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Computation of spectroscopic factors with the coupled-cluster method
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We present a calculation of spectroscopic factors within coupled-cluster theory. Our derivation of algebraic
equations for the one-body overlap functions are based on coupled-cluster equation-of-motion solutions for the
ground and excited states of the doubly magic nucleus with mass number A and the odd-mass neighbor with
mass A − 1. As a proof-of-principle calculation, we consider 16O as well as the odd neighbors 15O and 15N and
compute the spectroscopic factor for nucleon removal from 16O. We employ a renormalized low-momentum
interaction of the Vlow-k type derived from a chiral interaction at next-to-next-to-next-to-leading order. We study
the sensitivity of our results by variation of the momentum cutoff and then discuss the treatment of the center of
mass.
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I. INTRODUCTION

In the past two decades, ab initio nuclear structure
calculations have led to the development and test of
high-precision models with predictive power [1–3]. Recently,
the application of effective field theory (EFT) [4–7] and
renormalization-group techniques [8,9] has resulted in a
model-independent approach to the nuclear interaction. These
approaches have significantly deepened our understanding of
nuclear forces and have also provided us with new technical
means to simplify the solution of the nuclear many-body
problem. The interactions from chiral EFT have been probed
in light nuclei [10–13] and selected medium-mass nuclei
using different techniques [14–16]. The focus of ab initio
calculations is not only on observables such as binding
energies, radii, and low-lying excitation spectra, but also on
transition rates and more detailed spectroscopic information.
Very recently, ab initio theory began to bridge the gap
from nuclear structure to reactions [17–19]. The inclusion of
continuum effects, for instance, is necessary for the description
of weakly bound and unbound nuclei. Direct reactions such
as stripping and pickup of a single nucleon are rather well
understood within phenomenological approaches (see, e.g.,
Ref. [20]) but constitute a current frontier for ab initio theory.

The interpretation of direct reactions within a given model
or Hamiltonian is based on spectroscopic factors [21,22]. The
spectroscopic factor depends on wave function overlaps [see
Eq. (16) for a definition] and provides useful information that
relates nuclear structure within a given model (i.e., within a
given Hamiltonian) to stripping and transfer reactions [21].
The spectroscopic factor is not an observable, as it depends
on the employed Hamiltonian or model. In nuclear physics,
the high-momentum parts of the interaction are unconstrained
and modeled in different ways. Thus, the short-ranged part
of the wave function is model dependent, and so is an overlap
between wave functions. Therefore, the spectroscopic factor is
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merely a theoretical quantity and cannot be measured [23,24].
However, the spectroscopic factor “provides a useful basis
for the comparison of experiment and current nuclear
models” [21]. Its purpose thus lies in understanding a direct
reaction within a certain model or Hamiltonian, and this
interpretation might be useful and interesting [25–29].

In this paper, we develop the technical tools to com-
pute spectroscopic factors within the coupled-cluster method
[30–34] (see Ref. [35] for a recent review of this method)
and perform a proof-of-principle calculation for 16O. The
computation of the spectroscopic factor within coupled-cluster
theory is not trivial (i) because the method does not readily
yield a many-body wave function and (ii) owing to details
related to the translation invariance of the coupled-cluster wave
function. However, the coupled-cluster method can employ
modern nonlocal potentials [6–9], reaches medium-mass
nuclei [14], and has been extended to treat weakly bound and
unbound nuclei [17] that are of current experimental interest.
This paper is structured as follows. Section II is dedicated
to a summary of the employed coupled-cluster method.
The theoretical computation of spectroscopic factors within
coupled-cluster theory is presented in Sec. III. We present our
results and a discussion of the center-of-mass treatment in
Sec. IV. Section V reports our conclusions and an outlook.

II. EQUATION-OF-MOTION AND COUPLED-CLUSTER
THEORY FOR NUCLEI

In this section we introduce the Hamiltonian and coupled-
cluster theory [30–34] for closed-shell and open-shell nuclei.
Although our implementation of coupled-cluster theory has
been presented elsewhere [14,35–38], we give a brief overview
of the method, as some details are needed for the calculation
of spectroscopic factors.

We consider the intrinsic nuclear A-body Hamiltonian,

Ĥ = T̂ − T̂c.m. + V̂ =
∑

1�i<j�A

( �pi − �pj )2

2mA
+ V̂ . (1)
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Here T is the kinetic energy, Tc.m. is the kinetic energy of the
center-of-mass coordinate, and V is the two-body nucleon-
nucleon interaction. In this paper we use low-momentum
interactions Vlow-k [9,39] with sharp cutoffs λ = 1.6, 1.8,
2.0, and 2.2 fm−1, respectively. For simplicity, we neglect
any contributions of three-nucleon forces, as we focus on a
proof-of-principle calculation.

In coupled-cluster theory, one writes the ground-state
many-body wave function as

|ψ0〉 = eT |φ0〉. (2)

Here, |φ0〉 is a product state. The cluster operator T intro-
duces correlations as a linear combination of particle-hole
excitations,

T = T1 + T2 + · · · + TA. (3)

Here, the n-particle–n-hole excitation operator is

Tn =
(

1

n!

)2 n∏
ν=1

∑
aν ,iν

t
a1···an

i1···in a†
a1

· · · a†
an

ain · · · ai1 . (4)

We employ the standard convention that indices ijk . . . refer
to orbits below Fermi level (holes), and indices abc . . .

to orbits above Fermi level (particles). Approximations in
coupled-cluster theory are introduced by truncating the cluster
operator T at a certain particle-hole excitation level. In this
work we truncate T at the two-particle–two-hole excitation
level, that is, T ≈ T1 + T2, which gives the coupled-cluster
method with singles and doubles excitations (CCSD). This is
the most commonly used approximation, as it provides a good
compromise between computational cost, on the one hand, and
accuracy, on the other.

Within the CCSD approximation, the computational cost
is given by n2

on
4
u, where no and nu denote the number of

occupied and unoccupied orbitals, respectively. The correlated
ground-state solution is given by the amplitudes tai and tab

ij

that solve the nonlinear equations〈
φa

i

∣∣H |φ0〉 = 0, (5)〈
φab

ij

∣∣H |φ0〉 = 0. (6)

Here, the bra states are particle-hole excitations of
the reference Slater determinant, and H denotes the
similarity-transformed Hamiltonian,

H = e−T HeT = (HeT )c. (7)

The subscript c indicates that only fully connected diagrams
give nonzero contributions. Once T is determined from the
solution of the coupled-cluster equations (5) and (6), the
correlated ground-state energy is given by

E0 = 〈φ0|H |φ0〉. (8)

The CCSD approach is known to work particularly well
for the ground state of nuclei with closed (sub-)shells, as a
Slater determinant provides a reasonable first approximation.
In this work we use the equation-of-motion (EOM) [35,40–43]
method to solve for the ground and excited states of the closed-
shell nucleus A and its odd neighbors with mass number A − 1.

In the EOM, the ground and excited states of a nucleus
with mass number B are obtained by acting with an excitation

operator �µ on the ground-state wave function of a nucleus
with mass number A, that is, ψB

µ = �µψA
0 . Here µ denotes

quantum numbers such as spin, parity, and isospin projection.
Within the EOM approach, the ground-state wave function
ψA

0 denotes the coupled-cluster wave function eT φ0. In this
work we choose either B = A, in which case we solve the
excited states of the closed-shell nucleus A, or B = A − 1,
in which case we solve the ground and excited states of the
A − 1 neighboring nucleus. We refer to EOM with a particle
removal operator as PR-EOM. To solve for the excited states
of the closed-shell nucleus A, we define �µ by the excitation
operators,

RA = r0 +
∑
ia

ra
i a†

aai + 1

4

∑
ijab

rab
ij a†

aa
†
bajai, (9)

LA = 1 +
∑
ia

liaa
†
i aa + 1

4

∑
ijab

l
ij

aba
†
i a

†
j abaa. (10)

Here, we suppressed the index µ, but it is understood that the
operators RA and LA excite and de-excite states with quantum
numbers µ, respectively. For the ground and excited states of
the nucleus with mass number A − 1, we define �µ by the
particle removal operators,

RA−1 =
∑

i

riai + 1

2

∑
ija

ra
ij a

†
aajai, (11)

LA−1 =
∑

i

lia
†
i + 1

2

∑
ija

lija a
†
i a

†
j aa. (12)

Again, we supressed the index µ labeling the quantum
numbers. The operators Rµ = RA (Rµ = RA−1) commute
with the cluster operator T , and the unknowns ra

i , rab
ij (ri, r

a
ij )

solve the EOM,

[H,Rµ]|φ0〉 = ωµRµ|φ0〉, (13)

which defines an eigenvalue problem for the excitation
operator Rµ with eigenvalue ωµ = Eµ − E0. It is clear from
definitions (4) and (7) that H is non-Hermitian; dual-space
solutions need to be calculated explicitly. We obtain the
de-excitation operators Lµ = LA,LA−1 by solving the left
eigenvalue problem,

〈φ0| LµH = 〈φ0| Lµωµ. (14)

The right and left eigenvectors form a biorthogonal set and are
normalized in the following way:

〈φ0| LµRµ′ |φ0〉 = δµµ′ . (15)

The EOM solution for the ground state of system
A is identical to the CC solution, so that RA

0 = r0 = 1.
Reference [35] provides a detailed description of the EOM.

III. OVERLAP FUNCTIONS AND SPECTROSCOPIC
FACTORS FROM COUPLED-CLUSTER THEORY

The one-particle overlap function between two wave
functions �A−1 and �A of nuclei with mass number A − 1
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and A, respectively, is defined as [22]

OA
A−1(�x) ≡

√
A

∫
d3(A−2)ξ�∗

A−1(�ξ )�A(�x, �ξ ). (16)

Here ξ represent the 3(A − 2) translationally invariant position
coordinates and the A − 1 spin coordinates of A − 1 particles
present in both �A−1 and �A, while �x labels the position and
spin of the additional particle in the nucleus with mass number
A with respect to the center of mass of the nucleus with mass
number A − 1. The isospin coordinate has been suppressed.

In our coupled-cluster approach, however, we do not
employ coordinates with respect to the center of mass, as
this would limit us to light systems [44]. For this reason, the
overlap is associated with a specific nucleon represented by a
second quantization operator,

OA
A−1(�x) ≡ 〈A − 1|a(�x)|A〉. (17)

Here, |A〉 and |A − 1〉 denote eigenstates in the nucleus with
mass A and A − 1, respectively. A few comments regarding
the center of mass are in order. First, Eq. (16) describes the
removal of a particle with respect to the center of mass, while
Eq. (17) simply removes a particle at position �x. In principle,
the removal of a particle with respect to the center of mass
can be expanded in terms of single-particle annihilation and
creation operators with the leading term being of the form of
Eq. (17) [45]. Such an expansion is in powers of 1/A and we
thus consider its leading term. Second, the states |A〉, |A − 1〉
need to factorize into a product of an intrinsic wave function
and a center-of-mass wave function. In Sec. IV we show that
this is indeed the case. This factorization is caused by the
usage of the intrinsic Hamiltonian (1) and the employment of a
sufficiently large model space [46]. In small spaces, one needs
to explicitly remove spurious center-of-mass effects [28,47].

In Eq. (17) |A〉 typically denotes the ground state, while
|A − 1〉 is the ground state or an excited state. Our formalism
will be kept general and is not limited to these cases. The
radial overlap function OA

A−1(lj ; r) is derived by expanding �x
in terms of partial waves,

a(�x) = (−)j−m
∑
ljm

ãlj−m(r)Yljm(x̂). (18)

Here, Yljm(x̂) is the spin-orbital spherical harmonic,

Yljm(x̂) = [Yl(r̂) ⊗ χ1/2(σ )]jm,

Yl(r̂) is the spherical harmonic of rank l and χ1/2(σ ) is a
fermionic spin function. The orbital angular momentum
quantum number is denoted l, while j and m denote the
rank and projection, respectively, of Yljm(x̂) as a spherical
tensor. The hat denotes unit vectors, that is, x̂ ≡ �x/|�x|. We
have also introduced the spherical annihilation operator
ãljm(r) = (−)j+malj−m(r). The radial overlap is now given by
the reduced matrix element and the overlap becomes1

OA
A−1(�x) =

∑
j

(−)j−m(JAMAj − m | JA−1MA−1)

×OA
A−1(lj ; r)Yljm(x̂). (19)

1Many authors use an alternative definition derived from
〈A|a†(�x)|A − 1〉.

Here, (· | ·) denotes a Clebsch-Gordan coefficient. The overlap
is now expressed by a radial function associated with each
tensorial component Yljm(x̂),

OA
A−1(lj ; r) ≡ 〈A − 1||ãlj (r)||A〉

= (−)j−m 〈A − 1MA−1|aljm(r)|AMA〉
(JAMAj−m | JA−1MA−1)

. (20)

This equation also defines the reduced matrix elements we
employ.

The norm of the radial overlap function is the spectroscopic
factor

SA
A−1(lj ) =

∫
drr2

∣∣OA
A−1(lj ; r)

∣∣2
. (21)

The overlap functions can be expressed in an energy basis by
inserting the expansions

a
†
ljm(r) =

∑
n

a
†
nljmφnlj (r), (22)

aljm(r) =
∑

n

anljmφ∗
nlj (r), (23)

where n is the nodal quantum number and φnlj (r) is the radial
single-particle wave function associated with the orbits nljm.
While a

†
ljm(r) represents the creation of a particle at radial

distance r , a
†
nljm represents the action of populating a single-

particle orbit.
Assuming orthogonality of the single-particle wave func-

tions, the spectroscopic factor is written as

SA
A−1(lj ) =

∑
n

|〈A − 1||ãnlj ||A〉|2

=
∑

n

|〈A − 1|anljm|A〉|2
(JAMAj−m | JA−1MA−1)2

. (24)

Here we used the Wigner-Eckhart theorem for the reduced
matrix elements. Equation (24) is our starting point, as we work
in an uncoupled (m-scheme) basis. Using the EOM-CCSD
solutions for the right and left eigenvalue problems for the
A and the A − 1 systems, and employing the ground-state
solutions for system A, Eq. (24) takes the form

SA
A−1(lj ) =

∑
n

〈φ0|LA
0 a

†
nljmRA−1

µ |φ0〉 〈φ0|LA−1
µ anljmRA

0 |φ0〉
(JAMAj−m | JA−1MA−1)2

.

(25)

This gives the equation for the spectroscopic factors as defined
within coupled-cluster theory. We note that this equation is
unambiguously and uniquely defined in terms of the left and
right eigenstates of the nuclei with mass numbers A and A − 1.
This is clear, as the spectroscopic factor is given by the absolute
value squared of the one-body overlap matrix element, so
any ambiguity related to the normalization condition (15) is
removed.

In Eq. (25) we have introduced the similarity-transformed
creation and annihilation operators,

a
†
p = e−T a†

peT , (26)

ap = e−T apeT . (27)
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T1

T2

LA ++

LA−1 +

RA ++

RA−1 +

FIG. 1. (Color online) Left: Algebraic symbols for the particle-
hole excitation operators and particle removal operators. Right:
Corresponding diagrammatic representations. Arrows pointing up
(down) represent particle (hole) orbits with implicit summation
indices a, b, c, . . . (i, j, k, . . .).

Using the Baker-Campbell-Hausdorff commutator expansion,

we can derive algebraic expressions for a
†
p and ap in terms of

the “bare” creation and annihilation operators a
†
p and ap and

the particle-hole excitations amplitudes tai and tab
ij ,

a
†
p = a†

p −
∑

b

tbpa
†
b − 1

2

∑
jbc

tbc
pj a

†
ba

†
caj , (28)

ap = ap +
∑

i

t
p

i ai + 1

2

∑
ijc

t
pc

ij a†
caj ai . (29)

These equations can also be given in diagrammatic form,
which provides a convenient bookkeeping system for the
available Wick contractions in the expressions.

The coupled-cluster diagrams are similar to Goldstone
diagrams. An algebraic Wick contraction corresponds to
the diagrammatic connection of two directed lines, but the
interpretation rules are slightly different. We refer the reader
to Refs. [35] and [48] for a complete introduction to the
diagrammatic approach. Here we only present the few concepts
necessary to introduce the novel extensions of the formalism
used in the context of spectroscopic factors.

Diagrammatic representations of the excitation and
particle-removal operators T , Lµ, and Rµ are displayed in
Fig. 1. Lines with arrows pointing up (down) represent particle
(hole) orbits. These lines have implicit indices a, b, c, . . .

(i.j, k, . . .) that are summed over. We suppress both the
summation symbol and the dummy indices for a cleaner
notation.

We have to deal with diagrams that represent operators
with an index that is not being summed over. Such a creation
(annihilation) operator is represented by a directed line
pointing out from (into) a small circular vertex. The corre-
sponding diagrams are displayed in the upper half of Fig. 2.
Equations (28) and (29) can be reproduced diagrammatically
as displayed in the lower half of Fig. 2. The possible Wick
contractions between the creation and annihilation operators
a
†
p and ap and the cluster operators T1 and T2 depend on

whether the index p denotes an orbital above or below the
Fermi surface. The small circular vertices distinguish the index
fixed by the operator and is not summed over. In practice, the
circle prevents an accidental connection of the operator line,

a†
i , a

†
a ,

ai, aa ,

a†
i

++

a†
a

ai

aa
+ +

FIG. 2. Diagrammatic representation of the “bare” and the
similarity-transformed second quantization operators. The horizontal
bars represent the cluster operators T1 and T2, as displayed in Fig. 1.

which would have introduced an erroneous Wick contraction
when the spectroscopic factor diagrams are written down.

The overall sign of a diagram is determined according
to standard rules [48]. The negative sign of the second and

third terms in Eq. (28) is reflected in the a
†
i diagrams by the

internal hole lines that connect the small open circle with the T

operators. To determine the overall sign correctly for the spec-
troscopic factor diagrams, a sequence of directed lines ending
or starting in a small circular vertex must be counted as a loop.

The diagrams in Figs. 1 and 2 are the basic building
blocks for computation of the spectroscopic factor. We
compute the matrix elements of the overlap function as

products of the components Rµ, Lµ, and either a
†
p or ap. The

only nonvanishing contributions to the spectroscopic factor
come from the diagrams in which all directed lines can be
connected. These diagrams and the corresponding algebraic
interpretation are shown in Fig. 3. We assume an implicit
summation over repeated indices.

The computational cost of the spectroscopic factor di-
agrams has the very gentle scaling n2

on
2
u, so the cost is

completely dominated by the coupled-cluster and EOM
calculations. In the case that |A〉 is the ground state of
the closed-shell nucleus, we have ra

i = 0 = rab
ij , and several

diagrams vanish.

IV. RESULTS

In this section we present our results for the calculation of
the spectroscopic factor using ab initio coupled-cluster theory.
We study the spectroscopic factor of nucleon removal from 16O
by calculating the one-body overlap functions of 16O with the
odd-mass neighbors 15O and 15N using the (PR-)EOM-CCSD
approach to the ground and excited states of the A − 1 nuclei.
The CCSD approximation is used to calculate the ground state
of 16O.

Our model space is spanned by oscillator states. We label the
model space with the largest principal quantum number N that
is included in the single-particle basis, so that the maximum
single-particle energy is EN = (N + 3

2 )h̄ω, and the number
of major oscillator shells is N + 1. In Fig. 4 we show the
convergence of the ground state of 16O with increasing size of
the model space for a wide range of oscillator frequencies h̄ω,
using Vlow-k with momentum cutoff λ = 2.0 fm−1. In Fig. 5

014310-4



COMPUTATION OF SPECTROSCOPIC FACTORS WITH THE . . . PHYSICAL REVIEW C 82, 014310 (2010)

A− 1|ai|A lir0

lija raj

A− 1|aa|A litai r0

lirai

1
2
lijb tabij r0

lijb tai r
b
j

1
2
lijb rabij

A|a†
a|A− 1 liari

1
2
lijabr

b
ij

A|a†
i |A− 1 l0ri

ljar
a
ij

−ljat
a
i rj

− 1
2
ljkabt

a
i r

b
jk

− 1
2
ljkabt

ab
ikrj

FIG. 3. (Color online) Diagrammatic representation of the over-
lap expressions; repeated indices imply a summation. If the closed-
shell system is in the ground state, diagrams involving either ra

i or rab
ij

vanish. The individual components of these diagrams are explained
in the captions to Figs. 1 and 2.

we show the convergence of the ground-state energies of 15O
and 15N relative to the ground-state energy of 16O.

15 20 25 30 35
h
_ω (MeV)

-145

-140

-135

-130

-125

-120

-115

E
C

C
S

D
 (

M
eV

)

N = 3
N = 4
N = 5
N = 6

FIG. 4. (Color online) Convergence of the ground-state energy
(within the CCSD) of 16O using a low-momentum potential with
cutoff λ = 2.0 fm−1 for increasing model space size N = 2n + l and
as a function of the oscillator spacing h̄ω.

15 20 25 30 35
h
_ω (MeV)

17

18

19

20

21

22

23

∆E
 (

M
eV

)

N = 4
N = 5
N = 6

15
O

15
N

FIG. 5. (Color online) Convergence of the ground-state energies
(within the PR-EOM-CCSD) of 15O and 15N relative to the ground-
state energy of 16O using a low-momentum potential with cutoff
λ = 2.0 fm−1 for increasing model space size and as a function of the
oscillator spacing h̄ω.

Our results shown in Figs. 4 and 5 show a weak dependence
on h̄ω in the largest model space. We estimate that our
results for the ground-state energies are converged within a
few mega–electron volts in our largest model. We note that
the CCSD ground state for 16O is overbound by ∼15 MeV
compared to experiment and that the A = 15 nuclei lack about
6 MeV of binding energy with respect to 16O. However, the
energy difference between the ground state of 15O and that
of 15N is ∼4 MeV, which is very close to the experimental
value of 3.5 MeV. The main deficiency of our calculation
is the omission of three-nucleon forces. The leading-order
contributions of these forces are isospin symmetric [49],
and it seems that this is the reason for the relatively good
reproduction of the energy difference between the two A = 15
nuclei.

The h̄ω dependence provides some information about how
the finite size of the model space affects the solutions. For
high values of h̄ω, the model space includes high-momentum
states beyond the momentum cutoff λ of the interaction but is
not sufficiently extended in position space to accommodate a
nucleus. For small values of h̄ω, the model space is sufficiently
wide in position space for the extenson of the nucleus but does
not contain sufficient high-momentum modes to resolve the
cutoff λ of the interaction. Close to the minimum, in the largest
model spaces considered, a good compromise is realized.

We also studied the energy levels using Vlow-k for various
momentum cutoffs in the range λ = 1.6–2.2 fm−1. The
calculated ground-state energies for 16O, 15O, and 15N are
sensitive to the cutoff, implying that induced three-body
forces and short-ranged forces of higher rank would contribute
significantly to the calculated energies.

Let us turn to the spectroscopic factor for nucleon removal
from 16O. Figure 6 shows the spectroscopic factor, Eq. (25),

SF(1/2−) ≡ S16
15 (l = 1, j = 1/2), (30)
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15 20 25 30 35
h
_ω (MeV)

0.89

0.9

0.91

0.92

S
F

(1
/2

- )

N = 3
N = 4
N = 5
N = 6

FIG. 6. (Color online) Spectroscopic factor SF(1/2−) for proton
removal from 16O as a function of the oscillator spacing h̄ω for
different model spaces consisting of (N + 1) oscillator shells and a
low-momentum interaction with cutoff λ = 2.0 fm−1.

for the removal of a proton with quantum numbers Jπ = 1/2−
from 16O using a low-momentum interaction Vlow-k with a
cutoff λ = 2.0 fm−1. Evidently, the spectroscopic factor is
well converged and depends very weakly on the size of the
model space and the oscillator frequency h̄ω. It varies less
than 1% over a wide range of oscillator frequencies. The
spectroscopic factor SF(1/2−) for neutron removal from 16O
is almost identical to the SF(1/2−) for proton removal. Recall
that isospin is approximately conserved in light nuclei.

The dependence on momentum cutoff λ is displayed in
Fig. 7. Note that the spectroscopic factor increases with
decreasing cutoff. This is expected, as upon lowering of the
cutoff the system becomes less correlated, the product state
|φ0〉 becomes an increasingly good approximation, and the

12 16 20 24 28 32
h
_ω (MeV)

0.88

0.9

0.92

0.94

0.96

0.98

S
F

(1
/2

- )

λ = 1.6fm
-1

 (ν)

λ = 1.8fm
-1

 (ν)

λ = 2.0fm
-1

 (ν)

λ = 2.2fm
-1

 (ν)

λ = 1.6fm
-1

 (π)

λ = 1.8fm
-1

 (π)

λ = 2.0fm
-1

 (π)

λ = 2.2fm
-1 

(π)

FIG. 7. (Color online) Spectroscopic factor SF(1/2−) for neutron
and proton removal as a function of the oscillator spacing h̄ω for
nucleon-nucleon interactions with different cutoffs in a model space
with N = 6.

15 20 25 30
h
_ω (MeV)

0.89

0.895

0.9

S
F

(1
/2

- )

A=15
A=15.5
A=16

λ = 2.0 fm
-1

, N = 4

FIG. 8. (Color online) Spectroscopic factor SF(1/2−) for proton
removal from 16O as a function of the oscillator spacing h̄ω computed
for different values of the mass number A employed in the intrinsic
Hamiltonian, Eq. (1). The model space consists of N + 1 = 5
oscillator shells, and the momentum cutoff of the nucleon-nucleon
interaction is λ = 2.0 fm−1.

single-particle picture becomes more and more valid. Note
also that isospin is approximately a good quantum number, as
the spectroscopic factors for proton and neutron removal are
almost identical.

Let us also study the center-of-mass problem. The intrinsic
Hamiltonian, Eq. (1), depends on the mass number A of
the nucleus, and the calculation of the spectroscopic factor
requires us to employ identical Hamiltonians for nuclei with
mass numbers A and A − 1. This constitutes a dilemma, as
no choice of actual value for the parameter A can satisfy the
parent and daughter nuclei simultaneously. It is thus necessary
to investigate how strongly the spectroscopic factor depends on
this value. Figure 8 shows the spectroscopic factor (in a model
space N = 4 for a momentum cutoff λ = 2.0 fm−1 for different
values of the mass number A of the intrinsic Hamiltonian. The
dependence on A is very weak, and it is similar in size to the
dependence on the parameters of the model space.

For an intrinsic Hamiltonian, the coupled-cluster wave
function of a closed-shell nucleus factorizes into an intrinsic
part and a Gaussian for the center of mass coordinate [46].
Following the procedure in Ref. [46], we confirmed that this
factorization is present for the ground states of 15O and 15N
in the largest model space we considered. We found that
this factorization even takes place if the value A = 16 for
the mass number is employed in the intrinsic Hamiltonian,
Eq. (1), for computation of the nuclei 15O and 15N. These
results suggest that our approach to calculating spectroscopic
factors within the coupled-cluster method is practically free
of any center-of-mass contamination. In particular, it is not
necessary to employ the corrections [28,47] that are caused by
wave functions with spurious center-of-mass excitations.

So far, we have focused on the spectroscopic factors for
removal of a Jπ = 1/2− proton and neutron from 16O. We
finally also compute the spectroscopic factor for removal
of a Jπ = 3/2− proton and a (deeply bound) Jπ = 1/2+

014310-6
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FIG. 9. (Color online) Spectroscopic factors SF(3/2−) and
SF(1/2+) for proton removal from 16O as a function of the oscillator
spacing h̄ω. The employed model spaces have N + 1 oscillator shells,
and the momentum cutoff of the nucleon-nucleon interaction is
λ = 2.0 fm−1.

proton from 16O. The result is shown in Fig. 9 for different
model spaces. As before, the results are well converged with
respect to the size of the model space and display only a
mild dependence on the oscillator frequency. We find that the
spectroscopic factor SF(3/2−) is similar in size to SF(1/2−).
This is an interesting result. Barbieri and Dickhoff [25] also
found, in their computation of spectroscopic factors, that
SF(1/2−) ≈ SF(3/2−) for nucleon removal from 16O. As
expected, the spectroscopic factor of the Jπ = 1/2+ state is
very small. The removal of a deeply bound Jπ = 1/2+ proton
from 16O yields a highly excited state of 15N that is a rather
complex superposition of many n-particle–(n + 1)-hole states
and thus has little overlap with a one-hole state.

V. CONCLUSION AND OUTLOOK

We have extended the coupled-cluster method for the
computation of spectroscopic factors. To this purpose, we
derived diagrammatic and algebraic expressions of the one-
body overlap functions based on EOM methods for the ground
and excited states of the closed-shell nucleus with mass
number A and the neighboring nuclei with mass number
A − 1. We implemented the equations in an uncoupled m

scheme and presented proof-of-principle calculations of the
spectroscopic factor for proton and neutron removal from
16O. The calculated spectroscopic factors are well converged
in model spaces consisting of six oscillator shells for low-
momentum nucleon-nucleon interactions. Within the coupled-
cluster approach, the same intrinsic Hamiltonian has to be
employed in the nuclei with mass numbers A and A − 1. We
found that the spectroscopic factor is insensitive to the actual
value of the mass number that is employed in the intrinsic
Hamiltonian.

We plan to implement the computation of the spectroscopic
factor also in a spherical formulation of nuclear coupled-
cluster theory. This will allow us to employ much larger model
spaces, and we plan to apply the techniques to physically
interesting nuclei, such as 22,24O, 48,52Ca, and 56,78Ni.

ACKNOWLEDGMENTS

We acknowledge discussions with C. Barbieri, E. Bergli,
R. J. Furnstahl, and M. Hjorth-Jensen. Ø.J. thanks the
University of Oslo and Oak Ridge National Laboratory
(ORNL) for hospitality. This research was partly funded by
Norwegian Research Council Project NFR 171247/V30 and
by the US Department of Energy under Grant Nos. DE-
FG02-96ER40963 (University of Tennessee) and DE-FC02-
07ER41457 (SciDAC UNEDF). This research used resources
of the National Center for Computational Sciences at ORNL.
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[11] P. Navrátil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand,
A. Nogga, and S. Quaglioni, Few-Body Syst. 43, 129 (2008).
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