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A quantitative model for the evaluation of the heights of static fission barriers is formulated within the
framework of the macroscopic-microscopic approach. In order to describe the main properties (at the ground
state and at the saddle point) of superheavy nuclei, a high-dimensional deformation space is used. In the present
paper we systematically calculate fission barrier heights Bf for even-even heavy and superheavy nuclei in the
range of proton numbers 92 � Z � 126 and neutron numbers 134 � N � 192. Comparisons with experimental
data and different theoretical calculations are also shown. The dependence on Bf of fully incorporated, nonaxiality,
and reflection-asymmetric degrees of freedom is discussed.
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I. INTRODUCTION

There is no doubt that the considerable progress in the
experimental synthesis of superheavy nuclei, which has been
achieved by the DUBNA group [1–4] and recently partially
confirmed at the GSI [5] and LBL laboratories [6], is stimulat-
ing for the theoretical evaluation of the possibility of producing
new elements [7–18]. We believe that such an investigation
might ultimately allow us to answer the basic question of
whether or not there exists any limit for the mentioned process.
The fundamental assumption which allows us to investigate
the mechanism of the formation of superheavy compound
nuclei is Bohr’s hypothesis, which states that the synthesis of a
compound system can be treated as a Markow type of process,
a stochastic process without any memory effect. This implies
that the exit channel is completely independent of the entrance
channel as well as of the intermediate stage of the reaction that
leads to the compound nucleus. The Bohr hypothesis can be
justified mainly due to the different time scales of the particular
stages. According to this hypothesis the total probability for
the synthesis of new superheavy elements can be factorized
into three independent ingredients:

Ptot = Pcap × Pfor × Pdec

where Pcap stands for the probability of overcoming a Coulomb
barrier, called the “capture process,” Pfor is the formation
probability, where the nucleus, starting from the touching
configuration, will finish up with a compound nuclear shape,
and Pdec is the probability that the compound nucleus will
survive without any subsequent decay. The knowledge of
the shape of the fission barrier (i.e., its height and width),
of the considered nucleus, is of greatest importance for the
evaluation of the mentioned “survival probability,” thereby
used for the planning of any new synthesis experiment. In the
spirit of the transition state theory (where full equilibration
for all degrees of freedom inside of the barrier is assumed)
the fission barrier depends only on two values of stationary
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points, one representing the ground-state minimum and the
other the maximum of the energy. The aim of the paper
is the calculation of the static fission barrier heights Bf =
EA(B) − EI (i.e., the difference between the energies at these
two points for even-even superheavy nuclei). The standard
notation for the first (A), or second (B) peak and for the global
minimum, the ground state, (I ) is used. The manuscript is
organized as follows: first, we briefly describe details of the
used macroscopic-microscopic method. Section II includes a
description of all terms of the potential energy. Section IV
presents the main ideas related to the shape parametrization of
the nuclei at the ground state and at the saddle point. Section IV
includes a discussion of the results and the influence on the
fission barrier heights of various factors. Section V presents
the summary and conclusions.

II. METHOD OF CALCULATION

In the past decades much effort has been undertaken to
understand the physics of the fission process. It is, however,
evident that its description, which is entirely based on a
quantum-mechanical treatment, is out of scope due to the
complexity of the fission process.

There also do not exist any “fundamental” models which
would allow us to describe masses and fission barriers for
heavy nuclei. All presently available models are in some sense
“phenomenological’s” (see, e.g., the interesting discussion
about this subject in one of the latest publications of Möller
et al. [19]). There are essentially two prescriptions which have
proven quite successful: self-consistent mean-field studies
based on some effective interaction or the macroscopic-
microscopic method. Here we use the latter approach.

The total nuclear potential energy (E), which is a function
of the shape, the proton number Z, and neutron number N , can
be written as a sum of a macroscopic (Emac) and a microscopic
(Emic) energy,

E(def, Z,N ) = Emic(def, Z,N ) + Emac(def, Z,N). (1)

All parameters that we use in the present paper are
the same as those used in the calculation of masses and
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equilibrium deformations of superheavy even-even nuclei [20],
and odd-A and odd-odd [21] nuclei. We like to point out that
our macroscopic-microscopic model is specially designed to
describe the heaviest nuclei, and in the present paper it will be
called the heavy-nuclei (HN) model (for heavy nuclei). One
will notice that our approach does not contain any adjustable
parameter, which could be fitted in the present study.

A. Macroscopic energy

For the macroscopic part, we used the Yukawa plus
exponential model [22], as in many of our previous studies,
with parameters specified in Ref. [20]. Deformation-dependent
Coulomb and surface energies were integrated by using a
64-point Gaussian quadrature. No average pairing is used in the
macroscopic energy. The influence of different macroscopic
energies on various properties of superheavy nuclei has been
discussed in Ref. [9].

B. Microscopic energy

The Strutinski shell correction [23], based on the deformed
Woods-Saxon single-particle potential, is taken for the micro-
scopic part:

Emic(def, Z,N ) = δEshell(def, Z,N ) + δEpair(def, Z,N ),

(2)

where δEshell and δEpair are the shell and pairing corrections,
respectively. The residual pairing interaction is treated fully
microscopically by solving BCS equations. The strength
of the pairing interaction is here assumed to be of the
form:

AGl = g0l + g1lI, (3)

where A is the mass number and I = (N − Z)/A is the
relative neutron excess of a nucleus. The parameters g0l and
g1l have been fitted to experimental odd-even mass differences
as explained in Ref. [20].

The “universal” set of parameters of the potential given
in [24] is chosen. The single-particle potential is diagonalized
in the deformed-oscillator basis. The np = 450 lowest proton
levels and nn = 550 lowest neutron levels from the Nmax =
19 lowest shells of the oscillator are taken into account
in the diagonalization procedure. We have determined the
single particle spectra for every investigated nucleus. These
calculations therefore do not include any scaling relation to
the central nucleus. Standard values of h̄ω0 = 41/A1/3 MeV
for the oscillator energy and γ = 1.2h̄ω0 for the Strutinski
smearing parameter γ , and a six-order correction polynomial
are used in the calculation of the shell correction. Some
advantages of the Strutinski smoothing method as compared
to a Hartree-Fock type approach can be found by the reader
(e.g., in the textbook by Hofmann [25]).

III. SHAPE PARAMETRIZATION

The essential point of our present investigation consists in
the accuracy, and the kind and dimension of the deformation
space which is used to describe very large variety of nuclear

shapes with the vast multitude of degrees of freedom that
a deformed nucleus can take all along the fission path. Of
course, an ideal kind of parametrization should describe
simultaneously not only equilibrium and saddle point shapes
but also a reseparation of fragment shapes. As far as we
are interested in the fission barriers for superheavy nuclei, a
traditional parametrization of the shapes, which consists in the
expansion of the nuclear radius in spherical harmonics [26],
can be used

R(ϑ, ϕ) = R0

(
1 +

∞∑
l=1

l∑
m=−l

almYlm

)
. (4)

In the case of axially symmetric shapes (m = 0), it is
convenient to use parameters βl instead of alm. In the present
paper we are limiting ourselves to consideration of shapes
defined by

R(ϑ, ϕ) = R0[1 + β2(cos γ2Y20 + sin γ2Y(+)
22 )

+β4Y40 + a42Y(+)
42 + a44Y(+)

44 + β3Y30

+β5Y50 + β7Y70 + β6Y60 + β8Y80]. (5)

The real functions Y(+)
lm are defined as

Y(+)
lm = 1√

2
[Ylm + (−1)mYl−m] for m �= 0. (6)

For l = 2,m = 0, 2, we use conventional notation:

a20 = β2 cos γ2, a22 = β2 sin γ2, (7)

where γ2 is the Bohr quadrupole nonaxiality parameter.
The dependence of R0 on the deformation parameters is
determined by the volume-conservation condition. There is
no physical principle which would forbid the nucleus from
having a nonaxial ground-state shape. On the other hand,
the calculations performed by Möller et al. [27] suggest that
in the investigated vicinity of nuclei nonaxiality is practi-
cally negligible. Moreover, our preceding work [28] shows
practically no effects of the nonaxial octupole deformations
(tetrahedral symmetries) in the minimum on the potential
energy. On the other hand, axially symmetrical competing
minima in superheavy nuclei has been found recently [29].
For this reason, for all nuclei investigated by us, axially
symmetric deformed shapes are assumed at the equilibrium
point (ground state). The energy is minimized simultaneously
in all axial degrees of freedom: β2, β3, β4, β5, β6, β7, β8, using
a multidimensional conjugate gradient method.

Beginning from the ground state, the energy of a nucleus
increases along an effective one-dimensional trajectory in the
multidimensional nuclear deformation space until it reaches
the saddle point and then starts to decrease, creating the energy
barrier along the fission path.

The potential energy is calculated in the following grid
points:

β2 cos γ2 = 0(0.05)0.65,

β2 sin γ2 = 0(0.05)0.40, (8)

β4 = −0.20(0.05)0.20.

Numbers in the parentheses specify the step with which the
calculation is done for a given variable. Then, the energy is
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interpolated (by the standard SPLIN3 procedure of the IMSL
library) to the five times denser grid in each variable. Thus,
we finally have the values of the potential energy at a total of
110 946 grid points. In order to find the saddle point a two-step
method is used. First, on such a three-dimensional grid
(β2, γ2, β4) the dynamic programming method is used [30],
and, at the thus established saddle-point deformations, the
energy is subsequently minimized with respect to the other
degrees of freedom: a42, a44, β3, β4, β5, β6, β7, β8 (see the
Appendix for more details). In previous calculations [31,32]
the hexadecapole axial asymmetry parameter has usually been
treated as a function of the quadrupole asymmetry angle γ2. It
should be noted that, in the present calculation, hexadecapole
nonaxiality is not dependent on the quadrupole nonaxial
deformation but it is taken it into account by using the a42, a44

parameters.

IV. RESULTS

Let us begin our discussion with the description of numeri-
cal tests and error checks. One of the important numerical tools
exploited by us here is the minimization procedure. It is used
to find first the ground-state energy in a seven-dimensional
space and, in a second step, through our saddle-point searching
method, the saddle-point energy (in an eight-dimensional
minimization). The not the multidimensional minimization
method is a mixed blessing: from one point of view, it gives
us the opportunity to find minima in the large deformation
spaces (infeasible on the grid) but, on the other hand, it
introduces the necessity to check whether or not the obtained
minima are indeed the global ones. In order to gain some
confidence in our results we used a number of checks. The
standard checks within the minimization routine include the
monitoring of energy gradients. In addition, we looked at
the continuity of the resulting deformation parameters with
respect to β2sinγ2 and β2cosγ2, and at their stability with
respect to the choice of their starting values. The starting values
of the deformation parameters were always taken differently
from zero. It should also be realized that we cannot be
absolutely certain that the minimization in the second step
of our procedure does not lead to errors. The hope that the
main deformation net (β2sinγ2, β2cosγ2, β4) may be sufficient
is based mainly on the fact that higher deformations are small
and are weakly coupled to the main deformations in the studied
nuclei. In addition, we have checked values of the energy
at the obtained saddle points at the first stage in two cases:
in a two-dimensional and a four-dimensional calculation. On
the two-dimensional grid: (β2sinγ2, β2cosγ2) and on the four-
dimensional grid with two variants: (β2sinγ2, β2cosγ2, β4, a42)
and (β2sinγ2, β2cosγ2, β4, a44) of the saddle-point searching
technique were used. One of the most important tests for
the saddle-point searching method was the application of a
completely different approach based on so-called “imaginary
water flow” [19,33–36]. This conceptually simple and nu-
merically efficient method in the five-dimensional case (i.e.,
β2sinγ2, β2cosγ2, β4, a42, a44) has been used for some of the
nuclei. We can report here that the results were practically
identical. For several nuclei, we repeated the minimization for
the whole map by choosing starting values randomly and found
that the results agreed with the ones obtained previously.

A. Description of experimental fission barriers

We are now going to apply this formalism to examine
the obtained fission barrier heights in actinides nuclei for
which experimental data are available. However, one should
keep in mind that the type of parametrization used, Eq. (4),
describes distortions close to the spherical shape and for this
reason it is rather suitable and properly defined for small
deformations. Fortunately such a situation is encountered
in the case of superheavy nuclei, where the barriers are
rather short. This is, however, not at all the case for the
actinides nuclei, with a very complicated topology of the
potential-energy surface. Theoretical predictions that suggest
the existence of a second, superdeformed (SD) and a third,
hyperdeformed (HD) peak in some actinide nuclei [37–39]
seem to be experimentally confirmed [40–43]. Owing to the
complexity of the potential-energy surface in actinides, a better
deformation space (including, e.g., “pear” nonaxial shapes
related to spherical harmonics of the type Y32, Y52, Y72) is
probably still required for these nuclei. Additionally, for those
nuclei calculations should be performed simultaneously in all
degrees of freedom (without introducing any subdivision of
relevant and irrelevant deformation subspaces), which will
be handled in a forthcoming paper (in the context of such
a global approach as presented here, it is difficult and still too
time consuming from the numerical point of view). Therefore
we start our discussion with a comparison of calculated
first fission barriers in actinides (see Table I), occurring at
β2 ≈ (0.5 ÷ 0.6), which corresponds to the end of the fission
barriers in superheavy nuclei.

Inner fission barriers Bf = EA − EI (i.e., the difference
between the first saddle-point EA and the global ground-state
energy EI ) are shown in Fig. 1. In the course of our work
we face the problem of the zero-point vibration energy.
The inclusion of such an energy correction usually boils

TABLE I. Comparison of the first fission barriers as in Fig. 1. All
quantities are in MeV, except for numbers specifying the nucleus.

Z N A LSD FRLDM HN EXP

92 140 232 − 3.2 4.5 5.4
142 234 4.4 3.8 5.1 5.9
144 236 5.5 4.5 5.6 5.6
146 238 6.7 5.1 5.9 6.0
148 240 6.5 5.7 5.9 6.1

94 142 236 5.9 4.5 5.4 5.7
144 238 6.5 5.3 6.1 5.9
146 240 7.0 6.0 6.4 5.8
148 242 7.1 6.4 6.3 5.7
150 244 6.9 6.6 6.0 5.5
152 246 7.2 6.3 5.7 5.4

96 146 242 7.1 6.6 6.7 6.0
148 244 7.2 6.9 6.6 6.1
150 246 6.8 7.0 6.2 6.0
152 248 6.6 6.8 5.9 5.9
154 250 5.9 5.9 5.3 5.4

98 152 250 6.5 7.1 6.5 5.6
154 252 − 6.1 5.8 5.3
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FIG. 1. (Color online) Comparison of the first fission barriers calculated by Dobrowolski et al. (LSD) (Ref. [47]), Möller et al. (FRLDM)
(Ref. [19]), and by us (HN) with experimental data (EXP) (Refs. [34,48]) for nuclei with the atomic number Z = 92, 94, 96, and 98.

down to adding an appropriately chosen constant value
at the ground state. In reality, a proper treatment of this
energy along the fission path is quite a difficult problem,
see [44]. The calculation presented here has been performed
without adding any zero-point vibration energy. The obtained
HN results are compared in Fig. 1 with calculations to be
found in the literature and which are based on the finite
range liquid drop model (FRLDM) by Möller et al. [19,45]
(marked with filled squares), on the Lublin-Strasbourg liquid
drop (LSD) model [46,47] (denoted by crosses), and on the
available experimental (EXP) values [34,48] (shown by full
triangles).

It is worth noting that all approaches discussed here are
based on the macroscopic-microscopic method. The essential
difference comes from the parametrization of the macroscopic
energy. All models contain the possibility to describe nonaxial
shapes. Important differences can, however, be observed in the
shape parametrization of a fissioning nucleus, and thus in the
deformation space used in the calculation. The shell correction
energy and the residual pairing interaction are also taken into
account in different ways in the different models.

It is rather difficult to draw unambiguous conclusions from
the presented results for actinides. However, one can see that
a larger disagreement with the various models is observed for
the element uranium. The comparison of our results for Cm
isotopes and those obtained from the FRLDM and LSD models
shows that the latter predictions are systematically higher than
ours. Our results for the plutonium isotopes (Z = 94) usually
lie between the values obtained using the other models. All
of the presented models give too high fission barrier heights

for californium isotopes. Despite some discrepancies, the
values of the inner fission barrier heights obtained here are
similar to the experimental values. The difference between
our theoretical calculations and experimental values [34,48]
is shown in Fig. 2. The theoretical values of barrier heights
are systematically higher than the experimental ones. They
could be reduced further when taking into account the higher
multipolarities in the radius expansion (i.e., choosing a richer
deformation space).

FIG. 2. Difference between theoretical and experimental [34,48]
inner fission barrier heights for even-even actinide nuclei as a function
of the neutron number.
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TABLE II. Statistical parameters of calculated inner fission
barrier heights in various macroscopic-microscopic models. All
quantities are in MeV, except for the number of nuclei N .

Models LSD FRLDM HN

N 16 18 18
〈|B th

f − B
expt
f |〉 0.9 1.0 0.4

Max|B th
f − B

expt
f | 1.8 2.2 1.0

rms 1.0 1.1 0.5

Table II contains some statistical parameters that describe
the precision of the different calculations with respect to the
experimental data for the different macroscopic-microscopic
methods we discussed. The average discrepancy 〈|B th

f −
B

expt
f |〉, the maximal difference Max|B th

f − B
expt
f |, and the rms

deviation are shown for a number N of even-even heavy nuclei.
We believe that these results are quite spectacular with an

rms deviation from experimental results which is only half that
of other models, and average and maximal differences which
are much smaller. However, this is not very surprising if one
takes into account that the presented model is specially adapted
for the heaviest nuclei. A relatively small number of nuclei are
considered here as compared to the global mass fits performed
in the framework of FRLDM and LSD models where more
than 2000 nuclei were considered.

Before continuing further, we would like to mention
that, unfortunately, experimentally the fission barriers are
accessible only indirectly and model-dependent analysis is
involved to obtain these quantities, which causes a certain
ambiguity in the comparison.

B. Potential-energy surface

It is commonly known that the action integral giving the
tunneling probability depends strongly, among other things, on
the potential barrier shapes, and even seemingly insignificant
changes of this barrier can change the obtained half-lives by a
few orders of magnitude. We therefore need to investigate
very carefully the potential-energy surface obtained in the
framework of our macroscopic-microscopic model in the
multidimensional deformation space. The potential-energy
surface calculated in the seven-dimensional space is projected
in Fig. 3 on the (β2, γ2) plane, which means that it is shown
as a function of β2, γ2, but at each given (β2, γ2) point it is
minimized in the remaining degrees of freedom (denoted by
the index m in the specification of the deformation parameters).
This is shown in Fig. 3 for a very heavy compound system with
neutron number N = 182 (close to the spherical magic neutron
number N = 184) and proton number Z = 120 which, after
the observation of element Z = 118 [2] and its confirmation,
[6] is a natural candidate for further experimental studies. A
first attempt to synthesize the element Z = 120 in a hot fusion
reaction 58Fe + 244Pu →302−xn 120 + xn has already been
undertaken by Oganessian et al. [4]. No decay chains were
observed during an irradiation of a 244Pu target with a beam
of 58Fe projectiles. Another possible entrance channel with a
combination of well-deformed actinide targets and projectiles
leading to this nucleus in a hot fusion reaction could be, among

FIG. 3. (Color online) Contour map of the potential-energy
surface of the nucleus 302120. Positions of the ground state [EI

(circle)] and higher [ENAX(II)
A (cross)] and lower [ENAX(I)

A (star)]
nonaxial saddle points are indicated. The axial saddle point EAX

A

is marked by a filled square.

others: 64Ni + 238U, 54Cr + 248Cm, and 50Ti + 249Cf with the
3n and 4n neutron evaporation channels.

The energy is normalized in such a way that its macroscopic
part is set equal to zero at the spherical shape of a nucleus. One
can see that, as expected, the equilibrium point (ground state)
is obtained at the spherical shape, while the saddle point is
obtained at a nonaxial shape. The parameters of the shape
are β

sp
2 = 0.449, γ

sp
2 = 32.3◦, β

sp
4 = 0.020, a

sp
42 = −0.008,

β
sp
44 = 0.004, β

sp
6 = 0.011, β

sp
8 = −0.015. It is seen that the

quadrupole deformation is the most important component. Its
parameters are much larger than those of higher multipolarity.
This finds a direct reflection in the contribution to energy
of the nucleus at its saddle point. It is also interesting to
notice that there appears a second saddle point with an energy
E

NAX(I)
A = −0.1 MeV, 1 MeV above the energy of the lower

saddle E
NAX(II)
A = −1.1 MeV and with a quite different shape,

thus corresponding to a different structure of the nucleus. The
rather small difference in energy at the two saddles allows
one to speculate that in neighboring nuclei, the second saddle
may be lower in energy than the first one, leading to large
differences in the shape and structure, and, consequently, in
the properties of the neighboring nuclei at their saddle points.
As follows from the Introduction, the precise knowledge of
the barrier shapes that depend on the deformation is necessary
for the correct estimate of the tunneling probability. Figure 4
shows variation of the effective static fission path in the (β, γ )
plane in the case of an axial path and of a nonaxial path.
Note that the static paths in the full-dimensional deformation
space are roughly 1.5 times longer than these projections. By
analyzing the diagrams it can be seen that the position of the
curve maximum (nonaxial saddle point, E

NAX(I)
A ) denoted by

the solid line corresponds to the position of the exit point
for the axial fission path (the curve is denoted by the broken
line). It can lead to essential differences in the values of the
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FIG. 4. (Color online) Axially symmetric (dashed) and nonaxial
static fission barriers in the 302120 vs Euclidean length of the path in
the (β, γ ) plane.

action integral, tunneling probabilities, and consequently in
the calculated half-lives.

C. Importance of nonaxiality

The role of triaxiality on static fission barriers has been
shown before in many publications (see, e.g., [31,32,47,49–
53]) and recently in our paper [54]. The main conclusion which
can be drawn from this study is that the largest reduction of the
barrier height due to the quadrupole (γ2) nonaxial deformation
is about 2 MeV and appears in two regions of the nuclei: one
for Z ≈ 100 and N ≈ 158 and the other with Z ≈ 122 and
N ≈ 180.

Let us now investigate the importance of hexadecapole non-
axial deformations. As was mentioned in the preceding section,
it has been always assumed so far that the hexadecapole axial
asymmetry parameters are either zero or directly related to the
quadrupole deformation γ2. One finds that a more accurate
inclusion of these hexadecapole nonaxiality deformation
parameters can lead to a reduction of the fission barriers by up
to about 1.5 MeV in the vicinity of Z ≈ 122 and N ≈ 160.

However, one can notice that the effect appears only in a few
nuclei of a rather small part of the investigated region. Details
of the studies of the above effect can be found in our previous
paper [55]. We have also checked whether the nonaxial effect
that comes from higher multipolarities like β62, β64, β66 is of
any importance for the barrier heights. Results obtained for all
nuclei investigated in the present paper indicate that the largest
effect of β6-nonaxial shapes occurs only for several nuclei and
is smaller than 300 KeV (i.e., comparable with the level of the
used method errors). Therefore, we will neglect nonaxiality
connected with β6 in the further analysis. Some discussion
of the effect of the multipolarity six nonaxial deformations
on the saddle-point energy has been presented in Ref. [56].
Furthermore, in the case of heavy and superheavy nuclei, odd
mulipolarities show up at rather large quadrupole deformations
so that their influence on the first (A) maximum in the actinides,
and on the first (A) and second (B) peak in superheavy nuclei
is practically negligible.

FIG. 5. (Color online) Contour map of the effect of fully
incorporated nonaxiality deformations (γ2, a42, a44) on the fission
barrier heights Bf .

The main goal of our present analysis is to determine
the influence of fully incorporated nonaxiality γ2, a42, a44

deformation, all together, on the fission barrier heights.
Figure 5 illustrates the mentioned effect of the investigated
nuclei.

One can see that the effect of nonaxialty reduces fission
barrier heights by about 2.5 MeV for two regions of nuclei:
one rather large region located around 100 � Z � 104 and
156 � N � 164 and a second region, which lies close to the
nucleus with Z ≈ 104 and N ≈ 146.

D. Fission barriers for superheavy nuclei

In Fig. 6 we display the height of the fission barriers Bf

(tabulated in Table III) for these nuclei calculated within the
macroscopic-microscopic model as the difference between the
total ground state EI and the highest saddle-point energy
EA(B). The figure contains the fission barriers heights Bf =
EA(B) − EI for superheavy elements in the range of proton
number 98 � Z � 126 and neutron number 134 � N � 192.

FIG. 6. (Color online) Contour map of calculated fission barrier
heights Bf for even-even superheavy nuclei.
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TABLE III. Calculated fission barrier heights (in MeV).

N A Bf N A Bf N A Bf N A Bf N A Bf

Z = 98 Z = 100 Z = 102 Z = 104 Z = 106
134 232 2.24 136 236 2.56 138 240 2.75 140 244 2.56 142 248 2.21
136 234 2.73 138 238 3.54 140 242 3.55 142 246 3.29 144 250 2.85
138 236 3.63 140 240 4.41 142 244 4.32 144 248 3.82 146 252 3.59
140 238 4.81 142 242 5.24 144 246 4.95 146 250 4.34 148 254 4.50
142 240 5.79 144 244 5.91 146 248 5.54 148 252 5.06 150 256 5.46
144 242 6.43 146 246 6.49 148 250 6.05 150 254 5.74 152 258 6.22
146 244 6.51 148 248 6.71 150 252 6.52 152 256 6.36 154 260 6.28
148 246 6.48 150 250 6.83 152 254 6.76 154 258 5.87 156 262 6.05
150 248 6.56 152 252 6.85 154 256 6.15 156 260 5.72 158 264 5.88
152 250 6.50 154 254 6.11 156 258 5.27 158 262 5.28 160 266 5.37
154 252 5.79 156 256 5.29 158 260 4.80 160 264 5.21 162 268 5.71
156 254 4.97 158 258 4.66 160 262 4.64 162 266 5.05 164 270 4.82
158 256 4.47 160 260 4.14 162 264 4.64 164 268 4.25 166 272 3.88
160 258 4.16 162 262 4.49 164 266 3.75 166 270 3.40 168 274 3.02
162 260 4.41 164 264 4.01 166 268 3.20 168 272 2.91 170 276 2.78
164 262 3.97 166 266 3.53 168 270 3.13 170 274 2.63 172 278 2.84
166 264 3.65 168 268 3.33 170 272 3.04 172 276 2.79 174 280 3.46
168 266 3.56 170 270 3.39 172 274 3.36 174 278 3.33 176 282 4.04
170 268 3.82 172 272 3.90 174 276 3.82 176 280 4.04 178 284 4.77
172 270 4.41 174 274 4.46 176 278 4.18 178 282 4.72 180 286 4.90
174 272 5.06 176 276 4.92 178 280 4.84 180 284 4.83 182 288 5.19
176 274 5.61 178 278 5.44 180 282 5.01 182 286 5.14 184 290 5.35
178 276 6.10 180 280 5.69 182 284 5.25 184 288 5.32 186 292 4.11

Z = 108 Z = 110 Z = 112 Z = 114 Z = 116

144 252 2.09 146 256 1.38 148 260 1.24 150 264 1.78 152 268 1.05
146 254 2.82 148 258 2.21 150 262 2.64 152 266 2.25 154 270 0.96
148 256 3.67 150 260 3.40 152 264 3.47 154 268 2.08 156 272 1.60
150 258 4.82 152 262 4.61 154 266 3.31 156 270 2.24 158 274 2.52
152 260 6.00 154 264 4.46 156 268 3.24 158 272 2.91 160 276 3.50
154 262 5.76 156 266 4.37 158 270 3.60 160 274 3.80 162 278 4.39
156 264 5.59 158 268 4.54 160 272 4.35 162 276 4.69 164 280 4.67
158 266 5.47 160 270 5.09 162 274 5.17 164 278 4.64 166 282 4.43
160 268 5.87 162 272 5.83 164 276 4.81 166 280 4.26 168 284 4.41
162 270 6.42 164 274 5.19 166 278 4.29 168 282 4.03 170 286 4.67
164 272 5.49 166 276 4.32 168 280 3.64 170 284 4.22 172 288 5.42
166 274 4.37 168 278 3.64 170 282 3.69 172 286 4.82 174 290 6.03
168 276 3.56 170 280 3.13 172 284 4.29 174 288 5.53 176 292 6.22
170 278 2.87 172 282 3.61 174 286 5.01 176 290 5.83 178 294 6.28
172 280 3.04 174 284 4.35 176 288 5.48 178 292 6.34 180 296 6.07
174 282 3.82 176 286 4.96 178 290 5.61 180 294 6.27 182 298 5.43
176 284 4.41 178 288 5.20 180 292 5.70 182 296 5.66 184 300 5.20
178 286 4.84 180 290 5.43 182 294 5.69 184 298 5.08 186 302 3.83
180 288 5.13 182 292 5.38 184 296 5.41 186 300 4.35 188 304 2.87
182 290 5.23 184 294 5.50 186 298 4.33 188 302 3.33 190 306 1.97
184 292 5.43 186 296 4.11 188 300 3.25 190 304 2.11 192 308 0.59
186 294 4.07 188 298 2.73 190 302 1.91 192 306 0.81
188 296 2.83 190 300 1.52 192 304 0.75
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TABLE III. (Continued.)

N A Bf N A Bf N A Bf N A Bf N A Bf

Z = 118 Z = 120 Z = 122 Z = 124 Z = 126
154 272 0.59 156 276 0.41 158 280 0.80 160 284 0.86 162 288 1.39
156 274 1.36 158 278 0.86 160 282 1.22 162 286 1.81 164 290 2.16
158 276 2.17 160 280 2.92 162 284 2.10 164 288 2.60 166 292 2.85
160 278 2.91 162 282 3.26 164 286 2.92 166 290 3.09 168 294 2.88
162 280 3.78 164 284 2.94 166 288 3.32 168 292 3.28 170 296 3.82
164 282 4.09 166 286 3.16 168 290 3.84 170 294 4.41 172 298 4.43
166 284 3.88 168 288 4.02 170 292 4.72 172 296 4.99 174 300 4.31
168 286 4.05 170 290 4.80 172 294 5.32 174 298 4.71 176 302 4.08
170 288 5.06 172 292 5.33 174 296 5.25 176 300 4.40 178 304 4.01
172 290 5.54 174 294 5.56 176 298 5.03 178 302 4.36 180 306 3.38
174 292 5.86 176 296 5.64 178 300 4.84 180 304 3.72 182 308 2.48
176 294 5.99 178 298 5.50 180 302 4.23 182 306 2.79 184 310 1.70
178 296 6.04 180 300 5.05 182 304 3.74 184 308 2.07 186 312 1.43
180 298 5.72 182 302 4.66 184 306 3.13 186 310 1.43 188 314 0.81
182 300 5.08 184 304 4.20 186 308 1.96 188 312 1.24 190 316 0.29
184 302 4.82 186 306 2.87 188 310 1.42 190 314 0.68 192 318 0.00
186 304 3.51 188 308 1.77 190 312 0.90 192 316 0.14
188 306 2.43 190 310 1.17 192 314 0.36
190 308 1.37 192 312 0.75
192 310 0.56

It can be seen that in the whole region of considered nuclei
the barriers are smaller than 7 MeV. The highest values are
obtained for the nuclei 270108162, 292114178, and around the
nucleus Z ≈ 100, N ≈ 150.

Another important observation concerns the behavior of
fission barrier heights with increasing proton number of these
heaviest nuclei. One can recognize that the quite high barrier
for 296118178 rapidly decreases, reaching a value 1.43 MeV
for the 312126186 nucleus. Obviously such a compound system
does not have any chance to survive against fission in our
model. This is in a contradiction to self-consistent models,
according to which the fission barrier for a neighboring nucleus
is about 12 MeV [57]!

Next we turn to the discussion of whether or not the obtained
values can be useful for future experiments. In Table IV we col-
lect some of the theoretical prediction of fission barrier heights
based on the FRLDM [19], the self-consistent Hartree-Fock
(SHF) method [58] with the SLy6 Skyrme interaction [59],
the extended Thomas-Fermi plus Strutinsky integral (ETFSI)
model [60] in relation to experimental ones [61] and our
predictions (HN). Note that lower limits for the fission barrier
heights are evaluated in Ref. [61]. As we can see, experimental
and calculated barrier heights are in agreement while both
FRLDM and SHF significantly overestimate the barrier. This
behavior concerning fission barriers is well known from earlier
calculations in self-consistent models [57]. Surprisingly the
modern version of the microscopic-macroscopic calculation
presented in Ref. [19] (including nonaxial shapes) gives values
comparable to the axially symmetrical calculations of SHF
and overestimates the experimental barriers in a similar way.
This tendency is also visible, to a lesser extent, for heavier
systems. Thus for the element 292116176 the FRLDM model

gives a value of 9.26 MeV for the barrier height while
the value obtained in our approach (6.22 MeV) is about
3 MeV lower, whereas the experimental data indicate 6.4 MeV.
For the neighboring isotope 292116178 the experimentally
predicted fission barrier is also 6.4 MeV and we obtain
almost the same value 6.28 MeV, but estimations based on
the FRLDM predict a value of 9.46 MeV, almost 3 MeV
larger. As a consequence, such high barriers result in cross

TABLE IV. Comparison of fission barrier heights (in MeV) with
other theoretical evaluations: SHF [58], FRLDM [19], ETFSI [60],
HN (present paper), and experimental data taken from Ref. [61].

Nucleus SHF FRLDM ETFSI HN EXP

284112172 6.06 7.41 2.2 4.29 5.5
286112174 6.91 8.24 3.6 5.01 5.5
288114174 8.12 9.18 6.1 5.53 6.7
290114176 8.52 9.89 6.6 5.83 6.7
292114178 – 9.98 7.2 6.34 6.7
292116176 9.35 9.26 6.5 6.22 6.4
294116178 9.59 9.46 7.2 6.28 6.4
296116180 – 9.10 7.2 6.07 6.4
294118176 – 8.48 6.6 5.99 –
296118178 – 8.36 7.0 6.04 –
298118180 – 8.05 7.4 5.72 –
296120176 – 7.69 6.2 5.64 –
298120178 – 7.33 6.6 5.50 –
300120180 – 7.01 6.8 5.05 –
302120182 – 6.07 7.2 4.66 –
304120184 – 4.86 6.8 4.20 –
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sections for Z = 114, 116, 118, and 120 which overestimate
the experimental data by several orders of magnitude [62,63].
The ETFSI model significantly underestimates the barrier
heights for 284112172, and 286112174. For heavier systems
the agreement is, however, much better. One must keep in
mind that SHF models include neither quadrupole nor higher
nonaxial degrees of freedom and the observed discrepancies
probably can be explained by the absence of these variables at
the saddle-point configuration.

V. CONCLUSIONS

One of the most important ingredients used to calculate
the survival probability of superheavy elements synthesized in
heavy-ion reactions is the fission barrier height Bf , which
allows us to estimate the competition between the fission
process and particle emission. The following conclusions can
be drawn from our investigation that was devoted to these
quantities in heavy and superheavy elements.

(i) The above presented model which contains no ad-
justable parameters has been applied to 18 even-even
elements with Z � 92, where the first fission barriers
are experimentally known. The largest discrepancy with
the experimental data is only about 1.0 MeV (i.e., of the
order of magnitude of the discrepancy between various
experimental data), while the average discrepancy is
about 0.4 MeV and the root-mean-square deviation has
a value 0.5 MeV.

(ii) Taking into account triaxial deformations has been
shown to significantly reduce the fission barrier heights
by up to 2.5 MeV.

(iii) It has been demonstrated that the inclusion of higher
multipolarities can lead to a significant change of the
fission path in the multidimensional deformation space
and can consequently cause a considerable change of
the fission half-lives.

(iv) Our calculations indicate that, in contrast to self-
consistent mean-field calculations of fission barriers,
the barrier height, which is still quite substantial for a
nuclei with Z = 118 becomes lower than 4.5 MeV for
nuclei with Z = 126.

(v) Theoretical evaluations of fission barrier heights based
on various models differ between each other sig-
nificantly. It is obvious that future experiments on
superheavy nuclei will constitute a natural benchmark
for all theoretical models describing these nuclei.

In the forthcoming paper we are going to extend our study
on odd nuclei. A systematic determination of the half-lives for
heavy and superheavy elements is under construction as well.
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APPENDIX: SADDLE-POINT SEARCHING TECHNIQUE

It is always possible to convert the m-dimensional grid:
(n1 × n2 × n3 × · · · × nm) into a four-dimensional grid: (n1 ×
n2 × n3 × N ), N = n4 × n5 × n6 × · · · × nm. In the case of
our deformation space: n1 = β2 (elongation), n2 = γ2 (nonax-
ility), n3 = β4 (neck). The N axis describes all other degrees
of freedom which we use for the description of shapes (all
other multipolarities). Each path i, connecting the starting
point and n + 1 point, may be characterized by the maximal
value of energy Ei

max which one can find along it, where i is
the index of a given path. The values of the energy between
two neighboring points on a given path are also investigated
with the help of an interpolation procedure. In this way, we
have a set of all possible paths i from the starting point
to the n + 1 point with the value of maximal energy Ei

max
on each path. It is obvious that the value of the energy in
the saddle point will be the minimal value of all the Ei

max
obtained along all possible paths (all possible i). The trajectory,
corresponding to this minimal value, will automatically pass
through the saddle point. It appears that to find the right
trajectory along which Ei

max is minimal, we do not need to
consider all possible trajectories. This method, which allows
us to restrict the number of considered paths to a very small
number, as compared to all possible trajectories, is called the
“dynamic programming method ” [30].
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