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Improved density matrix expansion for spin-unsaturated nuclei
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A current objective of low-energy nuclear theory is to build nonempirical nuclear energy density functionals
(EDFs) from underlying internucleon interactions and many-body perturbation theory (MBPT). The density
matrix expansion (DME) of Negele and Vautherin is a convenient method to map highly nonlocal Hartree-Fock
expressions into the form of a quasi-local Skyrme functional with density-dependent couplings. In this work,
we assess the accuracy of the DME at reproducing the nonlocal exchange (Fock) contribution to the energy. In
contrast to the scalar part of the density matrix for which the original formulation of Negele and Vautherin is
reasonably accurate, we demonstrate the necessity to reformulate the DME for the vector part of the density
matrix, which is needed for an accurate description of spin-unsaturated nuclei. Phase-space-averaging techniques
are shown to yield a significant improvement for the vector part of the density matrix compared to the original
formulation of Negele and Vautherin. The key to the improved accuracy is to take into account the anisotropy
that characterizes the local momentum distribution in the surface region of finite Fermi systems. Optimizing
separately the DME for the central, tensor, and spin-orbit contributions to the Fock energy, one reaches a
few-percent accuracy over a representative set of semi-magic nuclei. With such an accuracy at hand, one can
envision using the corresponding Skyrme-like energy functional as a microscopically constrained starting point

around which future phenomenological parametrizations can be built and refined.
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I. INTRODUCTION

The nuclear energy density functional (EDF) (see Table I
for acronyms repeatedly used in the text) approach is the
many-body method of choice to study medium-mass and heavy
nuclei in a systematic manner [1]. Modern parametrizations of
empirical energy functionals (e.g., Skyrme, Gogny, or their
relativistic counterparts) provide a fair description of bulk
properties and certain spectroscopic features of known nuclei.
However, such empirical EDFs lack predictive power and a
true spectroscopic quality away from known data. Conse-
quently, an intense ongoing effort is dedicated to empirically
improving the analytical form and the fitting of energy density
functionals [2-7].

A complementary approach in the quest for predictive EDFs
[8—12] relies less on fitting empirical functionals to known
data, but rather it attempts to constrain the analytical form of
the functional and the values of its couplings from many-body
perturbation theory (MBPT) and the underlying two- and
three-nucleon (NN and NN N) interactions. Switching from
conventional hard-core potentials to low-momentum interac-
tions is essential in this respect, as the many-body problem
formulated in terms of the latter becomes significantly more
perturbative.! Indeed, second-order perturbative calculations
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The need for infinite resummation of certain sets of diagrams and/or
the redefinition of the unperturbed vacuum |®) cannot be ruled out
at this point.
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provide a good account of bulk correlations in both infinite
nuclear matter [13] and doubly-magic nuclei [14]. By using
many-body perturbation theory (MBPT) [15] as a baseline, the
long-term goals of the project are to (i) bridge nonempirical
EDF methods with ab initio many-body techniques applicable
to light nuclei, (ii) calculate properties of heavy and complex
nuclei from basic vacuum interactions, and (iii) perform EDF
calculations with controllable theoretical errors.

MBPT contributions to the energy are written in terms of
density matrices and propagators convolved with finite-range
interaction vertices, and they are therefore highly nonlocal in
both space and time. To make such functionals numerically
tractable in heavy open-shell nuclei, it is desirable to develop
simplified approximations expressed in terms of the local
densities and currents. Starting at lowest order, which displays
only nonlocality in space through the Fock contribution to the
energy,” the objective of the present work is to revisit the
density matrix expansion (DME) of Negele and Vautherin
[16] to assess its accuracy in reproducing nonlocal Fock
contributions.

The focus of the present paper is on the vector part of the
density matrix, which is relevant for approximating the central,
tensor, and spin-orbit Fock contributions in spin-unsaturated
nuclei (i.e., in nuclei where only one of two spin-orbit partners
is filled). Indeed, the few tests of the DME over the past thirty-
five years have focused entirely on the scalar part [11,17,18],
given that no reliable expansion of the vector part of the density
matrix was ever proposed. As acknowledged by Negele and
Vautherin in their seminal paper [16], the expansion suggested

2For simplicity, we are assuming local NN and N N N interactions.
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TABLEI List of acronyms repeatedly used

in the text.

EDF Energy density functional
DME Density matrix expansion
PSA Phase space averaging
OBDM One-body density matrix
INM Infinite nuclear matter

for the vector part of the density matrix was not on the same
level as the one designed for its scalar part. Such a feature is
obviously critical since the overwhelming majority of nuclei
are spin unsaturated. Here, we demonstrate that phase-space-
averaging techniques allow a consistent expansion of both the
scalar and the vector parts of the density matrix, such that
the accuracy is greatly improved for the latter. A key feature
of the new method is to take into account the deformation
displayed by the local momentum distribution at the surface
of most finite Fermi systems [19,20]. While it is shown to
have little impact on the expansion of the scalar part, the
deformation of the local momentum distribution is crucial to
accurately reproduce contributions to the energy that probe the
vector part of the density matrix.

The paper is organized as follows. Section II provides
the basic ingredients needed to conduct the present study.
Section III is dedicated to the reformulation of the density
matrix expansion on the basis of phase-space-averaging tech-
niques. The accuracy of the approximation method is gauged
in Sec. IV through non-self-consistent tests that make use of
two schematic nucleon-nucleon interactions and of density
matrices obtained from self-consistent EDF calculations of a
large set of semi-magic nuclei. Each of the central, tensor,
and spin-orbit contributions to the Fock energy is analyzed
separately. Conclusions are given in Sec. V and appendices
provide complete sets of formulas and analytical derivations.
In particular, couplings of the generalized Skyrme-like EDF
obtained through the DME [see Eq. (20)] are provided in
Appendix B.

II. DENSITY MATRIX AND HARTREE-FOCK ENERGY

Let us consider a product state of reference | ). As briefly
explained in Sec. II B, this typically is the unperturbed many-
body state around which perturbation theory is performed or,
in a more phenomenological language, the auxiliary state in
terms of which one builds a so-called single-reference EDF.
In the present case, we consider an implementation without
explicit treatment of superfluidity such that |®) takes the form
of a Slater determinant. In addition, we consider the system to
be invariant under time reversal.

A. The one-body density matrix

The one-body density matrix (OBDM) p of the many-body
state | ®) is defined in terms of operators cf(rog) [c(roq)] that
create (annihilate) a nucleon at a given position in space r with
given spin and isospin projections ¢ = £1/2 and ¢ = n, p on
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the quantization axis:
pg(ro, ¥'o’) = (@|c! (o' q)c(roq)| @)
=Y ¢/ (Co'q)p;(xoq)pl;, (1)
ij

where it is assumed that single-particle states do not mix
isospin projections so that the OBDM is diagonal in isospin
space.” In Eq. (1), pf; = (d>|cj'cj|<l>) defines the OBDM in an
alternate single-particle basis {c¢;; ¢;(roq)}. By choosing the
particular basis from which |®) is built, ,ojq.i becomes diagonal
with matrix elements equal to one for occupied states and zero
for empty states. The OBDM can be further separated into

pq(I‘O', I‘/O'/) = %{/Oq(r, r/)gaa’ + Sq(l', I‘,) “Ogo'}s 2

where the scalar and vector parts are, respectively, defined as

py(r,¥') = Y py(xo, ¥'o’)o’|1]o)

oo’

=YD wioqe;xoq)pt, (3)

o ij

s,(r,¥) = Z p4(ro, ¥o') (o' |o|o)

[oxen
) ! / q
=Y @ta'q) o' |olo)p;(xoq)pl;.  (4)

oo’ ij
In the approximation that the single-particle wave functions of
spin-orbit partners are identical, it can be shown that the vector
part of the density matrix s,(r, r’) is zero in spin-saturated
nuclei.

B. Long-term strategy

Our long-term objective is to build so-called nonempirical
nuclear energy functionals £[p] through the application of
many-body perturbation theory implemented in terms of low-
momentum interactions [21],

Elpl = EMF + AETF, )

where ETF denotes the (symmetry-unrestricted) Hartree-Fock
(HF) contribution from two-, three-,..., n-nucleon forces
whereas A EHF encompasses the corresponding correlation
energy to all orders in perturbation theory.* As opposed to the
wisdom based on the use of conventional nuclear potentials, it
has been shown recently that so-called low-momentum two-
and three-nucleon interactions make the nuclear many-body
problem more perturbative, with Hartree-Fock serving as a
reasonable zeroth-order approximation [13]. Still, calculations
of the infinite nuclear matter (INM) equation of state [13], as
well as binding energies and charge radii of doubly-magic
nuclei [14], demonstrate that it is necessary to go at least

3The Slater determinant can however break spatial symmetries.

“In applications to nuclei, except for doubly-magic ones, the ground-
state energy will in fact be expanded around a quasi-particle vacuum
of the Bogoliubov type rather than around a Slater determinant. This
is necessary to take care of the Cooper pair instability that arises in
the 'Sy channel of the in-medium N N amplitude.
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to second order in perturbation theory to resum enough bulk
correlations into the EDF to get realistic binding. In the present
paper though, we focus on the lowest order contribution to the
energy that is bilinear in the OBDM (i.e., the Hartree and Fock
diagrams). While treating the direct (Hartree) term exactly,
the objective of the density matrix expansion is to simplify
the nonlocal character of the exchange (Fock) contribution
to the energy by mapping it into a generalized Skyrme
functional with density-dependent couplings. Therefore, the
DME can be viewed as a constructive approach to encode
finite-range physics into density-dependent couplings of a
Skyrme-like functional.

The reasons for restricting our attention to the Hartree-Fock
contributions in this initial study are twofold. First, a nontrivial
extension of the DME is needed to treat nonlocalities in both
space and time that arise in higher orders of perturbation
theory. That is, one must properly account for the presence of
energy denominators when designing a DME for second-order
MBPT and beyond. To date, a satisfactory generalization of the
DME has not yet been formulated. Second, even if we follow
the ad hoc prescription of neglecting the nonlocality in time
by using averaged energy denominators, it is well established
that the dominant contributions to bulk nuclear properties are
of the Brueckner-Hartree-Fock (BHF) type. Operationally,
this amounts to replacing the vacuum NN interaction in
the Hartree-Fock expression by a Brueckner G matrix (or
a perturbative approximation in the case of low-momentum
interactions) evaluated at some average energy. Since the G
matrix “heals” to the N N potential at long distances, applying
the DME to the long-range part of the NN interaction at
the Hartree-Fock level will in any event capture the same
contributions to the density-dependent couplings as given by
the long-range part of the G matrix in a more sophisticated
BHF calculation. In this way, the dominant density dependence
that arises from the finite range of the internucleon interactions
is accounted for. Once a satisfactory generalization of the
DME is developed to handle spatial and temporal nonlocality
on the same footing, nonlocalities arising from in-medium
propagation can be mapped into the density-dependent Skyrme
couplings as well.

C. Two-nucleon interaction

For simplicity, and because the main point of the present
paper does not depend on it, we restrict our study to two-
nucleon interactions only. Note however that a forthcoming
publication is dedicated to the application of the presently
developed DME to the HF energy derived from a chiral-
EFT three-nucleon potential at next-to-next-to-leading order
(N2LO) [22]. In the present paper, we consider a generic
local two-body interaction that includes central, tensor, and
spin-orbit parts. Defining x; = (r;0,¢;), one can write in the
position ® spin & isospin basis

(x102|VP T xsxa) = VP7T8(0 — 13)8(ra — 1), (6)

where I can be C (central), LS (spin-orbit), or T tensor
whereas (S,7) takes values (1,0), (0, 1),(1,1), or (0,0),
where the first number 1 (0) refers to two-body spin-triplet
(spin-singlet) channels whereas the second number 1 (0) refers
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to two-body isospin-triplet (isospin-singlet) channels. More
explicitly, the central part of the interaction reads

ST _ ST
Ve Ve (r)ns/t s/t’

where the relative and center-of-mass coordinates are defined
as

r=r —r, and R= —(rl + ). @)

and the spin and isospin singlet (triplet) projectors

n;’/,:Z(l —/+ P{) and ng/tzz( —/+P5) (8

are expressed in terms of spin and isospin exchange operators
Py, = 2(01 oo+1) and Pj, = 2(1'1 n+1). (9

The spin-orbit and tensor parts of the two-nucleon interaction
take the form
e vLS(r)r x V- (o1 4 o], T

s/t>

2

Vil = vl (n[3(01 - €)o7 - &) — 01 - 01115, T,

with e, = r/r. It should be noted that the spin-orbit and tensor
parts of the interaction only act in the spin-triplet channel.

D. Fock contribution to the energy

As mentioned earlier, the strategy consists of applying the
DME to the exchange part of the HF energy while treating
the Hartree term exactly. Indeed, it was realized long ago,
starting with the early works on the DME by Negele and
Vautherin [16,23], that treating the direct part exactly has the
following advantages:

(i) It provides a better reproduction of the density fluc-
tuations and the energy produced from an exact HF
calculation [23].

(i1) It significantly reduces the self-consistent propagation
of errors if one restricts the DME to the exchange
contribution [17,23].

(iii) There is no additional complexity in the numerical
solutions of the resulting self-consistent HF equations
[23] compared to applying the DME to both Hartree
and Fock terms.

The Fock contributions from central, spin-orbit, and tensor
parts of the two-body interaction take the form

EEIST] ~ /drldrz[/)q(rl,rz)ﬁq'(l'z,1'1)
+54(r1, 12) - (X2, T)E (), (10)
E[[ST] ~ fdrldrz[pq(rl, r)r x Vs - 8,(ra, 11)

+5,(r1,12) - T X Vapg(ra, v)lvi5(r), (1)

EF[ST] ~ /dl‘ldl'z |:Sq(l‘1,l‘2)'5q/(l‘2,l'1)

+ Z Sq u(T1, T2)sy, u(l‘z,l‘1):| vT (r)

12)
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where numerical coefficients and overall signs, as well as
sums and/or selection rules over isospin projections, have been
omitted. Indeed, only the structure of the terms at play is of
importance for the present paper. For time-reversal-invariant
systems, the scalar and vector parts of the OBDM satisfy the
relations [24]

Pq(r1, r2) = py(ra, T1), (13)
Sq(r1, r2) = —8,4(1r2, 1Y), (14)

such that the exchange contribution from the spin-orbit
interaction reduces to

ELISTI ~ [ dridrauf§r)s,ev.r2) 1 x Vapy ),

III. REVISITING THE DME

A. Basics of the DME

The DME was originally proposed by Negele and Vautherin
to establish a theoretical connection between the empirical
zero-range Skyrme force and Hartree-Fock calculations with
realistic N N interactions [16]. The central idea is to factorize
the nonlocality of the OBDM by expanding it into a finite
sum of terms that are separable in relative and center-of-mass
coordinates. Adopting notation similar to that introduced in
Refs. [25] and [26], one writes

Nmax

Py, 1) & Y T (kr)Py(R), (15)
n=0

sg(r1. 1) ~ Y T, (kr)Qu(R), (16)
m=0

where k is a momentum scale to be determined that
sets the scale for the decay in the off-diagonal direc-
tion, l'[,{ (kr) are the so-called IT functions, which re-
main to be specified, and {P,(R), Q,,(R)} denote vari-
ous bilinear products of local densities and their gradients
{pg(R), 7,(R), J; ,v(R), Vo, (R), Ap,(R)} obtained from the
OBDM through

,Oq(R) = pq(rlv r2)|r1=r2=R, 17)
7,(R) = Vi - Vop,(ry, ©2)lr,=r,=R. (18)

i
Jy () = _E(Vl = V)i Sgu(®1, 1)l =r,=r.  (19)

These local densities relate to the matter density, the kinetic
density, and the Cartesian spin-current pseudotensor density,
respectively. See Appendix A for more details. Provided that
large enough ny,x and mp,, give an accurate reproduction of
the Fock contributions to the energy [Egs. (10), (11), and (12)],
the benefit of expansion of Egs. (15) and (16) is to provide a
local approximation of the form (for time-reversal-invariant
systems)

Ef ). / dR { A" pg(R)pg(R) + A”" py(R)7,(R)
q

+ AP o (R)Ap,(R) + AP oy (R)V - J,(R)
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+ AV Y py(R) - Jy(R) + A7 > Ty 1y (R) gy (R)

v

+4% [(Z Jq,,m(R)) (Z Jq,mxm)
n "
+y Jq,W<R)Jq,W(R>} }

Y
+Y f dR {B”"pq(R)pq(R) + B p,(R)7;(R)
q

+ B*% p,(R)Ap;(R) + B p,(R)V - J5(R)
+ BV p,(R) - Jg(R) + B D"y (R 10 (R)

j7AY;
+B77 [(Z J[,,MR)) (Z Jq,,m(m)
n n
+> Jq,,w(R)J,,,U,L(R)} } , (20)
Uy

which is nothing but a local Skyrme-like EDF with couplings
microscopically derived from the vacuum interaction. The
couplings depend on the yet to-be-specified momentum scale
k, and they are given by integrals of the finite-range NN
interaction over various combinations of Il functions, for
example,

APP[k) ~ 4z / r2drodT ()[4 Ger)]’ (21)

Complete formulas for all the couplings appearing in Eq. (20)
are provided in Appendix B. Before coming to the details of
the DME method, a few remarks are in order:

(i) Eventually, the momentum scale k will be linked to the
local Fermi momentum k%(R), or to a similar function,
such that all couplings become density and position
dependent. From Eq. (21), one sees that such density
and position dependence is a direct consequence of the
finite range of the N N interaction. In this respect, the
form given in Eq. (20) is more general than any existing
empirical Skyrme EDF.

(i) Owing to such a density and position dependence of
the couplings, terms that are usually connected through
a partial integration [e.g., o,(R)Ap,(R) and Vo, (R) -
Vp,(R)] can in general no longer be transformed into
one another. As a result, one keeps both types of terms
explicitly in the resulting EDF.

(iii) Starting from a realistic vacuum Hamiltonian contain-
ing a three-nucleon force, one obtains a richer EDF
including a wealth of trilinear terms [22]. Including
such terms will be eventually essential to any realistic
application of the present work.

(iv) Equation (20) is to be complemented with the Hartree
contribution that can either be put under the form
of a local EDF or treated exactly. Regardless, the
EDF thus obtained only contains the physics of the
HF approximation such that further correlations must
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be added to produce any reasonable description of
nuclei. In the short term, such an addition can be done
empirically by adding these DME coupling functions to
empirical Skyrme functionals and performing a refit of
the Skyrme constants to data. This phenomenological
procedure is motivated by the earlier observation that
a Brueckner G matrix differs from the vacuum NN
interaction only at short distances. Therefore, one
can interpret the refit to data as approximating the
short-distance part of the G matrix with a zero-
range expansion through second order in gradients.
Eventually though, and as already stated, it is the goal
of a future work to design a generalized DME that is
suited to higher orders in perturbation theory.

B. Existing variants of the DME

Several DME variants applicable to the HF energy have
been developed in the past [16,27-29]. They mainly differ
regarding (i) the choice made to fix the momentum scale
k, (ii) the path followed to obtain actual expressions of the
IT functions (see the following), and (iii) the set of local
densities that occur in the expansion. For instance, the DME
of Ref. [27] is a variant of the original one proposed by Negele
and Vautherin (NV-DME) [16] that improves the accuracy of
the expansion obtained at first order (n,x = 0) by optimizing
the momentum scale k. The DME of Ref. [29] is based
on a semiclassical extended Thomas-Fermi approximation,
whereas the one proposed in Ref. [28] is a phenomenological
method that introduces parameters to be optimized to obtain
the correct local semiclassical kinetic energy density and
integrated projector identity of the OBDM [see Eq. (30)].

C. Motivation for a PSA reformulation of the DME

The central part of the present work relates to a new and
more general DME variant that is based on phase-space-
averaging (PSA) techniques. It will be denoted as PSA-DME
throughout. The need for such a new formulation of the DME,
in light of the number of already available variants, relies on
the following observations:

(i) Existing DME formulations have focused mostly on
the scalar part of the OBDM. For instance, Negele and
Vautherin acknowledge in their seminal paper that they
were not able to design an approximation of the vector
part of the OBDM on the same level, and thus with the
same accuracy, as the one they obtained for the scalar
part. This is an essential problem in view of constraining
nonempirically the nuclear EDF. Indeed, the vector part
of the OBDM is nonzero in spin-unsaturated nuclei (i.e.
in almost all nuclei).

(i)) The PSA reformulation proposed in the following
provides a consistent derivation of the DME expansion
of both the scalar and the vector pieces of the OBDM.
In addition, it recovers the NV-DME as a particular
case, such that one is offered the freedom to choose in
a consistent fashion the variant that best optimizes the
reproduction of the each of the three Fock contributions
to the energy.
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(iii) In the PSA approach, one uses information from
the local momentum phase-space distribution of the
system of interest to optimize the DME length scale k
and to produce analytical expressions for the I"I/; (kr)
functions.

(iv) Finally, it should be pointed out that all available
DME techniques hold only for time-reversal-invariant
systems. Hence, an approach that can be extended
to non-time-reversal-invariant systems is important
to constrain the nuclear EDF for non-time-reversal-
invariant systems. In that respect, the requirements of
Galilean invariance (alternatively gauge invariance) can
be used to establish various relations between the IT
functions multiplying certain time-even and time-odd
densities [25,30].

Note that the PSA formulation of the DME is not completely
new. Negele and Vautherin mentioned the possibility of using
such an approach, having in mind to use the phase space of
infinite nuclear matter, before reverting to a formal Bessel-
function plane-wave expansion. From a formal point of view,
the PSA approach developed here differs from that mentioned
in Ref. [16] and is applied consistently to both the scalar and
the vector parts of the OBDM. For instance, in spite of the weak
angular dependence of the scalar part of the OBDM [31], the
inconsistency in the order of application of the angle-averaging
and series expansion that exists in Ref. [16] is not an issue in
the present case.

D. Momentum phase space of finite Fermi systems

A finite Fermi system exhibits peculiar properties for the
momentum phase-space distribution that are not present for
homogeneous systems. The intent of this section is to mention
those features that are relevant to the present work. The local
momentum distribution of quantum systems can be studied
via a multitude of quantum phase-space distribution functions
[32]. By using the Wigner distribution in Ref. [19] and the
Husimi distribution in Ref. [20], the local single-particle
momentum distribution is shown to display a diffuse and
anisotropic Fermi surface when sitting at the (spatial) surface
of the finite system. For reasons discussed in Sec. III E, the
diffuseness is not as important as the anisotropy. Hence,
we now describe a method that can be used to quantify the
anisotropy of the local Fermi surface.

In Ref. [20], the local quadrupolar deformation of the
momentum Fermi surface (for a given isospin) is given by’

[ dpl3(e, - p)* — p*1H,(r, p)
J dpp*Hy(r, p)

3
= >l Vgl — 1| + O (kero)].
7,(r) <

(22)

Pl(r)=

5 As the anisotropy is usually not large, it is not necessary (at least

in this work) to go to higher multipoles to quantify the deformation.
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where H,(r, p) is the Husimi distribution, ry is a length scale
used in the Husimi distribution, and k’f; is a shorthand notation
for the local Fermi momentum k‘}(R) defined in a local density
approximation through

k% = [37%p,(R)]'/3. (23)

Equation (22) is computed in the basis ¢; (rg) that diagonalizes
0, that is, the basis from which the Slater determinant
|®) is built.® A simplified expression of qu (r) in spherical
symmetry suitable for semi-magic nuclei is provided in
Appendix C.

Figure 1 shows the quadrupole anisotropy of the local
neutron momentum distribution calculated for a selection
of semi-magic nuclei. Single-particle wave functions are
obtained from a Skyrme-EDF calculation performed with
the BSLHFB code [33] using the SLy4 parametrization of the
Skyrme EDF with no pairing. Figure 1 also displays the local
neutron Fermi momentum [Eq. (23)] to locate the position of
the nuclear surface. In spite of pronounced shell fluctuations,
the result corroborates the conclusions drawn in Ref. [20];
P} (R) becomes negative just inside the surface, denoting an
oblate momentum Fermi surface whereas, outside this region,
the local momentum Fermi surface becomes strongly prolate.
In both cases, we have taken an axis normal to the nuclear
surface as the reference axis. The next two sections show how
we make use of these properties of the phase-space distribution
of finite Fermi systems to design our PSA-DME.

E. The scalar part of the OBDM

In a nutshell, the PSA approach consists of three basic
steps: (i) the isolation of the nonlocality as an exponential
derivative operator acting on the OBDM, (ii) the expansion
of that operator around a momentum scale Kk, and (iii) the
averaging of that momentum scale over the local momentum
distribution of the system of interest.

Applying the first two steps to the scalar part of the OBDM
of a time-reversal-invariant system, one writes

r r
R+-,R- -)
Pa ( 22
=) ¢ (020q)ei(rioq)p]
io
. V-V .
= e T T N " (0 )gi(ri0q) o]

io

. V, -V
:e”"k{lﬁ-r'(%_ik)

1 V, -V 2
+z[r'<%‘“‘>”

x Y @l (roq)ei(rioq)p]

io

l'1=l'2=R

(24)

r=r,=R

®When using a reference state of the Bogoliubov type, the
corresponding basis of interest is the so-called canonical basis.
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FIG. 1. (Color online) The quadrupole anisotropy P; (R) of the
local neutron momentum distribution in a selected set of semi-magic
nuclei. The black, red, and blue vertical lines indicate the approximate
half-radii (where the density becomes half of the density at the origin).

Before approximating the action of the nonlocality operator,
erV1=V2)/2 "3 phase factor ¢'™* was extracted to perform a
Taylor series expansion of the nonlocality about the momen-
tum scale k. We presently truncate the expansion at second
order although nothing prevents us from studying higher
orders in principle. The next step consists in performing
an angle averaging over the orientation of r, which is a
reasonable step as the scalar part of the OBDM has negligible
dependence on the orientation of r [31]. See Appendix D for
details.

The final step involves averaging the dependence on the
momentum scale k over a model phase space that characterizes

014305-6



IMPROVED DENSITY MATRIX EXPANSION FOR SPIN- ...

the system under study. Performing the PSA of a function
g(Kk) over the locally equivalent pure isospin infinite matter
phase-space, that is. defining G(k%) as

G(K}) = —

= dkg(k), (25)
4711{%3 /k|<k‘; 8

one obtains for time-reversal-invariant systems

5 )
2

~ 15 (k) g (R) + T3 (k)
1 3 q2
X Zqu(R) - 7,(R) + ng PR |, (26)
with
Ji(kER)r)

Prd ) =

Iy (kér) = 3 Ry 27
Pl Ji(kE®R)r)

I (kir) = 3—% B (28)

For details of the derivation, refer to Appendix D. Several
comments are in order:

(i) The phase space of finite nuclei has a marked dif-
ference from that of INM [19,20]. Still, using INM
phase space suffices for the scalar part as will be
apparent from the results discussed in Sec. IV B.
This is because, unlike the vector part of the OBDM
discussed in the following, the scalar part is a bulk
quantity with most of its contribution coming from the
interior of the nucleus where, to a good approxima-
tion, the momentum distribution resembles the one of
INM [31].

(i) By dealing separately with the neutron or proton
OBDM in a finite nucleus, it is natural to perform the
corresponding PSA over the phase space of the locally
equivalent neutron or proton infinite matter. However,
this provides IT functions with an explicit isospin
dependence that eventually breaks the explicit isospin
invariance of the EDF (but not its isospin symmetry).
By considering the small difference between k% and
the total local momentum kr(R), defined in terms of
the total density p(R) = p,(R) + p,(R) through

3n2 13

it might be preferred to perform the PSA over the phase
space of symmetric nuclear matter, even in a neutron-
rich nucleus. In any case, all results presented here
are obtained using k% but would not be significantly
different if using kr instead.

(iii) The DME is not a naive Taylor expansion of the
OBDM with respect to the nonlocality r. The I1
functions resum dependencies on r to all orders such
that the long-distance-limit behavior of the OBDM is
reproduced (see the following). However, as noted in
Ref. [16], the truncation of the expansion about k to

PHYSICAL REVIEW C 82, 014305 (2010)

second order leaves the specific value of the coefficients
of terms beyond k%.r undetermined [in the Taylor series
expansion of I15(k%r)]. This indeterminateness gives
one the freedom to optimize IT5, which can be viewed
as selecting a different rearrangement and truncation of
the expansion [16].

(iv) The zeroth-order IT function I"[g (k’;r) found here is
exactly the one found in the original NV-DME of
Ref. [16]. Just as in the NV-DME, the leading term of
the PSA-DME reproduces the exact OBDM of infinite
nuclear matter. The second-order IT function 15 (k%r)
is different’ from the one found in Ref. [16]. However,
this relates to the previous remark that emphasized
the freedom in choosing the second-order IT function.
Moreover, we will find in Sec. IV that these differences
are rather small for contributions to the Fock energy.
Therefore, our PSA-DME of the scalar part of the
OBDM is essentially equivalent to the NV-DME of
Ref. [16].

The freedom mentioned here can be used to adjust 15
to satisfy certain properties of the exact OBDM, or sim-
ply to optimize the quality of the approximation through
a comparison with realistic a OBDM. One example re-
lates to the integrated idempotency of the OBDM: For
neutrons,

N = /drpn(r)= // dridrs|p,(r, r)>. (30)

As shown in Ref. [34], there is a class of DME that satisfies
this constraint. Unfortunately, the I15 given in Eq. (28) does
not satisfy this constraint. Even though the non-self-consistent
result given in Sec. IV B is satisfactory, this might not be the
case in a self-consistent test.

Other constraints on the IT functions come from the
expected limits for large and small values of . The IT functions
should go to zero in the large-r limit, whereas for small r,
the expansion must reduce to a simple Taylor series. These
requirements8 lead to [25,30]

115(0) = M5(0) = 1, (31)

1 (0) = 15" (0), (32)
lim T4 = lim T2 = 0. (33)
r—00 r—00

It can easily be shown that these constraints are satisfied by
the IT functions listed in Eqs. (27) and (28).

F. The vector part of the OBDM

Restricting again the discussion to time-reversal-invariant
systems and applying the same steps as for the scalar part of

"The Bessel expansion of Ref. [16] ) =
105 js(k5r)/(kgr)®.
8The small-r constraints are obtained by setting r = O after the

Taylor expansion is performed.

provides
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the OBDM, one obtains for its vector part

r r
Sq <R + E, R - E)
= Z @i (r200q) (02 |0 |01) @i (r1019) P

. V-V
— ezr-ker-( 1722

N 9} (raoag) (020 |on)

[(T[Gz

X ¢;(r161q) P}l =r,=R

‘ V-V
~ ik {1 +r. (% — ik>} > ¢f(r09)

iO']O'Z
X (02]0|01) @i (r1619) P}k v =, =R, (34)

where only the first-order term in the expansion of the
nonlocality operator was kept for reasons explained in the
following. One also notes that the zeroth-order term provides
the local spin density s, (R), whichis zero for the time-reversal-
invariant systems we are considering. In Ref. [16], it was
argued that averaging over the orientation of k and setting
k = k. should be sufficient to provide a reasonable account of
the vector part of the exact OBDM. This gives

r r .
sg (R+ SR- 5) ~ i (kEr) Y rudg @R, (35)
"

where
I (k%r) = jo[kERF]. (36)

If instead one applies the same procedure as for the scalar
part of the OBDM and performs the PSA over the lo-
cally equivalent pure-isospin infinite-matter phase space, one
obtains’

Ji(KER)r)

kLR)r ©7

5 (ktr) =3
However, as mentioned in Sec. III D, the local momentum
distribution in the surface region of a finite nucleus has a
markedly different behavior than the isotropic momentum
distribution of infinite nuclear matter. Given that the vector
part of the density matrix peaks around the nuclear surface, it
seems more appropriate to perform the PSA over a deformed
Fermi sea that incorporates the information contained in the
function qu (R) discussed in Sec. I[II D. The details are given
in Appendix E. The final result differs from that in Ref. [16]
only in the analytical form of I15. The result reads

Ji[kER)r]

s (14 —
Hl(kFr) =3 /E%(R)r s (38)
where
Y 2+2Pf R\,

The PSA over the locally equivalent neutron or proton
infinite matter modifies the analytical form of Il compared

°See Appendix E for details.
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to NV-DME [i.e., compare Eqs. (37) and (38)]. In addition,
and in contrast to the scalar part of the OBDM for which
it is unimportant, taking into account the deformation of the
local momentum distribution of the finite system leads to a
modification of the relevant momentum scale lglqp. In view of
isolating the significance of such an effect, while preserving
the benefit of using PSA, one can set qu (R) = 01in Eq. (39).
In Sec. IV C, we discuss and compare the accuracy obtained
using all of the preceding variants.

Note that the expansion was limited to first order in Eq. (34).
This is because, for time-reversal-invariant systems, the
Cartesian spin-current pseudotensor density J; ,,(R) and its
gradients are the only standard local densities at hand to
express the DME. Given that, we could not find any closed
and parameter-free expression of higher order contributions in
terms of such local densities only. This points however to the
possibility of studying higher order terms in the context of the
generalized Skyrme EDF discussed in Ref. [6].

Finally, one can easily verify that the large- and small-r
limits,

I(0) = 1,

M@©) =0, and lim [1{=0, (40)

r—>0oQ0
mentioned at the end of Sec. IIIE are satisfied by the
expressions of ITj given by either Eq. (37) or Eq. (38).

IV. COMPARING PSA-DME AND NV-DME

The accuracy of our newly developed PSA-DME needs to
be tested against both non-self-consistent and self-consistent
HF calculations. A self-consistent test of the PSA-DME is
the aim of a forthcoming publication. As explained in the
following, we limit ourselves in the present paper to gauging
the accuracy of the NV-DME and the PSA-DME against
two non-self-consistent measures. Where relevant, we also set
qu (r) = 01in the PSA-DME of the vector part of the OBDM to
isolate the significance of using a deformed local momentum
Fermi surface. We denote that last variant as INM-DME.

A. Inputs to non-self-consistent tests

The generic form of the central, spin-orbit, and tensor
interactions considered here have been given in Sec. II C. The
radial form factors used in the present calculations for either
of those interactions take the form of (i) a Gaussian or (ii) a
renormalized Yukawa (according to Ref. [35]). Specifically,
we use

er_rz/az,
vl (r) = (41)
L [emrerfe (%= —rd) — (r —> —r)],

independently of the (S, 7') channel and with vy = 50 MeV,
a = 1.5 fm, and m, = 0.7 fm~!. The momentum cutoff A is
set equal to 2.1 fm~! and erfc is the complementary error
function. It must be stressed that none of these interactions are
realistic two-nucleon interactions; rather, they are schematic
representatives. The objective of the present study is to gauge
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the accuracy of the DME variants against a reasonable refer-
ence point that is not itself meant to provide useful or realistic
results. The application of the present DME scheme to realistic
chiral two- and three-nucleon interactions is the objective of a
forthcoming publication [22]. Finally, note that neutron density
matrices and local densities used in the following sections have
been obtained, for all semi-magic nuclei of interest, through
spherical self-consistent EDF calculations employing the SLy4
EDF parametrizations with no pairing.

B. Fock contribution from V¢

The expression of the Fock contribution to the energy from
the central part of the two-nucleon interaction is given in
Eq. (10). It contains a bilinear product of nonlocal matter
densities as well as a bilinear product of nonlocal spin
densities. Since the latter also appears as part of the tensor
contribution to the Fock energy [see Eq. (12)], we postpone
the discussion regarding the spin-density product to Sec. IV C.

Before comparing the Fock energy to its DME counterpart,
we first conduct a more stringent test on the energy density
in which the integration over the angle of r has already been
performed; that is, we compare the integrand

1
CLR,r) = = /derpn(rl, r)pa(ra, 1) (42)

to its DME counterpart
CPMER, r)
2
= (117 (K3r)]*2u (R)p,(R) + - T1G (k) TS (k) 21 (R)
x (20 (R) — 7,(R) + 2k p,(R)) , (43)

where the latter depends on which variant of the DME has been
adopted.'” By having in mind existing empirical Skyrme EDFs
that contain only up to two spatial derivatives, terms containing
fourth-order gradients have been truncated in C,BIME(R, r). A
consistent account of such fourth-order derivatives in the EDF
would require going to fourth order in the DME itself, which
is beyond the scope of the present study. This is an important
point that underlines our philosophy that the primary purpose
of the DME method is not to reproduce the fine details of
the OBDM, but rather to reproduce as best as possible the
energy density and the total energy at a given order in the
expansion. The latter two are precisely what is gauged in this
paper, whereas no tests dedicated to the reproduction of the
OBDM by itself are performed.

OWe denote such integrands as energy densities throughout the
paper. Strictly speaking, it is necessary to multiply them by the
interaction to obtain the dimension of an energy density. Still,
we postpone the folding with the interaction to the second measure
introduced in the following.
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FIG. 2. (Color online) Comparison of C/ (R, r) and CPME(R, r),
where the latter is either computed from NV-DME or PSA-DME I1
functions. Upper panels: Two-dimensional integrands. Lower panels:
Ratios of CPME(R, r) over C[' (R, r) for fixed values of R. Densities

are obtained from a self-consistent EDF calculation of 2**Pb with the
SLy4 Skyrme EDF in the particle-hole part and no pairing.

Figure 2 shows'' that both NV-DME and PSA-DME
provide comparably good profile reproduction of the integrand
CT(R, r) within the typical range of nuclear interactions
(r ~ 2 fm). Beyond such a nonlocality, the quality of the
reproduction deteriorates significantly, with that of PSA-DME
deteriorating slightly faster. In addition, one sees from the
lower panels of Fig. 2 that the quality of the reproduction de-
creases as one goes to the nuclear surface (i.e., for R 2 4 fm).
This could be slightly improved by taking into account
the deformation of the local momentum distribution when
designing the PSA-DME for the scalar part of the OBDM,
which we do not do here. Note also that, although the plots
are provided for two sample nuclei, more systematic tests have
been performed over several semi-magic isotonic and isotopic
chains that support such conclusions.

""Note that for semi-magic spherical nuclei used in the present paper,
the energy densities C/ (R, r) and CPME(R, r) only depend on the
magnitude of R.
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Coming to the energy itself [i.e., to the integrated product
of the interaction ve(r) with the central energy density], we
compare'?

nn

Ef[nn] = 4n / dRdrr*ve(r)CE (R, 1), (44)

ERME[nn] = 4n f dRdrr*vc(r)CPMER, ). (45)

Figure 3 shows the relative error obtained from the two
DME variants compared to the exact Fock contribution for
both the Gaussian and the renormalized-Yukawa radial form
factors and for three semi-magic isotopic chains.

Let us start with Fig. 4, which shows that the dependence
of the accuracy on the range of the (Gaussian) interaction used
is significant (i.e. about a factor of 2 between a = 1.0 fm and
a = 1.5 fm). As can be expected from the two-dimensional
density profiles in Fig. 2, the accuracy decreases as the
range of interaction increases, which holds for all available
DME techniques [16,27-29]. This stresses that the local
quasi-separability of the OBDM with respect to r and R
underlining the DME, which is exact in INM, deteriorates
with increasing nonlocality r in finite nuclei. As long as
the hypothesis of quasi-separability is well realized within
the range of the interaction, the DME can be quantitatively
successful.

On average, the error obtained with PSA-DME and
NV-DME are similar, as can be seen in Fig. 3 (i.e., about
6%—8% for the three isotopic chains and for both for the
Gaussian and the renormalized-Yukawa interactions). In a
future publication, we demonstrate that one can obtain a
better accuracy (1%— 2% error) by using a parametrized and
empirically optimized phase-space distribution that takes the
diffuseness of the Fermi surface into consideration. A similar
improvement over that of Ref. [16] is reported in Refs. [27,28].

C. Fock contribution from V

We now turn to the Fock contribution coming from the
tensor part of the two-nucleon interaction. As shown by
Eq. (12), such a contribution involves bilinear products of
nonlocal spin densities. In fact, two terms with different
analytical structures emerge such that the exchange tensor
energy-density reads'?

TR =T R )+ TR r), (46)

nn, n,

1
Tnﬁ,l(R’ I") = E /dersn(rlv 1‘2) . Sn(rZa rl)v (47)

12We do not analyze individual couplings of the Skyrme-like EDF
produced through the DME [Eq. (20)] in the present paper, but rather
we test the complete Fock energy provided by each of the terms
(i.e., central, tensor, and spin-orbit) of the two-nucleon interaction.
We postpone to a forthcoming publication [22] the analysis of the
EDF couplings computed from realistic two- and three-nucleon chiral
interactions using Appendix B.

3We recall that the weights of the two terms have been omitted in
agreement with Eq. (12).
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FIG. 3. (Color online) Percentage error of EPME[nn] compared
to EL[nn], where the former is either computed from NV-DME or
PSA-DME I1 functions. Densities are obtained from self-consistent
EDF calculations using the SLy4 Skyrme EDF in the particle-hole
channel and no pairing.

1

F _ Tulv
T2 Rr) = o— [ de Y Loms, (0, 125, 1),
y7aY

(48)

where T, | (R, r) also appear in the central contribution to the

Fock energy. The two DME counterparts, which eventually
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FIG. 4. (Color online) The same as Fig. 3 but for two different
values of the range of the Gaussian interaction.

depend on which variant of the DME is being adopted, read

2
Tt (R, 1) = == [T (K}r) Z Ty (R Ty (R),
W, V=x
2
TR r) = — 1[5 ()] Y U R, R

U V=X
+ I, R wu (R) + T 1o (R) T 10 (R))

and reduce for spherical systems to
2

DR, 1) = = [T} (6r) P9, R) - 3, (). (49)
TSR =0 °

One recovers a pattern that is seen when deriving the
empirical Skyrme EDF from an auxiliary Skyrme effective
interaction. That is, the central part of the interaction only
produces the symmetric bilinear tensor terms proportional to
Jn, v (R) 100 (R) whereas T,Blth(R, r), which contains asym-
metric bilinear tensor terms proportional to Jy 0w (R) v (R),
solely comes from the tensor interaction [36]. This can be
easily traced back to the spin-space coupling that characterizes
the tensor operator. Since the numerical tests are presently
carried out for spherical systems, we are only concerned

with 7/ | (R, 7) and TpME(R, 7). For spin-unsaturated nuclei,

nn’l(R, r) is highly localized around the nuclear surface, as
seen in Fig. 5 for 28 Pb. The same figure shows the progressive
and significant improvement that the PSA approach brings
to the DME of the vector part of the OBDM. Within the
typical range of nuclear interactions, NV-DME falls off
much faster than PSA-DME. Less importantly, NV-DME
also introduces artificial and pronounced structures in a
region that corresponds to the tail of the interaction. Both
of these drawbacks are rectified progressively by PSA-DME.
Although most of the improvement is already brought by the
spherical PSA [ P,(R) = 0], an even better accuracy is obtained
by incorporating the quadrupolar deformation P,(R) of the
local momentum Fermi distribution. The overestimation of
Tn‘;’l(R, r) at very small r seen for all DMEs in the lower
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FIG. 5. (Color online) Comparison of Tnn (R, r) and
TOME(R,r), where the latter is computed from NV-DME,
PSA-DME or from PSA-DME with P}(R) = 0, which we denote
as INM-DME. Upper panels: Two-dimensional integrands. Lower
panels: Ratios of T)MF(R, ) over T,f (R, r) for fixed values of R.
Densities are obtained from a converged self-consistent calculation
of 28Pb with the SLy4 Skyrme EDF in the particle-hole channel and

no pairing.

panels of Fig. 5 corresponds to a region where the integrand is
small and where its weight is further reduced in the integrated
energy by the r? phase-space factor.
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Coming to the energy itself [i.e., to the integrated product

of the interaction vr(r) with the tensor energy density], we
compare

Ef[nn] = 4n / dRdrr*vr(r)TE (R, r), (51)
EXME[nn] = 4n / dRdrr?vr(r)TPMER, ), (52)

which for spherical nuclei reduce to the contribution from 7, |
and T,)ME. Figure 6 shows the relative error of NV-DME and

Gaussian + NV-DME
------ Gaussian + PSA-DME
Cr —-— Yukawa + NV-DME
e Yukawa + PSA-DME

40.0 \ — \\\

N
e
o

20.0 .o

Percentage error

0.0 1——

60.0

40.0

20.0

Percentage error

0.0

60.0

40.0

20.01 .

Percentage error

0.0 == === ==

94 102 110 118 126 134

FIG. 6. (Color online) Percentage error of EPME[nn] compared
to E}v [nn], where the former is either computed from NV-DME or
from PSA-DME. Densities are obtained from self-consistent EDF
calculations using the SLy4 Skyrme EDF in the particle-hole channel
and no pairing. Notice the different vertical scale compared to Fig. 3.
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PSA-DME compared to the exact Fock contribution, for both
the Gaussian and the renormalized-Yukawa radial form factors
and for three semi-magic isotopic chains. For both types of
interaction, the percentage error of NV-DME easily reaches
40%. This is in contrast to PSA-DME whose percentage error
is typically within £10% for most parts of the three isotopic
chains. This can be traced to the fact that, whereas both
NV-DME and PSA-DME overestimate the reference quantity
for small r (typically less than 1 fm), NV-DME decreases
much faster with r, thereby overcompensating for its initial
overestimation. In contrast, PSA-DME stays close to the exact
value for a much larger range of r values.

There exist short sequences of isotopes for which the
percentage error shows a considerable increase. The fact that
both DMEs display such a feature suggests that the problem is
independent of the specific form of the I function used. To
identify the source of the problem, Fig. 7 shows X | (R, r) for
three nuclei displaying a sudden loss of accuracy. One notices
that 7, | (R, r) extends over larger intervals in R and r than
for 2%8Pb (see Fig. 5). This corresponds to the fact that the
selected nuclei are nearly spin saturated and generates very

Exact - %4Cr Exact - 114Sn

— Gaussian

>

""" Yukawa

E
T

<v

20.0

0.0

50 58 66 74 82 96 104 112 120 128
N N

FIG. 7. (Color online) A few representative nuclei with diffuse
T\ (R, r) together with absolute Ef[nn] for the corresponding
isotopic chains. Densities are obtained from a self-consistent EDF
calculation using the SLy4 Skyrme functional in the particle-hole
part and no pairing.
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small £ TF [nn] in absolute value, as seen from the lower panels
of Fig. 7. As a result, the relative inaccuracy of any DME
becomes large and the percentage error increases suddenly. Of
course, the resulting error in the total EDF remains very small
as the corresponding tensor contribution is negligible anyway
[i.e., the local spin-orbit density J, (R) is close to zero in nearly
spin saturated nuclei]. Eventually, those sudden losses of rel-
ative accuracy are not as worrying as Fig. 6 initially suggests.

In conclusion, the use of PSA techniques has allowed us to
bring the DME applicable to the bilinear product of nonlocal
spin densities on the same level of accuracy as for terms
depending on the scalar part of the OBDM. One could certainly
work even harder to bring the overall DME accuracy below 1%.
This could be achieved (i) by allowing free parameters in the I1
functions to be optimized on a set of reference calculations'*
and/or (ii) by going to higher orders in the DME, consistently
for both the scalar and the vector parts of the OBDM. This
should however be done within the frame of the generalized
Skyrme EDF proposed in Ref. [6].

D. Fock contribution from V; ¢

1. Basic analysis

We now turn to the spin-orbit contribution to the Fock
energy. As shown in Eq. (11), and unlike for central and tensor
forces, such a contribution involves both the scalar and the
vector parts of the OBDM. In this case, we first compare the
spin-orbit energy density

LSI(R,7) = ﬁ/defsn(rl, r2) -t X Vap,(ra,ry)  (53)

to its DME counterpart

LSOMER, r) = -ns (Kir) Z € J, (R

v, Bp=x
x Vi (TG (k) pu (R)).

which eventually depends on which variant of the DME is
being adopted' and which reduces for spherical systems to

LSPMER, 1) = LIT3 (k2r) 20, (R) - Ve (112 (K2r) pu(R)).
(54)

Note that terms containing more than two gradients have been
truncated in LSPME(R, 7).

Figure 8 shows that PSA-DME significantly overestimates
(in absolute values) the maximum peak of LS LR, r) at
the nuclear surface. In addition, oscillations at larger r (i.e.
in the tail of the two-nucleon interaction) are not captured

14 As will be shown in a future publication, parametrizing I} cannot
remove the sudden loss of relative accuracy discussed here for spin-
saturated nuclei. As already stated, this is not a problem in the end as
the corresponding contribution to the energy is negligible anyway.

15The numerical tests shown in the present section actually use INM-
DME rather than PSA-DME (i.e. k% is employed rather than k% in
I1}). We still 1abel the results as PSA- DME as no significant difference
is seen compared to INM-DME.
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FIG. 8. (Color online) Comparison of LS,m(R r) and

SDME(R r), where the latter is computed from either NV-DME
or PSA-DME. Upper panels: Two-dimensional integrands. Lower
panels: Ratios of LSDME(R r) over LSnFn (R, r) for fixed values of R.
Densities are obtained from a converged self-consistent calculation
of 2%8Pb with the SLy4 Skyrme EDF in the particle-hole channel and

no pairing.

by PSA-DME. In contrast, NV-DME reproduces relatively
well the density profile LS’ (R, r), in particular for the main
peak at the nuclear surface. This suggests that the significant
improvement for PSA-DME over NV-DME in reproducing
the tensor energy density does not transpose to the spin-orbit
energy density. The previous assertions are supported by tests
carried over several isotonic and isotopic chains. Looking for
possible improvements, we tested that including truncated
higher order terms associated with the action of Vg on
(1/4Ap, — T, + 3/5kF pn), when going from Eq. (53) to (54),
does not improve the accuracy of PSA-DME.

Coming to the energy itself [i.e. to the integrated product
of the interaction vy g(r) with the spin-orbit energy density],
we compare

E[slnn] = 4n / dRdrr*v s(r)LSE (R, 1) (55)

EPYE[nn] = 4n / dRdrr*vps(rr’LSPMER, 1) (56)
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Figure 9 shows the percentage error obtained for three
isotopic chains. In agreement with the analysis done for the
spin-orbit energy density, the percentage error of PSA-DME
is impractically large and negative, in the range of —15% to
—50% for the two schematic interactions used. In contrast,
NV-DME provides a much better accuracy with percentage
errors within £10% for most studied isotopes. Last but not
least, one notes that the spikes in the percentage errors already

Gaussian + NV-DME
—————— Gaussian + PSA-DME

_ 25.0 Cr —-— Yukawa + NV-DME
e | e Yukawa + PSA-DME
b —-= '\
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FIG. 9. (Color online) Percentage error of EPYE[nn] compared

to E { s[nn], where the latter is either computed from NV-DME or
from PSA-DME. Densities are obtained from self-consistent EDF
calculations using the SLy4 Skyrme EDF in the particle-hole channel
and no pairing. Notice the different vertical scale compared to Figs. 3
and 6.
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discussed in Sec. IV C arise for the same isotopes and relate
to the vanishing nonlocal spin density in near-spin-saturated
nuclei.

2. Further investigation of the spin-orbit exchange

The results of the previous section show that NV-DME is
better suited than PSA-DME for reproducing the spin-orbit
contribution to the Fock energy. This can be confounding
in light of the better accuracy obtained using PSA-DME to
reproduce the tensor contribution to the Fock energy. We can
infer from Fig. 5 that NV-DME underestimates the main peak
of the nonlocal spin density whereas the latter is well captured
by PSA-DME. It is thus puzzling to find the opposite for the
Fock spin-orbit energy density. In the following we employ a
toy model of the OBDM of finite nuclei to show that this is
due to a fortuitous cancellation of errors.

Having already a handle on the nonlocal spin density
s4(ry, r2), we focus on the term it multiplies in the spin-
orbit energy density, that is, r x V,p,(ry, rz), which we
first approximate by r x Vrp,(r(,r;) owing to the weak
dependence of the nonlocal matter density on the orientation
of r [31]. Hence, and focusing arbitrarily on neutrons, we want
to compare the two quantities

Ge = Vroa(R, 1), (57)
Gome = Vr(IT{ (Kfr) pa(R)), (58)

where the latter is independent of whether NV-DME or
PSA-DME is used. To do so, we employ a toy model in
which the nonlocal and local matter densities are built from
a three-dimensional harmonic oscillator model with smeared
occupancy [37]. The corresponding analytical expressions, as
given in Ref. [37], read as

141
on (R+ R- g) = exp [—1/40[%21 +

> — t} Pn(R),  (59)

203 23 1—1
A 232 a2t Tl
on(R) = n3/2(1 ) CXP[ a°R 1+t},

(60)
where o = mw/h, and from [ p,(R)YdR = N, we have

t=1-(2/N)"3. From Egs. (59) and (60), one easily
obtains

r r s o L+t
Vion (R+ 3. R—3) = oxp| —1/4a’r* | [Vap (R,
2 2 1—1t
(61)
do? 11—t
Vron(R) = ———(1 —t>)>——R
rAn(R) T ) 1
xexp| —a?RL! (62)
P 14+1]
The corresponding PSA-DME reads
(R+3R-3)
Pn > )
Ji(kpr) P+t o, 2,
~A3I—— 1+ — | —— -k 2 (R), (63
e [T T k) e ®) (63)
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such that, given the definition of qu(R), one can easily obtain
Ve[IT§ (kr) o(R)] = jo (ki) VRoa(R) (64)
and show that

Gpme(R, 1) | 5,41
ZOMERR T (gn 14221 |
Grr ki) eXp[ e

To study Gy quantitatively, we fix the inverse oscillator
length, «, using the Blomqvist and Molinari formula [38]
li.e., 1/a® = (0.90A'/3 +0.70)]. In subsequent discussions,
we take reasonable combinations of A and N although we show
that the conclusions of the present section are independent of
the actual value of A.

Before analyzing the behavior of Giq0(R, 1), it is worth
noticing that the toy nonlocal matter density is exactly
separable in relative and center-of-mass coordinates. Since
such a separability is an inherent (usually only approximate)
aspect of the DME, we expect the latter to work well in the
present case [37]. Computing the same ratio as in Gqio(R, 1)
without the gradient operators, we do indeed obtain the good
performance of the DME as is visible in Fig. 10. Note in
particular that the ratio is independent of the value of R.
Such a result proves that the toy model provides a situation
comparable to the one studied in Sec. IV B (i.e., the DME of
the scalar part of the density matrix performs well). Such a
performance sets the stage in view of qualifying the results
obtained in the following for G, (R, 1).

To identify the short-distance behavior of G,0(R, 1), we
perform a Taylor series expansion in r:

N K2 aX(1+1)\ ,

Gratlo(Rs I') ~ 1+ < 6 + 4(1 — l) )

Looking close to the surface of the nucleus, one can neglect

k"?/6 in comparison with the second term of Eq. (65). Defining
Gemror(R, 1) = Grai0(R, 1) — 1, One obtains

(1 +1) 2
ai-1 -

Equation (66) is valid around the nuclear surface. Inside
the nucleus, one cannot neglect the first term (k’;2/6) of

GrioR, 1) =

(65)

GCITOI’(R’ I') ~ (66)
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FIG. 10. (Color online) Ratio of the DME [Eq. (63)] over the
exact [Eq. (59)] expressions of the toy nonlocal matter density.
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FIG. 11. (Coloronline) G ;0(R, r) as a function of r for a selected
set of (R,A,N).

Eq. (65). This is irrelevant as the spin-orbit energy density is
concentrated around the nuclear surface. Figure 11 bears our
expectation, that is, overestimation of G g by Gpymg around the
nuclear surface for a wide range of R, A, and N values. It can
also be seen that there is a gradual and systematic shift from
slight underestimation to overestimation as one moves from
inside the nucleus to the nuclear surface.

Keeping the results shown in Fig. 10 as a reference, we
conclude that the application of the gradient operator on
the scalar part of the density matrix deteriorates the quality
of the DME that overestimates the exact results, in partic-
ular as one goes to the surface of the nucleus where the
exchange spin-orbit energy density is maximum. Combined
with the good approximation of the vector part of the density
matrix, such a semiquantitative analysis explains the overall
overestimation (in absolute value) of the exchange spin-orbit
energy provided by PSA-DME (see Fig. 9). Contrarily, the
underestimation of the vector part of the density matrix by N'V-
DME provides a fortuitous, but rather accurate, cancellation
of errors such that the nonlocal spin-orbit energy density is
much better reproduced overall (see Fig. 9). Even though
we can be satisfied with such a situation in the short-term
future and advocate the use of the NV-DME variant for the
spin-orbit contribution to the Fock energy, it would be more
satisfying in the long run to design a suitable DME for the
gradient of the scalar part of the density matrix that can
be combined with the improved PSA-DME for the vector
part.

V. CONCLUSIONS AND OUTLOOK

The present paper is part of a long-term project to
build nonempirical nuclear energy density functionals from
realistic two- and three-nucleon interactions using many-body
perturbation theory [8—11]. The density matrix expansion is
an important component of this effort, as it can be used
to construct numerically- tractable approximations to the
nonlocal Hartree-Fock energy. In the first part of this paper,
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we assessed the accuracy of the DME at reproducing central,
tensor, and spin-orbit contributions to the nonlocal Fock
energy. Our central finding is that the conventional DME of
Negele and Vautherin performs very poorly in describing the
spin-vector part of the density matrix, whereas the scalar part
is described reasonably well. To address this deficiency, we
have reformulated the density matrix expansion using phase-
space-averaging techniques. The PSA formulation offers the
following benefits:

(1) It allows one to design expansions of both the scalar
and the vector parts of the OBDM on an equal footing.
This constitutes a significant improvement over the
formulation of Negele and Vautherin who, as they
acknowledged in their seminal paper, were not able to
provide a satisfactory expansion of the vector part of the
density matrix. Given that the vector part of the density
matrix is nonzero in spin-unsaturated nuclei (i.e., in
the large majority of nuclei), such an improvement is
mandatory in view of constraining a universal energy
density functional.

(i) By construction, the PSA formulation allows one to
incorporate information about the local momentum
distribution of the Fermi system of interest. For the
scalar part of the OBDM, one recovers the satisfactory
expansion of Negele and Vautherin by averaging over
the phase space of the locally equivalent infinite nuclear
matter system. For the vector part of the OBDM, one
can go beyond this by taking into account the anisotropy
that characterizes the local momentum distribution at
the spatial surface of finite Fermi systems. In contrast
to the scalar part of the density matrix for which
it has little impact, incorporating the deformation of
the local momentum distribution in the expansion
of its vector part is crucial since the latter peaks
at the nuclear surface where such an anisotropy is
maximum.

In the second part of the paper, we gauged the accuracy of
the new PSA-DME and the original NV-DME over a large set
of semi-magic nuclei using two non-self-consistent measures,
that is, the Fock energy density profile and the Fock energy
itself. The different analytical structures of the central, tensor,
and spin-orbit contributions led us to perform separate tests
for each type of contribution. The main conclusions were the
following:

(1) A few-percent accuracy is reached for the central force
contribution to the Fock energy that depends on the
scalar part of the density matrix. The level of accuracy
is insensitive to the particular variant of the density
matrix expansion.

(i1) For Fock energy contributions from the central and
tensor forces that depend on the vector part of the
density matrix, the original expansion of Negele and
Vautherin leads to about 50% errors. The new expansion
based on phase-space-averaging techniques reduces
errors to the few-percent level, which is the same level
of accuracy as for terms involving the scalar part of the
density matrix only.
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(iii) The spin-orbit exchange is somewhat trickier as it
combines the vector part of the density matrix with the
gradient of its scalar part. Surprisingly, the expansion of
Negele and Vautherin is shown to work much better than
the new one proposed here. Using a semirealistic toy
model, we demonstrated that this is due to a fortuitous
cancellation of errors between the underestimation
of the vector part of the density matrix and the
overestimation of the gradient of its scalar part. Even
though one can be satisfied in the short term with using
the NV-DME variant for the spin-orbit contribution to
the Fock energy, the present analysis calls for the design
of a suitable expansion of the gradient of the scalar
part of the density matrix that can be combined with
the improved expansion proposed here for the vector
part.

Optimizing the density matrix expansion for the central,
tensor and spin-orbit contributions to the Fock energy as
explained before, one reaches an overall error level of a
few percent over a representative set of semi-magic nuclei.
With such an accuracy at hand, one can envision using the
corresponding generalized Skyrme-like energy functional as
a microscopically constrained starting point around which
future refined phenomenological parametrizations can be built.
Indeed, the goal of a forthcoming publication [22] is to
explicitly compute and analyze all the density-dependent
couplings entering the generalized Skyrme-like energy density
functional starting from realistic two- and three-nucleon chiral-
EFT potentials at N?LO [39,40]. Of particular interest will
be the analysis of (i) the importance of building explicit pion
physics into the energy functionals, (ii) the density dependence
of spin-orbit and tensor couplings in view of their analysis in
recent phenomenological studies [3,36,41,42], and (iii) the role
of three-nucleon forces in these aspects, as well as their effects
on the evolution of nuclear shells with isospin. Still, the EDF
obtained in this approach will only contain the Hartree-Fock
physics such that further correlations must be added to produce
any reasonable description of nuclei. In the short term, such an
addition can be done empirically by adding the DME couplings
to empirical Skyrme functionals and performing a refit of the
Skyrme constants to data. Although this is a purely empirical
procedure, it is motivated by the well-known observation that
a Brueckner G matrix differs from the vacuum N N interaction
only at short distances. Therefore, one can interpret the refit to
data as approximating the short-distance part of the G matrix
with a zero-range expansion through second order in gradients.
Eventually though, it is the goal of a future work to design a
generalized DME that is suited to higher orders in perturbation
theory.

In addition to using the results of the present and forthcom-
ing papers as building blocks for a microscopically constrained
Skyrme phenomenology, additional work is needed to validate
the density matrix expansion method and to gauge its accuracy.
Given the outcome of our analysis, several paths can be
followed:

(1) The conclusions reached in the present work must
be further validated through self-consistent tests; that
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is, binding energies, radii, and single-particle energies
must be benchmarked against self-consistent Hartree-
Fock calculations. The question of whether the Hartree
term must be treated exactly is to be addressed
quantitatively in such a context.

(i) An even better accuracy could be reached for the
central and tensor contributions to the Fock energy by
going consistently to higher orders in derivatives in
the expansion of both the scalar and the vector parts
of the density matrix. This should be done within the
frame of the extended Skyrme energy density functional
proposed in Ref. [6].

(iii) As already stated, the present analysis of the spin-
orbit contribution calls for a suitable expansion of the
gradient of the scalar part of the one-body density
matrix.
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APPENDIX A: LOCAL DENSITIES

Nonzero local densities can be formed by taking derivatives
of the OBDM up to second order. In the basis from which |®)
is built, they read

ZIUEDY 0l (xq)pi(xq)pf;. (AD)
JUEDY Vol (xq) - Vei(rg)pf, (A2)
Sq.u(r) = Z 0l ()0, 0:(xq)pt., (A3)
Jrn®) = =5 3 (0] (01 V,0.50)
— Vol 0q)pi(xq))pf. (Ad)
aa(6) = =2 30} (0,5, 91059

— [V,0! (xq)1ovi (x9)) 2, (A5)
T,u(0) =Y Velaqlo, - Voieglph,  (A6)

i

1
5 21V - 06/ )V, pi(rg)

Fou(r) =

+ V0 eIV - o@i(xg)pl. (A7)

and they denote the matter density, the kinetic density, the
spin density, the current density, the spin-current pseudotensor
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density, the spin kinetic density, and the tensor kinetic density.
In these formulas, ¢;(rg) denotes a spin 1/2 spinor. Among
those local densities, the time-odd ones [24] vanish in time-
reversal-invariant systems:

sq(r) = 05
T,(r) =0,

jq (I‘) =0

(AB)
F,(r) =0.

APPENDIX B: SKYRME-LIKE COUPLINGS

We now provide explicit expressions of the couplings
entering the Skyrme-like functional [Eq. (20)] that results
from the application of the DME to the Fock contribution
to the ground-state energy [Eqgs. (10), (11), and (12) with
the proper coefficients restored]. The central, spin-orbit, and
tensor parts of the two-nucleon interaction are as specified
in Sec. IIC. These couplings are derived under the as-
sumption of time-reversal invariance. The case where time-
reversal invariance is relaxed will be the subject of a future
publication.

Starting from the definitions

alsT[ne*ns) = /drerITS(r)Hf/st/s, (B1)

4
alST[m/ne) = ?ﬂ / drr*V/Sern g, (B2)

the couplings take the form

A)Oﬂ — +1alc‘01[npnp] 3 Cll[npnp]

BPP =+16a1C10[HPHP]+_6 C()l[npn(/)’]
_ 3 Cll[npnﬂ]_i_L COO[HPI—[P]
APT = _% C01 [H/)Hp] + g 2Cll[l—IKJl—IP] 4ApAp’
BPT — 36 CIO[HPHP] CO][HPHP]
b a1 [NES] + e (g = 4,
ApVJ — 41‘ 2LS [HPHS] _ AVpJ
BpVJ — _% él [HPHS] + laésll[npns] BVpJ
AJJ — _laZCOI[ s] _ éazc‘ll[l—[s s] + 11[1—1 s ]
_Ea{ll[nsl—ls]
BJJ — +E 2Cl()l:l—lsl-ls] _ 16 gOl[H 1—[ ]
16 C“[HSHS] + 16a2COO[ ] _ _aZTlO[ s]
+3CI3TIO[HSHS]+1 TII[HSHS] 3 T“[HSHS],
AJ] — __aTll[l—[sl—Is]

BJJ — 3 TIO[H H ]_ _a?z"ll[l—lsll—[sl]

To carry on further the computation of the couplings, one
must choose an explicit form of the two-nucleon interaction
and perform the integrals entering Eqs. (B1) and (B2). As
schematic interactions have been used in the present paper for
illustrative purposes, we postpone such an integration to the
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explicit computation of the couplings obtained from a chiral-
EFT Lagrangian at N>LO [22].

APPENDIX C: LOCAL ANISOTROPY P,(r)

The Husimi distribution is one of the many quantum phase-
space distribution functions. It possesses the key property of
positive definiteness [32,43] and is defined as

1 %P'(I‘*l‘l)*z'%(l‘*l‘l)2 2 q
Hy(r,p) = NZ pi(riq)e 0 dri| pg,
i

(ChH

where N =1 /(713/4r3/ 2) and ry is a chosen parameter. To
derive Eq. (22) for the quadrupole local anisotropy of the
momentum Fermi surface Pj (r) we start from the definition

[ dpl3(e, - p)* — p*1H,(r,p)
[ dpp?H,(r,p)

and make use of the relations

Pl(r) = (C2)

/ dpp’e P = Qr R3] VS, — V), (C3)

1 /)2
_%(rl_rl)

~ 8 — 1) + O[(k4ro)’]. (C4)

Through direct application of these relations, one obtains
f dpp’ H,(r.p) ~ 2n)'h° Y [Vei(rq)*pf

+O[(k%r0)’].

f dp(# - pYHy(r.p) ~ Q) 3 1 - Vigi e

+O[(kfro)]
which, plugged into Eq. (C2), gives
3
Pl(r) = [T © > e - Vigi(rg) ol — 1} + O[(K9r0)?].
4 i

Further simplifications can be performed for spherical
systems, using single-particle wave functions expressed in
terms of spherical coordinates r = (r,6,¢) as

i rq) " 1
oirg) = L3 1<0,w><lmz§o*|jm>|0>’ (C5)

mo

through several angular momentum coupling operations. For
that, the Clebsch-Gordan and spherical harmonic relations

1 2 2j+1
Im;=o|j =
;< m120|jm> TR (C6)
mpx / / my 2l+1
YO ON0.9) = =~ Pien-e) ()

m;

turn out to be handy. In these relations, Ylm’ refers to a spherical
harmonic function and P, refers to a Legendre polynomial of
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order 1. Applying these relations, one obtains

2
2j 41 (9 up;(r) ‘
er-V i (L 2 - — J anl’
E,- I( i (xq)|” p;; E e (ar " o

nlj

2
2j+1 (8 ul(r .
\v/ ; 2 9 _ nij gnjl
E,. Vi (rq)|”p;; E o <_8r " Io

nlj

ul ()
+ 3 F@) <—lr’2 ) pi,

nlj

where F(l,j) is some function of / and j. The occupation
probability of a given spherical shell p?%/! is one or zero,
except for open-shell semi-magic nuclei where the so-called
filling approximation provides the valence shell with a partial
occupation. To obtain the explicit form of F(/, j), one can use
the relation

‘ 1
V¥ 0.0) = = 37 AL LMY 6.).

LM
where
—I/3 it L=1+1,
fa. L= —(1+1)\% if L=1-1,

0 otherwise,

and perform involved angular momentum coupling operations.
Alternatively, one notes that ) ; |Vg;(rq)|>p;; is nothing but
the kinetic energy density given in Eq. (A2) and uses the
corresponding expression [44]. Either way, one obtains

I+ D2j+1
Fa.j =IO

Plugging these intermediate results into Eq. (CS5) yields the
expression of P»(r) as

. q 2
AR LA Py (T
2 7,(r) 4 ar  r

nlj

(C8)

2
I +1) fug;(r) .

- (—’j P, (€9)

where
2 2

2j+1 0 an]j(r) V,;][j(r) qnjl

rq(r)_%j: 47 (8_r r + r2 P

(C10)

APPENDIX D: SCALAR PART OF THE OBDM

We start from Eq. (24), average over the orientation of k
and r,'® and apply relations
2

ifder(r-A)(r.B) A8, (D1)
47 3

9The order of the two averaging operations is dictated only by
the requirement of simplicity. In this case, we averaged over the
orientation of r followed by that of k.
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(V2 4+ VD)o, 1) = VZp(r) — 22(1),

to obtain

D2)

r

pu (R4 3. R=2) ~ jolkr)p, (R) + L(kr)p,(R)

2
+ ;—4jo(kr)[A,0q(R) — 47,(R)],
(D3)
where

2
LGkr) = 2krjy(kr) — (kr)

Jotkr). (D4)

As discussed in Sec. IIIE, the effects of anisotropy and
diffuseness are minimal for the scalar part of the OBDM.
Therefore, we perform the PSA over the phase space of the
locally equivalent pure-isospin nuclear matter'” to obtain

o - (14
Py [R+ g R- g] ~ 3"%7) py(R) + ;Jll(:;’;r)aq(m,
(D5)
with the second-order correction density being composed of
04(R) = %qu(R) —7,(R) + %quzA(k‘}r)pq(R). (D6)
Expanding A(k%r) in a Taylor series, one has
A(KLr) ~ 1+ O[(k4r)°]. (D7)

such that, by retaining the lowest order only, one recovers
Eq. (26) with the IT functions given by Eqgs. (27) and (28).

APPENDIX E: VECTOR PART OF THE OBDM

We start from Eq. (34). For time-reversal-invariant systems,
the local spin density s, (r) vanishes. Consequently, the only
nonvanishing contribution relates to the term r - (V;—V,).
Using the definition for the local spin-current pseudotensor
density given by Eq. (A5), one obtains

r r . re
Sqw (R +3R- E) ~ itk Zﬂ:r,LJq,,w(R). (E1)
The final step involves performing the PSA over a deformed
sphere that characterizes the local momentum distribution. Let

us start from a spheroid given in momentum space given by
the equation
¢k

aR)?  aR)?  c(R)?
For ease of notation, we write a(R) as a and c(R) as ¢ in the
following. We constrain the position-dependent quantities a
and ¢ by requiring that the spheroid has a given volume and
quadrupole moment, that is,

—1. (E2)

V, = 4% = indd’c, (E3)
2(—a? + c?)
q —
E®=are D

17The angle integration with respect to the orientation of k is trivial
as such a dependence has already been averaged out.
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The IT function is obtained via the integration over the phase
space of interest:

3 .
s = / dke'™¥, (ES)
37,93
4k Jv,

Carrying out the integration over the volume V, encompassed
by the spheroid given in Eq. (E2) can be done by using a
stretched coordinate system from the transformation

k= (kokyk) > K = (kkyok), (E6)
c

such that one finally obtains

z
s (R+ 2, R— g) ~ T (kEr) Y rudgw®),  (ET)

2
n=x
where
- i (kLr
s (j4r) = 32 C7) (E8)
kpr
and
3 24+ 2P/R)\ "
R = (+—;()> KL (E9)
2 - PI(R)

Setting Py(R) = 0, which consists of performing the PSA
over INM phase space, results in the same TT function with k%
replaced by k%.

For spherical systems, one can simplify the expression
further by writing J, ,,,(R) as a sum of pseudoscalar, vector,
and (antisymmetric) traceless tensor parts:

1 1<
Jg v = 28,0 )P R) + 53 €ty y(R) + I, (R),

q.puv
k=x
(E10)
where the three components read
Z
JOR) = D 8 dy (R, (E11)
H,v=x
IR = Y ity (), (E12)

L, V=x
@ _ 1o o I g )
Jq”uy(R) = q,uv(R) - gg;qu (R) - E Zeuvk‘]q,k(R)-
k=x
(E13)

In spherical systems, both the pseudoscalar and the tensor parts
vanish such that one obtains

s (R+ 5, R =2 ) =~ (Br)r x J,(R).

El4
2 2 2 ELD
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