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Lowest eigenvalue of the nuclear shell model Hamiltonian
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In this paper, we investigate regular patterns of matrix elements of the nuclear shell model Hamiltonian H ,
by sorting the diagonal matrix elements from the smaller to the larger values. By using simple plots of nonzero
matrix elements and lowest eigenvalues of artificially constructed submatrices h of H , we propose a new and
simple formula, which predicts the lowest eigenvalue with remarkable precision.
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The diagonalization of matrices is a fundamental practice
in nuclear structure physics as well as in many other fields.
However, diagonalization becomes difficult if the dimension
of the matrix is very large. Statistical approaches are very
suggestive and have been developed (e.g., in Refs. [1–7]),
where the lowest eigenvalue is presented in terms of the energy
centroid and spectral moments.

Recently, we showed, in Ref. [8], that sorting diagonal
matrix elements of a given nuclear shell model Hamiltonian
from the smaller to the larger values provides us with a new
approach to evaluate the eigenvalues. By sorting the diagonal
matrix elements, we are able to evaluate all eigenvalues based
on a very strong linear correlation between the diagonal matrix
elements and the exact eigenvalues. This method was found
to work very well for medium eigenvalues but deviates for the
lowest ones. However, in nuclear structure physics as well as in
many other fields of sciences, we are interested in the low-lying
states. Therefore, it is very desirable to refine the approach
toward more and more accurate evaluation of the low-lying
eigenvalues, by sorting the diagonal matrix elements.

In this paper, we propose a new approach to predict the
lowest eigenvalue of the nuclear shell model Hamiltonian. To
exemplify our method, we will use a few realistic examples
of nuclear shell model calculations. All results in this paper
are based on the shell model code by the Kyushu group
[9–11]. The shell model basis states of this code are constructed
by using the coefficients of fractional parentage discussed in
Ref. [11]. In this paper, we take the universal sd-shell (USD)
effective interactions of Ref. [12]. Other interactions such as
the Yukawa-type interactions of Refs. [10,13] give similar
results.

Let us denote the matrix of spin I states of the nuclear shell
model Hamiltonian H by H (I ), and the matrix elements of
H (I ) by H

(I )
ij , where i and j represent indices of basis states. In

Fig. 1, we present two typical examples of distributions of the
magnitude of H

(I )
ij , based on the Jπ = 0+ and Jπ = 2+ states

of the 24Mg nucleus. The color from blue to red corresponds
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to values from zero to large magnitudes. From panels (a) and
(b) of Fig. 1, one sees that the values of H

(I )
ij look random.

However, if one sorts the diagonal matrix elements from the
smaller to larger values, as in Ref. [8], the values of H

(I )
ij

decrease rapidly and become zero if they are far enough from
the diagonal line, as shown in panels (a′) and (b′) of Fig. 1.

Let us investigate this behavior in another form. We study
the probability for H

(I )
ij to be nonzero (after sorting the

diagonal matrix elements of H
(I )
ij ), while moving away from

the diagonal line, versus d, denoted by ρ(d) =
∑ |sgn(H (I )

i,i+d )|
D−d

,

d = 1, 2, 3, . . . ,D. Here, d is the distance of H
(I )
ij from the

diagonal line, and D is the dimension of matrix H
(I )
ij for spin

I states. As shown in Figs. 2(a) and 2(b) for the Iπ = 0+
and 2+ states of the 24Mg nucleus, ρ(d) becomes zero at a
critical value d = d0; the value of ln d0 equals 6.75 and 8.22,
respectively.

An argument for the regular patterns described in
Figs. 1, 2(a), and 2(b) is as follows. With the diagonal matrix
elements sorted from the smaller to the larger values, one
classifies configurations from the lowest to the largest in
energy, roughly by particle-hole excitations. Configurations
that come first are the lowest, and the states that come last are
n-particle-n-hole excitations out of those low configurations.
Because the shell model Hamiltonian consists of one-body and
two-body operators, one cannot connect those configurations
that are distant (e.g., the configurations with the lowest
energy and n-particle-n-hole configurations with n > 2). This
explains the reason why all values of H

(I )
ij become zero for

d � d0. Soon, we will find that the value of d0 is very important
in predicting the lowest eigenvalue of the matrix H (I ).

In Refs. [3,6,7] the lowest eigenvalue is presented in
terms of lnD, where D is the dimension of the matrix H (I ).
Although the formulas of the lowest eigenvalues presented in
Refs. [3,6,7] are applicable to the random ensemble average
(not to individual sets of interactions parameters), one natu-
rally asks whether or not certain plots of the lowest eigenvalue
versus the dimension could be useful in evaluating the lowest
eigenvalue of realistic systems studied in this paper. Let us sort
the diagonal matrix elements from the smaller to the larger,
as in Refs. [8]. Then, we artificially truncate the matrix H (I )
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FIG. 1. (Color online) Magnitude of
the matrix elements without [panels (a)
and (b)] and with [panels (a′) and (b′)],
which sort the diagonal matrix elements
from the smaller to the larger. The
color from blue to red corresponds to
values from zero to large magnitudes.
The results are based on Iπ = 0+ [panels
(a) and (a′)] and Iπ = 2+ [panels (b)
and (b′)] states of the 24Mg nucleus,
obtained by using the USD interactions.
The magnitude of H

(I )
ij without sorting the

diagonal matrix elements (left-hand side)
are close to random, and those with sorting
the diagonal matrix elements (right-hand
side) decrease rapidly as going farther
from the diagonal line.

and obtain a submatrix h with dimension d (d < D), and
hij = H

(I )
ij (i, j = 1, 2, . . . , d). We diagonalize h and obtain

the lowest eigenvalue εd of the matrix h, and plot εd versus
ln d. In Figs. 2(a′) and 2(b′) we present the εd -ln d plots for the
Iπ = 0+ and 2+ states of the 24Mg nucleus. One sees that εd

decreases linearly with ln d when d is smaller than a critical
dimension d = D0, and decrease again linearly with ln d but
with a smaller slope. Apparently, the value of D0 and the slopes
for both d < D0 and d > D0 suffice for the evaluation of the
lowest eigenvalue of H

(I )
ij .

In Fig. 2, one sees that the values of d0 where ρ(d0) = 0 in
Figs. 2(a) and 2(b) coincide with D0 in Figs. 2(a′) and 2(b′),
respectively. Panels (a) and (b) are based on the same matrices
as (a′) and (b′), respectively. For convenience, we use the same
scale in panels (a) and (a′) and (b) and (b′), and plot two
dotted lines to guide the eyes to see such coincidence. From
Fig. 2, one also sees that the slope for d > d0 (denoted by k′)
is smaller than that for d < d0 (denoted by k).

An intuitive understanding of the facts that d0 � D0 and
k′ < k is given as follows. Because H

(I )
ij are zero when d > d0
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FIG. 2. (Color online) Distribution
for H

(I )
ij to be nonzero, denoted by ρ(d),

and the lowest eigenvalues of h, denoted
by εd (h). The results of (a), (a′) and (b),
(b′) are obtained for the J π = 0+ and
J π = 2+ states of 24Mg, respectively. One
sees that the values of d where ρ(d0) = 0
and where the εd (h)-ln d plots change the
slope (D0) coincide (i.e., d0 = D0). We
use the same scale in (a), (a′) or (b), (b′).
The dotted lines are used to guide the eye.
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FIG. 3. (Color online) Distribution for ln(D0)/ln(d0) and k′/k for
200 H (I ) matrices for a number of nuclei in the sd shell, the dimension
D of which goes from 500 to 10 000, by taking the USD interactions.
One sees that ln(D0)/ln(d0) � 1, and that k′ ∼ 2

5 k with considerable
fluctuations. In this paper, we assume that ln(D0)/ln(d0) = 1 and
k′ = 2

5 k when we predict the lowest eigenvalue of H (I ), for simplicity.

[i.e., ρ(d0) = 0 for i, j > d0], there is no contribution to
the lowest eigenvalue from these matrix elements. On the
other hand, some of matrix elements H

(I )
ij and H

(I )
ji , with

0 < i < D − d0 and j > D − d0, are nonzero [see Figs. 1(a′)
and 1(b′)], which lower down the smallest eigenvalue of the
h matrix. The slope of the εd -ln d plot, therefore, changes
at d = d0 and becomes smaller for d > d0 than that of h for
d < d0.

In Fig. 3, we present our results of ln (D0)/ln (d0) and k′/k,
based on 200 examples of H (I ) for a number of sd shell nuclei
by using the USD interactions.One sees that ln (D0)/ln (d0)
are very close to 1.0 and that k′ � 2

5k with fluctuations. For
simplicity, we assume that ln (D0)/ln (d0) = 1 and k′ = 2

5k

for all cases throughout this paper.
By making use of these regularities, we obtain a new and

simple formula to evaluate the lowest eigenvalue of the matrix
H (I ),

E(I )
min = 2k

5
ln D +

(
k ln d0 + b − 2k

5
ln d0

)

= 2k

5
ln (D) + 3k

5
ln (d0) + b, (1)

where k and b are the slope and the intercept of the εd -ln d

plot for d < d0; d0 is determined by ρ(d0) = 0, and D is the
number of spin I states. Because the εd -ln d plot shows a nice
linearity [see Figs. 2(a′) and 2(b′)], we extract the values of k

and b based on submatrices h of H (I ) with d � D/10 for all
cases.

In Fig. 4, we present a comparison of the lowest states
of spin I predicted by Eq. (1), and those obtained by
the linear correlation (i.e., Eq. (3) of Ref. [8]), with those
calculated by diagonalizing H (I ) (I = 0, 2, 4, 6, 8) for two
nuclei, 24Mg and 28Si.One sees the remarkable agreement
between the exact eigenvalues (the column exact) and our
predicted ones (pred1), and substantial improvements achieved

FIG. 4. (Color online) Comparison of low-lying levels obtained
by exact diagonalization (denoted by exact) and those predicted by
using Eq. (1) (denoted by pred1) and the linear correlation formula
suggested in Ref. [8] (denoted by pred2) for the 24Mg nucleus in
panel (a), and the 28Si nucleus in panel (b). The results are obtained
by using the Yukawa-type interaction of Refs. [10,13]. One sees
substantial improvement of predictions for the lowest eigenvalues for
each spin I by using Eq. (1) of this paper.

by Eq. (1) in comparison with Eq. (3) of Ref. [8] (pred2 in
Fig. 4). Without going into detail, we mention that the overall
root-mean-squared deviation E for the 200 cases we checked
in Fig. 3 [defined by E = ∑N

i

√
(Eexact

i − Epred)2/N , where
N is the number of examples that we checked and, here,
N = 200] is 0.38 MeV, by assuming that d0 = D0, k′ = 2

5k

for all examples.
Here, we give a brief discussion of formulas in

Refs. [3,4,6–8] and the formula proposed in this paper.
Reference [4] reported a correlation between the lowest
eigenvalue and the spectral width σ of the spin I states.
Reference [3] suggested a simple formula E(I )

min = ĒI −√
ln D/ln 2σ , where ĒI is the average energy of spin

I states. Reference [6] suggested a formula E(I )
min = ĒI −√

a ln D + bσ (similar to Ref. [3]), with a � 1.00 and
b � 0.40. Reference [8] refined the results of Ref. [6] by
including the third moment analytically, with an additional
factor [1 −

√
π

6
√

2
( σ3

σ
)3] multiplied in the second term of the

formula in Ref. [6]. Here, σ3 is the third moment of the
eigenvalues. These formulas are applicable to the random
Hamiltonians statistically (i.e., the ensemble average), not to
the individual Hamiltonians such as for realistic systems. In
Ref. [8], the formula by using the linear correlation between
the eigenvalues and the diagonal matrix elements is applicable
to individual sets of parameters and works well for medium
eigenvalues, but it does not work very well for the lowest
(or the largest) eigenvalues. The formula proposed in this
paper is found to predict the lowest eigenvalues of the nuclear
shell model Hamiltonian remarkably well, as shown in Fig. 4.
We should also add that there are many other efforts toward
overcoming the limitation of dimension in diagonalizing large
matrices, see Refs. [14–17].

To summarize, in this paper, we first investigated the
distribution of nonzero off-diagonal matrix elements of
the nuclear shell model Hamiltonian. We demonstrated that the
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nonzero off-diagonal matrix elements exhibit regular patterns,
if one sorts the diagonal matrix elements from the smaller to
the larger values; without sorting the diagonal matrix elements,
the off-diagonal matrix elements look random. Almost all
matrix elements become zero, if the matrix elements are distant
enough from the diagonal line, after sorting the diagonal matrix
elements.

A very simple formula of the lowest eigenvalue for the
shell model Hamiltonian matrix H (I ) is proposed, based on the
regular patterns of the ρ(d) and εd -ln d plots for submatrices
h. There exists a critical dimension D0 at which the slope of
the εd -ln d plot changes. The slope for d > D0 is empirically
found to be equal to 2/5 of that for d < D0 with fluctuations.
The value of D0 is found to be equal to d0, which can be
obtained easily by using ρ(d0) = 0. Here, ρ(d) represents the
probability for Hij to be nonzero while moving away from the
diagonal line.

The overall root-mean-squared deviation for 200 shell
model Hamiltonians of nuclei in the sd shell is 0.38 MeV (the

relative deviation is about 0.003), which assumes that d0 = D0

and k′ = 2
5k, with k and b obtained from the submatrices h

of H (I ). The dimension of h is much smaller than D, and,
here, we take d � D/10. This demonstrates that our predicted
results of the lowest eigenvalue based on our new formula
are in very good agreement with the exact values, even if one
treats much smaller submatrices of H (I ). Therefore, we expect
that our new formula has significance for future theoretical
studies of nuclear structure. It will also be interesting to
investigate whether or not other low-lying states have similar
features.

What has not yet been understood at a microscopic level is
why the εd -ln d plot exhibits a remarkable linearity. Further
consideration of these issues is warranted in future studies.
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