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Effect of single-particle splitting in the exact wave function of the isovectorial pairing Hamiltonian
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The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-
particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found
for N = Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure
of the wave function is analyzed and some particular cases are considered where a clear interpretation of the
wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is
given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons
and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar
couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A
correlation of these enhancements with the creation of Cooper-like pairs is observed.
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I. INTRODUCTION

Pairing is an important piece of nuclear structure studies.
Traditional approaches to pairing in nuclei followed those
developed in studying metal superconductivity (i.e., BCS
theory), a valid approximation in the thermodynamical limit
(A → ∞). Finite-size corrections, relevant in the nuclei case,
can be incorporated by projecting to a subspace with a fixed
number of particles [1]. Alternatively, for some particular (but
relevant) cases the pairing Hamiltonian with nondegenerate
single-particle levels can be diagonalized in a space with a
fixed number of particles. This solution, found by Richard-
son [2] five years after the BCS proposal, received a recent
renewal attention with the experimental advent of ultrasmall
superconducting grains [3]. The Richardson solution for the
so-called SU(2) pairing considers only correlations between
like particles, electron-electron for metal superconductors, and
proton-proton and neutron-neutron for nuclear matter. Con-
trary to metal superconductors, the nuclei isospin symmetry
demands pairing between unlike particles (proton-neutron),
which gives a richer phenomenology. The matrix elements of
this Hamiltonian were calculated years ago by Hecht [4] and
the simplest cases were studied by diagonalizing numerically
the Hamiltonian matrix. Other traditional approaches consider
pairing in a single degenerate level [5,6]; in this case the pairing
Hamiltonian exhibits a dynamical symmetry and complete
expression for energies and wave functions have been given;
in the N = Z case the wave function is a condensate of
four-particle bosons. It is the purpose of this paper to study
the effect of single-particle splittings in the wave function
of pairing Hamiltonians, and evaluate to what extent these
splittings break the boson condensate of quartets. The exact
solution for the so-called isovectorial pairing Hamiltonian
including single-particle levels was more challenging than in
the SU(2) case, and first attempts to find it [7] were shown
to be valid only when the number of pairs is less than or
equal to two [8]. More refined mathematical tools to deal
with the complexity of the exact solution had to be developed
to include proton-neutron correlations. In this context, Links
et al. [9] succeeded in demonstrating the integrability of the

Hamiltonian with proton-neutron correlations; moreover, they
derived the set of nonlinear equations whose solutions give
the exact wave functions and energies. Their derivation made
use of the so-called inverse scattering method, the SO(5)
structure underlying the isovectorial pairing Hamiltonian and
an appropriate Bethe ansatz. Numerical results and physical
interpretation of the solutions were reported in Ref. [10]. In
this contribution a more detailed study of the wave function is
presented to determine its structure in the region where neither
single-particle levels nor pairing dominate. As discussed in the
last section this situation can be present in real nuclei in the
fpg and sdgh shells.

It is known [11,12] that the BCS solution applied to
isovectorial and/or isoscalar pairing Hamiltonians fails to
describe quartet correlations and quartet condensation. The
results presented in this paper could be useful to develop ap-
proximative methods to adequately describe the correlations of
isovectorial and isoscalar pairing Hamiltonians. Additionally,
the exact solution can be used as a testing ground to these
approximative methods, which eventually could be useful in
more general contexts. Condensation and clusterization of
α-like particles and the determination of α-transfer proba-
bilities in N = Z nuclei are issues where the present exact
solution could shed some light.

II. THE EXACT SOLUTION

We briefly review the exact solutions for the SU(2) and
SO(5) pairing Hamiltonians in the seniority zero case (non-
unpaired particles), and compare the respective numerical
results, particularly the dependence of pairing energy on
isospin T . The reduced pairing Hamiltonian for like particles
reads

ĤSU(2) =
∑

i

εi(N̂pi + N̂ni) − g
∑
ij

(̂b †
1i b̂1j + b̂ †

−1i b̂−1j ),

(1)
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where the operators in the first term are, respectively, number
operators for protons and neutrons in different single-particle
levels. The interaction part is written in terms of time-reversed
pair operators b̂ †

1i = p̂ †
imp̂ †

im̄ and b̂ †
−1i = n̂ †

imn̂ †
im̄, where p̂ †

im

and n̂ †
im are, respectively, proton and neutron creation operators

in the ith single-particle level. The first index in the pair
operators is the isospin projection (τ ). The Bethe ansatz
suitable to solve the previous Hamiltonian in the case of
non-unpaired particles is (for the most general case see
Ref. [13]):

|ψ〉 =
Mp∏
s

b̂ †
1 (es)

Mn∏
q

b̂ †
−1(eq)|O〉, (2)

where Mp and Mn are, respectively, the number of proton-
proton and neutron-neutron pairs. The pair operators b̂ †

1 (es)
are a linear combination of the pairs in each single-particle
level:

b̂ †
τ (es) =

∑
i

b̂†
τ i

2εi − es

(τ = −1, 0, 1).

By applying the Hamiltonian (1) to Eq. (2), we get a term
proportional to the original ansatz and terms perpendicular to
it. By letting the factors multiplying the nonproportional terms
be zero, we guarantee that the ansatz will be an eigenvector,
then by reading the term multiplying the ansatz we get the
respective eigenvalue (for details see, e.g., Ref. [14]). Here,
we present the results. The energies are given:

E =
∑

s

es, (3)

where the parameters es (as many as nucleon pairs) have to
satisfy the following set of nonlinear equations:

Mτ∑
p �=s

2

es − ep

+
∑

j

1

2εj − es

= 1

g
,

with τ = n, p, and s = 1, . . . ,Mτ .
The inclusion of proton-neutron correlations coupled to

isospin T = 1 changes the Hamiltonian to:

ĤSO(5) =
∑

i

εi(N̂pi + N̂ni)

− g
∑
ij

(̂b †
1i b̂1j + b̂ †

0i b̂0j + b̂ †
−1i b̂−1j ). (4)

The middle term in the interaction part is written in terms
of the pairs b̂ †

0i = 1√
2
(̂n †

imp̂ †
im̄ + p̂ †

imn̂ †
im̄). The Bethe ansatz to

diagonalize this Hamiltonian is more involved and includes
a new set of parameters (ωp). For a state of isospin T and
M nucleon-nucleon pairs, in the seniority zero case, the
ansatz reads (for the general case with unpaired particles see
Ref. [10]):

|�〉 =
(

M∏
s

b̂ †
−1(es)

)
Mω∏
p

(
M∑
s

←
I s+

es − ωp

)
|O〉. (5)

The number of pairs (M) is equal to the number of pair energies
(es parameters), whereas the number of ωp parameters is given

by Mω = M − T . The operators
←
I s+ act upon the b̂ †

−1(es)
pair creators labeled with the same index s, increasing the

isospin projection of the pair operator: b̂ †
−1(es)

←
I s+ = b̂ †

0 (es),

b̂ †
−1(es)(

←
I s+)2 = b̂ †

1 (es), and b̂ †
−1(es)(

←
I s+)3 = 0.

The ωp parameters determine the isospin couplings of the
wave function. The eigenvalues of the Hamiltonian can be
obtained from the expression (3), but the nonlinear equations
are modified and involve both the es and ωp parameters:

M∑
q �=s

2

es − eq

+
Mω∑
q

1

ωq − es

+
∑

j

1

2εj − es

= 1

g
,

M∑
q

2

eq − ωp

+
Mω∑
q �=p

2

ωp − ωq

= 0,

with s = 1, . . . ,M and p = 1, . . . ,Mω.
We solved the nonlinear equations by using a standard

Newton’s method, as described in Ref. [15]. To illustrate
the effect of proton-neutron correlations, we calculated the
binding energy from proton-neutron pairing, defined:

BEPN ≡ �EPairSU(2) − �EPairSO(5), (6)

where �EPairSU(2) and �EPairSO(5) are obtained from the
ground-state energies of Hamiltonians (1) and (4), by sub-
tracting the contribution of the single-particle levels �EPair ≡g

〈�|Hg|�〉g −o〈�|Hg=0|�〉o.
For concreteness, a schematic system is considered, which

consists of A = 48 nucleons moving in a space of 100 fourfold
degenerate (two spin and two isospin projections) and equally
spaced singe-particle levels [εi = εo(i − 1)/2].

In Fig. 1, proton-neutron binding energy is plotted as a
function of proton number (Z) for g/(�ε) = 0.34, where
�ε is the mean spacing among the single-particle levels. As
expected, the proton-neutron correlations increase the binding
energy by a factor that grows as T approaches to zero. Pairing
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FIG. 1. Binding energy from proton-neutron pairing as a function
of proton number (Z), for a system of A = 48 nucleons moving in 100
fourfold degenerate and equally spaced (ε0/2) single-particle levels.
The ratio between the coupling constant and mean single-particle
spacings is g/(�ε) = 0.34.
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energy in the SU(2) case is not very sensitive to the number
of protons, whereas, in the isovectorial case, it increases as
we approach the symmetric case N = Z. The figure makes
evident the so-called Wigner energy (i.e., the increase of
binding energy as the number of protons equals that of
neutrons).

III. THE WAVE FUNCTION

Contrary to the Hamiltonian eigenvalues, which depend
only on the pair energies es , the wave function depends also
on the ωp parameters. The numerical solution of the nonlinear
equations allows us to get insight about the structure of the
many-body wave function. In g ∼ 0, the pair energies are
real and close to twice the single particle energies (2εi), this
corresponds to a simple filling of the single-particle levels up
to the Fermi energies [16]; we call it a normal state. For a
critical g two of the pair energies become complex, signaling
the simultaneous creation of two Cooper-like pairs [17], and
marking the crossing to a superconducting state. As the
coupling increases more and more pairs leave the real axis
to form two arcs in the complex plane.

In Fig. 2 the values of the es and ωp parameters are plotted
in the complex plane for the same pairing strength as Fig. 1
[g/(�ε) = 0.34] and for two cases: N > Z in the top panel and
N = Z in the bottom panel. In the N > Z case, the upper arc
is formed by four isolated es parameters, whereas the lower arc
is composed by four es parameters closely surrounded each by
two ωp parameters. The rest of the pair energies are real, which
implies these pairs are still in the normal state, occupying the
single-particle levels. To determine the nature of the Cooper
pairs created, let us consider the wave function (5) in the limit
where eight ωp parameters (say p = 1, . . . , 8) approach in
pairs to four complex es parameters (say s = 1, . . . , 4); we
label the rest of the complex pairs (those of the upper arc) by

s = 5, . . . , 8. The limit, limωp→es

∑
q

←
I q+

eq−ωp
=

←
I s+

es−ωp
, allows

us to approximate the exact wave function (5) as

lim
(ω2s−1,ω2s )→es

|�〉 = P̂normal

4∏
s=1

(
b̂ †

−1(es)

←
I s+

es − ω2s−1

←
I s+

es − ω2s

)

×
8∏

s=5

b̂ †
−1(es)|O〉,

where P̂normal represents the wave function factor depending on
real es close to twice the single-particle energies, with leading
term [16] P̂normal ≈ c1

∏
i b̂1i

∏
j b̂−1j . Then, by applying the

←
I s+ operators we get, finally,

|�〉 ≈ C P̂normal

4∏
s=1

b̂ †
1 (es)

8∏
s=5

b̂ †
−1(es)|O〉,

where C is an irrelevant constant. The wave function has, in
this limit, the same structure as the exact solution in the SU(2)
case, that is, a many-body wave function where a certain
number of pairs are occupying the deepest single-particle
levels, a group of pairs (those of the upper arc) is forming a
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FIG. 2. es (open circles) and ωp (solid circles) parameters in the
complex plane for N > Z (N = 32 and Z = 16) in top panel, and
N = Z = 24 in bottom panel. The system is the same as that of Fig. 1.
The tiny horizontal lines are the values of twice the single-particle
energies (2εi).

superfluid state of neutron-neutron pairs [̂b †
−1(es)], and another

set (those of the lower arc) is forming a superconducting state
of proton-proton pairs [̂b †

1 (es)]. The previous description is
valid only as a leading approximation to the exact solution;
corrections, which additionally restore the isospin symmetry,
come from the fact that the two ωp parameters are not exactly
equal to the nearest es parameter. A different picture emerges
when the number of neutrons equals that of protons (Fig. 2,
bottom panel); in this case the upper and lower arcs approach
to give rise to several sets formed by two es and two ωp

parameters. The previous simple picture of two different
like-particle superfluids disappears and a superfluid state of
quartets emerges. This quartet structure, already anticipated
by other authors (see Refs. [6] and [18], e.g.), is the simplest
one that can accommodate simultaneously like particles and
proton-neutron correlations.

The discussion of the previous paragraphs allowed us to get
a qualitative general overview of the wave function in different
cases, nevertheless, quantitative results require a more detailed
analysis of the Bethe ansatz (5). In a first stage we will express
the wave function entirely in terms of pair creators; a numerical
analysis in the N = Z case will be presented in the next
section. To express the Bethe ansatz in terms of pair creators,

we apply the
←
I s+ operators to the pair creators b̂ †

−1(es). After
a straightforward calculation, the resulting wave function is a
sum of products of the three different types of pair creators
(τ = −1, 0, 1):

|�〉 =
∑
G∈G

1

2|E1| Perma(MG)

×
∏

es∈E1

b̂ †
1 (es)

∏
ep∈E0

b̂ †
0 (ep)

∏
eq∈E−1

b̂ †
−1(eq)|O〉, (7)
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where G is a partition in three subsets (E−1, E0, E1) of
the set of pair energies {e1, . . . , eM}, |Eτ | is the cardinality
of subset Eτ , and the sum runs over the set (G) of three-
subset partitions restricted to the conditions: 0 � |E1| � rmax,
|E0| = M − T − 2|E1|, and |E−1| = T + |E1|, with rmax =
(M − T )/2 if M − T is even and rmax = (M − T − 1)/2
otherwise. Perma(MG) is the permanent of matrix MG, which
depends, for each partition, on the elements of the subsets E1

and E0, and on the ωp parameters. Let E1 = {es1 , es2 . . . es|E1 | }
and E0 = {eq1 , eq2 . . . eq|E0 | } be the elements of respective
subsets for a given partition G, the matrix MG is defined:

MG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(es1 − ω1)−1 · · · (es1 − ωMω
)−1

(es1 − ω1)−1 · · · (es1 − ωMω
)−1

(es2 − ω1)−1 · · · (es2 − ωMω
)−1

(es2 − ω1)−1 · · · (es2 − ωMω
)−1

...
. . .

...
(es|E1 | − ω1)−1 · · · (es|E1 | − ωMω

)−1

(es|E1 | − ω1)−1 · · · (es|E1 | − ωMω
)−1

(eq1 − ω1)−1 · · · (eq1 − ωMω
)−1

(eq2 − ω1)−1 · · · (eq2 − ωMω
)−1

...
. . .

...
(eq|E0 | − ω1)−1 · · · (eq|E0 | − ωMω

)−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that each element of subset E1 appears in two consecutive
rows, then the dimension of the matrix is (M − T ) × (M − T ).
The expression (7) is the Bethe ansatz written entirely in terms
of pair creators. Compare this expression with the equivalent
ansatz for the SU(2) pairing Hamiltonian (2); its complexity
explains why the first attempts to derive the exact solution of
the isovectorial pairing Hamiltonian beginning from a Bethe
ansatz written entirely in terms of pair creators, were unable
to go further than three pairs.

IV. APPLICATION TO THE N = Z CASE

In Ref. [6] the authors studied the isovectorial pairing
Hamiltonian in the case of a completely degenerate single-
particle level. This situation can be reached from the present
model in the limit g → ∞, where the pairing interaction
dominates and, consequently, the single-particle details are
completely diluted. In this limit, the ground-state wave
function in the even-even symmetric N = Z case, can be
written:

(̂b † · b̂ †)M/2|O〉, (8)

where the central dot represents an isospin scalar product of
the isovector-pair operators b̂ †

τ ≡ ∑
i b̂ †

iτ , with index i running
over all the (degenerate) single-particle levels. This wave
function corresponds to a condensate of quartets [19]. How
does the system cross from a normal state of pairs occupying
single-particle levels (g = 0) to a boson condensate of quartets
(g → ∞)? The formulas presented in the previous section,
allow us to answer this question. The first step is to particularize
the general expression (7) to the N = Z case, however,
the combinatorial problem involved in the determination
of the wave-function norm prevented us from going further,

and we decided to study the simplest even-even nontrivial
system, which consists of four protons and four neutrons.
Although arbitrary levels and degeneracies can be easily
accommodated within the present formalism, for concreteness,
six fourfold degenerate and equally spaced single-particle
levels were considered. Knowing that the wave function can
be written in terms of the operators b̂ †

τ (es), which are T = 1
tensor operators, the general form for a To = 0 state must be
[8]:

|�〉 =
∑

T =0,1,2

|�T 〉 = N
∑

T =0,1,2

AT [[̂b †(e1)

× b̂ †(e2)]T × [̂b †(e3) × b̂ †(e4)]T ]To=0
0 |O〉. (9)

The coefficients AT can be determined by comparing the
previous expression to the exact wave function written in
terms of pair creators [Eq. (7)]. Once we have determined
the coefficients AT , we have to calculate the norm of each
component to obtain the probability of finding the state in
each of these three different T -coupled components. This
calculation is very cumbersome and prevents us from going
further than the simplest nontrivial case (four protons and
four neutrons). The result is shown in Fig. 3. The scalar
(T = 0) coupling dominates completely the wave function for
small (g/(�ε) < 0.36) and large (g/(�ε) > 0.90) values of
the coupling constant, although the nature of the states in both
intervals is very different: for small values the pair energies
are real (see Fig. 3, bottom panel) and the wave function
consists of particles occupying the first two single-particle
levels; each level can accommodate two neutrons and two
protons, and there is no correlation between particles in
different levels. Particles in the first level couple to T = 0
and so do particles in the second one. The resulting wave
function is a product of normal quartets, occupying, each,
different single-particle levels. For large values of g all the
pair energies are complex (Fig. 3, bottom panel) and the wave
function is a product of two isoscalar quartets, consisting each
of two Cooper-like pairs. Each quartet has the same structure
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FIG. 3. Probability (|〈�T |�T 〉|/|〈�|�〉|)2 of finding the ground-
state wave function in each of the three different T -coupled compo-
nents (top) and Im part of the es parameters (bottom) as functions of
the ratio between the coupling constant and the mean single-particle
spacings g/(�ε). The number of protons and neutrons is N = Z = 4,
and the number of fourfold equally spaced single-particle levels is six.
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in terms of single-particle pairs and contributes equal to the
total energy; the resulting wave function is a finite-number
version of a boson condensate. In this limit the wave function
can be well approximated by the wave function of the totally
degenerate solution [Eq. (8)]. For intermediate values of g

the wave-function structure is more involved; for two critical
values of the ratio g/(�ε)—(g/(�ε) ≈ 0.38 and g/(�ε) ≈
0.71)—two sudden enhancements of the T = 1 quartets are
observed. These enhancements are related with the formation
of two Cooper pairs, which are signaled by the appearance of
an imaginary part in two of the pair energies (Fig. 3, bottom
panel). In the first enhancement the probability of the T = 1
component increases up to 84%, whereas in the second one the
percentage reaches 82.5. In this intermediate range the pairing
energy is of the same order as the single-particle spacings, and
the interplay between both terms in the Hamiltonian results
in a complicated structure of the wave function, where scalar
and T = 1 quartets play the dominant role. For all g, the
contribution of T = 2 coupled quartets is very small; the
greatest peak in the probability of this component reaches
about 7%.

How do the given results compare with realistic values of
pairing strength and mean single-particle spacings? A rough
idea of the ratio g/(�ε) for realistic cases can be obtained
from a standard parametrization of the shell model [20]:

H = h̄ω0(η + 3/2) − κh̄ω0(2L · S + µL2) − gHP ,

with h̄ω0 = 41A−1/3[MeV ], g = gp ≈ gn ≈ gpn =
19/A[MeV ], and κ = 0.08, µπ ≈ µν = 0.0 for the fpg
shell, and κ = 0.0637, µπ ≈ µν = 0.51 for the sdgh
shell. In the N = Z case we obtain a ratio ranging from
g/(�ε) = 0.283 (N = Z = 50) to 0.398 (N = Z = 30) in
the fpg shell and a ratio from 0.700 (N = Z = 82) to 0.949
(N = Z = 52) in the sdgh shell. Even though these values
for the ratio between the pairing strength and the mean level
spacings of minor shells in major shells, are in the range
where the nonscalar couplings are enhanced (compare to
Fig. 3), the previous estimate can only give us an idea of the
competition between pairing and single-particle splittings in
real nuclei. A more refined study requires considering the
details of the single-particle levels and not only the mean
value of the level spacings (a large spacing below the Fermi
energy is more effective to inhibit pairing effects than a
small one, even if the mean spacings of the single-particle
levels are equal). Additionally, it is worth mentioning that
in a realistic calculation for nuclei far from closed shells,
quadrupole-quadrupole interactions (not considered at all in
this study) and Nilsson deformed levels have to be considered.
The latter can be easily accommodated within the present
approach; with an adequate parametrization for the deformed
Nilsson potential a general study of the competition between
single-particle splittings and pairing in N = Z nuclei can be
done. Work in this direction will be published elsewhere.

The observed enhancements of the nonisoscalar compo-
nents of the wave function are of relevance in the determination
of α-transfer probabilities [21], which must be affected by
structural changes of the wave function. The enhancements
of the nonscalar components must reduce these probabilities
and sudden reductions of them in real nuclei could be

related with the competition between singe-particle energies
and pairing interactions. Work in this direction is currently
underway.

V. CONCLUSIONS

A detailed study of the exact wave function for the
isovectorial pairing Hamiltonian was presented; comparison
with the like-particle pairing Hamiltonian, reproduces, from
the exact solution, well-known results: the effect of proton-
neutron correlation is enhanced when the number of protons
equals that of neutrons, the like-particle pairing approximates
the isovectorial pairing when T �= 0, however, corrections
and isospin symmetry restoration are obtained when proton-
neutron correlations are incorporated. For the symmetric nu-
clear matter case (T = 0), the exact solution of the isovectorial
pairing Hamiltonian yields a richer phenomenology for which
the like-particle pairing is blind. A quartet structure of the
wave function appears, which is transformed in a boson
condensate of isoscalar quartets when the pairing energy is
much greater than the single-particle energy splittings. For
intermediate values of the coupling constant, a more involved
structure appears, the wave function is a sum of isospin coupled
quartets, and no factorial form of T = 0 quartets appears.
For certain pairing strengths, the product of scalar quartets
is even less probable than the T = 1 coupling of quartets. The
enhancements of the nonscalar coupled quartets are related
with the pairwise creation of Cooper pairs. Realistic values for
the ratio g/(�ε) in a spherical shell–nuclear model are of the
order of magnitude of the range where neither single-particle
levels nor pairing dominate. The obtained enhancements of the
nonscalar quartets in the ground-state wave function of N = Z

nuclei could be of interest in the determination of α-transfer
probabilities, which must be reduced when the nonscalar terms
dominate the wave function. The present study can be extended
to include more general situations such as unpaired particles,
realistic single-particle energies and degeneracies, and differ-
ent single-particle energies for protons and neutrons (breaking
the isospin symmetry). Likewise, the present study can be
extended to the SO(8) pairing Hamiltonian, which includes,
additionally, proton-neutron correlation in the T = 0 channel.
The combinatorial problem involved in the determination
of the norm of the isospin-coupled components, has to be
worked out to study systems with more than eight nucleons.
The present exact solution can be used, as other exactly
solvable models have, as a testing ground for approximative
methods to study pairing phenomenology. Finally, although
this presentation was focused on nuclear matter, the presented
exact solution is of interest as a mathematical problem
(integrable and exactly solvable models) and in the study of
mesoscopic atomic systems.
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