĩq

(0)
given

by Eq. (9) leads to fairly good results except at low densities.
At very low densities ρ → 0, both the pairing gap 
q and

the chemical potential vanish so that the integral Iq is then
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FIG. 2. Same as Fig. 1 but for pure neutron matter.
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FIG. 3. Neutron pairing strength vπn[ρn, ρp], as defined by
Eq. (3), vs nucleon number density ρ in symmetric nuclear matter
(SNM) and pure neutron matter (NeuM) using the effective interac-
tion underlying the nuclear mass model HFB-17 [12,13]. The symbols
are the results of numerically integrating Eq. (4) and the solid line
was obtained from Eq. (12).

simply given by 2
√

ε�. It is easily seen from Eq. (3) that the
pairing strength remains finite in this limit and is given by

vπq[ρ → 0] = − 4π2

√
ε�

(
h̄2

2Mq

)3/2

, (15)

assuming that M∗
q (ρ → 0) = Mq . The weak-coupling expres-

sion, given by Eqs. (3) and (12), tends to the exact limit
as shown in Fig. 3, whereas Eq. (9) leads to a divergence
(the corresponding pairing strength lies far below the range
shown in Fig. 3). The reason for this discrepancy lies in
the underlying assumption of a constant density of single-
particle states, which is strongly violated at low energies ε

where the density of states decreases as
√

ε.
The value of the pairing cutoff ε� can be a priori arbitrarily

chosen. However, it has been argued [24,36] that in the limit
ρ → 0, the pairing strength should coincide with the bare
force in the 1S0 channel, which in turn is determined by the
experimental 1S0 nucleon-nucleon phase shifts. According to
Eq. (15), specifying vπq[ρ → 0] is equivalent to specifying
the pairing cutoff ε�. As shown in Fig. 1 of Ref. [36], the
optimal value of the cutoff is ε� ∼ 7 − 8 MeV (note that ε�

is half the cutoff used in Ref. [36]). Using the experimental
phase shifts would thus remove the only free remaining
parameter. However, choosing such a low cutoff can deteriorate
the precision of the weak-coupling approximation, because
Eq. (12) was obtained assuming 
q � ε�. We have therefore
calculated the relative error between the pairing strength
calculated numerically and that obtained from Eqs. (3) and
(12) for different values of the pairing cutoff. Results are
shown in Figs. 4 and 5 for symmetric nuclear and pure neutron
matter, respectively. We have verified that the differences
come solely from the weak-coupling approximation and not
from the numerical method used to solve Eq. (4). It can be
seen that for the effective interactions underlying our HFB-17
nuclear mass model [12,13], the weak-coupling approximation
is quite accurate because the largest relative error is of a
few percent only for ε� = 8 MeV. The precision is higher
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FIG. 4. Relative error between the neutron pairing strength
vπn[ρn, ρp] calculated numerically and that obtained from the weak-
coupling approximation vs nucleon number density ρ. The different
curves correspond to different values of the pairing cutoff ε� indicated
in the plot. Calculations were carried out in symmetric nuclear matter
using the effective interaction underlying the nuclear mass model
HFB-17 [12,13].

in neutron matter than in symmetric matter because the 1S0

pairing gap of neutron matter is smaller than that of symmetric
matter. Note that the pairing gaps we adopted in our HFB-17
mass model are rather large [the maximum of the gap function

q(ρn, ρp) is about 4.8 MeV in symmetric matter and 2.6 MeV
in neutron matter]. These gaps were obtained from Brueckner
calculations including medium polarization effects but without
self-energy corrections [26]. When both effects are taken into
account, the maximum pairing gaps are much lower [26]. The
precision of the weak-coupling approximation would thus be
even better with such gaps. In any case, if the constraint of
reproducing the 1S0 nucleon-nucleon phase shifts is released,
one is free to adjust the cutoff so as to achieve a better precision,
as illustrated in Figs. 4 and 5.

In the more general context of the nuclear energy density
functional theory, the HFB equations can be obtained by
minimizing the energy with respect to the normal and pairing
density matrices for a fixed average number of neutrons and
protons [37] (the link between different formulations of the
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FIG. 5. Same as Fig. 4 but in neutron matter.
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HFB equations is discussed for instance in Ref. [15]). All that
is needed is therefore the specification of the nuclear energy
density functional. The pairing energy density associated with
an effective pairing force defined by Eq. (1) is given by

Epair(r) = 1

4

∑
q=n,p

vπq[ρn(r), ρp(r)]ρ̃q(r)2, (16)

where ρ̃q(r) is the so-called local pairing density. The pairing
field appearing in the HFB equations is then defined by


q(r) ≡ ∂Epair(r)

∂ρ̃q(r)
. (17)

Because Epair(r) depends on the nucleon densities, it con-
tributes also to the mean-field potentials (see, for instance,
Appendix A of Ref. [15]). Local pairing functionals can be
constructed from infinite nuclear-matter calculations using
Eqs. (3), (12), and (13). The construction of nonempirical (and
nonlocal) pairing functionals using realistic nucleon-nucleon
interactions has been discussed in Ref. [38] (see also Ref. [9]
for a review).

IV. CONCLUSIONS

In conclusion, we have shown how to construct nonem-
pirical effective contact pairing forces (or equivalently local

nuclear pairing energy density functionals) using any given 1S0

pairing-gap functions 
q(ρn, ρp) obtained from microscopic
calculations in infinite uniform nuclear matter with realistic
nucleon-nucleon potentials. The resulting parameter-free pair-
ing forces, embodied in Eqs. (3), (12), and (13), can be easily
implemented in nuclear-structure calculations. These forces
could be helpful for understanding the origin of pairing in finite
nuclei and could be used to estimate the importance of bulk
contribution as compared to finite-size effects. Alternatively,
the analytical solution of the BCS gap equations which we have
obtained in Eq. (14), can be applied to calculate the pairing
gaps in nuclear matter for any given contact pairing force
(provided the conditions for the weak-coupling approximation
remain valid). Even though we have been interested in nuclear
pairing, the present results could be easily adapted to other
contexts.

ACKNOWLEDGMENTS

This work was financially supported by FNRS (Belgium),
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