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I. INTRODUCTION

In this paper I study the freedom available to redefine
interactions without changing the scattering and bound-state
observables of a quantum mechanical system. I consider
how this freedom can be used to formulate interactions
that have advantages in various situations. The Hamiltonians
discussed in this paper are equivalent in the mathematical
sense at all energy scales; this a stronger requirement than
the more flexible notion of equivalence used in effective
field theory that only requires equivalence up to some order
in the expansion parameter. Even with this more restrictive
notion of equivalence there is a very large class of equivalent
Hamiltonians.

There are a number of formal methods that start from a set of
high-quality two- and three-body interactions and construct an
equivalent set of interactions that fit the same bound-state and
scattering data. These include renormalization group methods
and methods based on specific unitary transformations that
block diagonalize Hamiltonians [1–6]. The compelling feature
of all of these methods is that the off-diagonal matrix
elements that couple the high- and low-energy parts of the
problem are suppressed in the transformed interactions. This
leads to low-energy effective theories that are approximately
decoupled from the high-energy part of the problem. This
has computational advantages in many-body calculations.
The price paid is that the transformed Hamiltonian has new
many-body forces involving any number of particles. This is
similar to what is observed using field redefinitions in effective
field theories, although the transformed theories discussed in
this paper are in principle equivalent to the original theories
for all energies.

In this paper I introduce a method that can be used
to provide independent control of the two-, three-, and
many-body interactions. Much of the work contained in this
paper was discussed in Ref. [7]. The approach is to start
with the general class of equivalent interactions. This is
then restricted to a subset that can be treated variationally.
Positive functionals are introduced that have minimum values
for equivalent potentials with selected properties. For exam-
ple, it is possible to design functionals that select models
where the dynamics for energies above some given scale
approximately decouples from the dynamics for energies
below some scale, models that have weak three- and four-
body interactions, or models that emphasize an approximate
symmetry.

II. MULTICHANNEL SCATTERING THEORY

In this section I give a brief summary of multichannel
scattering theory that is relevant for this work.

The Hilbert space, H1, for a single particle of mass m

and spin j is the space of square integrable functions of the
particle’s linear momentum and magnetic quantum number,

〈p, µ|ψ〉 = ψ(p, µ)
(2.1)

〈ψ |ψ〉 =
∫

dp
j∑

µ=−j

|ψ(p, µ)|2 < ∞.

The N -particle Hilbert space is the N -fold tensor product of
single-particle Hilbert spaces,

H := ⊗N
i=1Hi . (2.2)

The total linear momentum and total Galilean mass of the
N -particle system are the multiplication operators,

p :=
N∑

i=1

pi M =
N∑

i=1

mi. (2.3)

The N -body Hamiltonian H has a N -body bound state if the
center-of-mass Hamiltonian,

h := H − p2

2M
, (2.4)

has a discrete eigenvalue, −ε. If the Hamiltonian is rotationally
and translationally invariant it is possible to find simultaneous
eigenstates of h, p, the total N -body spin, and the projection
of the total N -body spin on the three axis. I denote these
eigenstates by |(εi, ji), p, µ〉, where the index i labels different
bound states when h has more than one bound state.

To define scattering channels let a denote a partition of the
N particles into na disjoint nonempty clusters of nai

particles.
There is a scattering channel α associated with the partition
a if there is a nai

-body bound state in each of the na clusters
of the partition a. Channel states asymptotically look like a
collection of na mutually noninteracting bound clusters.

The direct product of the na bound states in the channel αi ,

�αi
= |(ε1, j1), p1, µ1〉 × · · · × ∣∣(εna

, jna

)
, pna

, µna

〉
, (2.5)

defines the mapping �αi
, called the channel injection operator,

from the channel Hilbert space, Hαi
, which is the tensor

product of na single-particle Hilbert spaces,

Hαi
= H1 ⊗ · · · ⊗ Hna

, (2.6)
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to the N -particle Hilbert space by

�αi

∣∣fαi

〉
=

∫ ∑
µa ···µna

|(h1, j1), p1, µ1〉 × · · · × ∣∣(hna
, jna

)
, pna

, µna

〉
× f1(p1, µ1) · · · fna

(
pna

, µna

) ∏
dpi , (2.7)

where fj (pj , µj ) are wave packets describing the momentum
and spin distribution of the j th asymptotically bound cluster.

The asymptotic Hilbert space,Hf , is the direct sum of all of
the channel Hilbert spaces, including the one-cluster channels
that correspond to N -particle bound states,

Hf = ⊕iHαi
, (2.8)

and the multichannel injection operator � : Hf → H is

�|f〉 :=
∑

i

�αi

∣∣fαi

〉
, (2.9)

where

|f〉 = ⊕αi
|fαi

〉. (2.10)

For each partition a there may be 0, 1, or a finite number of
channels.

The unitary time-evolution operator Uαi
(t) on each channel

subspace, Hαk
, is

Uαk
(t) = e−i

∑
j (p2

j /2mj −εj )t , (2.11)

where pj is the total momentum of the j th bound cluster in
the channel αk , mj is the total mass of the j th bound cluster
of channel αk , and −εj is the binding energy of the j th bound
cluster of channel αi .

The asymptotic time-evolution operator on Hf is the direct
sum of the channel time-evolution operators,

Uf (t) = ⊕iUαi
(t). (2.12)

The asymptotic Hamiltonian, Hf , is the infinitesimal generator
of Uf (t). Multichannel Møller wave operators,

�± : Hf → H, (2.13)

are defined by the strong limits,

�± = lim
t→±∞ U (−t)�Uf (t), (2.14)

where U (t) = e−iH t is the time-evolution operator on H. The
multichannel scattering operator S : Hf → Hf is defined by

S = �
†
+�−. (2.15)

To indicate the dependence of the wave operator �± on
H,Hf , and � I use the following notation:

�± = �±(H,�,Hf )
(2.16)

S(H,�,Hf ) = �
†
+(H,�,Hf )�−(H,�,Hf ).

I say that the scattering theory is asymptotically complete if the
wave operators satisfy the following completeness relations:

IH = �+(H,�,Hf )�†
+(H,�,Hf )

= �−(H,�,Hf )�†
−(H,�,Hf ), (2.17)

and

IHf
= �

†
+(H,�,Hf )�+(H,�,Hf )

= �
†
−(H,�,Hf )�−(H,�,Hf ), (2.18)

where IH and IHf
are the identity operators on H and Hf ,

respectively.
The intertwining relations,

H�±(H,�,Hf ) = �±(H,�,Hf )Hf , (2.19)

follow directly from the definition (2.14) and lead to energy
conservation,

[Hf , S]− = 0, (2.20)

in the scattering operator.
In all that follows, the wave operators are assumed to

exist and satisfy the completeness relations (2.17) and (2.18).
The two-Hilbert space formulation of multichannel scattering
theory summarized above is equivalent to the standard formu-
lation of multichannel scattering. It has the advantage that the
notation allows all channels to be treated simultaneously.

III. CLUSTER EXPANSIONS

In this section I introduce combinatorial methods to treat
cluster expansions in this work [8–10]. These provide an
efficient notation for computing the many-body interactions
that appear in different equivalent Hamiltonians.

I begin by introducing a useful notation. I let P denote
the set of partitions of N particles into disjoint, nonempty
clusters. I use lowercase Latin letters, a, to denote partitions of
N particles, na to denote the number of clusters in the partition
a, and nai

to denote the number of particles in the i th cluster
of the partition a:

N =
na∑
i=1

nai
. (3.1)

Thus, a = (125)(37)(64) is a three-cluster partition of seven
particles, with one three-particle cluster and two two-particle
clusters.

There is a natural partial ordering on the set of partitions of
N particles given by

a ⊆ b or b ⊇ a, (3.2)

if every particle in the same cluster of a is also in the
same cluster of b. For example, a = (125)(37)(64) ⊆ b =
(125)(3467).

I let a ∪ b denote the least upper bound of a and b

with respect to this partial ordering and a ∩ b denote the
greatest lower bound of a and b with respect to this partial
ordering. I let 1 denote the unique one-cluster partition and 0
denote the unique N -cluster partition. For a = (125)(37)(64)
and b = (125)(367)(4), these definitions imply a ∩ b =
(125)(37)(4)(6), a ∪ b = (125)(3467), 1 = (1234567), and
0 = (1)(2)(3)(4)(5)(6)(7).

Next I introduce the operators that translate clusters. On
each of the single-particle Hilbert spaces, Hi , there is a trivial
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representation of the three-dimensional Euclidean group,

Ui(x, R)|p, µ〉 =
j∑

µ′=−j

|Rp, µ′〉eiRp·xDj

µ′µ(R), (3.3)

where x are parameters of the space translation subgroup and
R is a rotation. The matrix D

j

µ′µ(R) is the ordinary Wigner
function. I define

Ua

(
x1, R1, . . . , xna

, Rna

)
:= ⊗i1∈a1Ui1 (x1, R1) ⊗i2∈a2 Ui2 (x2, R2) · · ·

⊗ina ∈ana
Uina

(
xna

, Rna

)
. (3.4)

These operators perform independent translations and rota-
tions on the subsystems of particles in each cluster of the
partition a.

A bounded operator A on the N -particle Hilbert space has
a cluster expansion if it can be expressed as a sum of terms
associated with each partition a,

A =
∑
a∈P

[A]a, (3.5)

where the operators [A]a are invariant with respect to indepen-
dent translations and rotations of the cluster of the partition a,[

[A]a, Ua

(
x1, R1, . . . , xna

, Rna

)]
− = 0, (3.6)

and vanish when any pair of particles in the same cluster of
the partition a are asymptotically separated:

lim
|xi−xj |→∞

∥∥[A]aUb

(
x1, R1, . . . , xnb

, Rnb

)|ψ〉∥∥ = 0 b 
⊇ a.

(3.7)

Equations (3.6) and (3.7) provide a mathematical characteri-
zation of these two properties. When A is unbounded I will
assume that these equations hold for a suitable dense set of
vectors |ψ〉.

For b ⊇ a, Ub(· · ·) is a subgroup of Ua(· · ·) so

lim
|xi−xj |→∞

∥∥[A]aUb

(
x1, R1, . . . , xnb

, Rnb

)|ψ〉∥∥
= lim

|xi−xj |→∞
∥∥Ub

(
x1, R1, . . . , xnb

, Rnb

)
[A]a|ψ〉∥∥

= ‖[A]a|ψ〉‖ b 
⊇ a. (3.8)

It follows from Eqs. (3.6) and (3.7) that if A has a cluster
expansion, then

lim
|xi−xj |→∞

∥∥∥∥∥
(

A−|,
∑
b⊇a

[A]a

)
Ua

(
x1, R1, . . . , xnb

, Rnb

)|ψ〉
∥∥∥∥∥

= 0, (3.9)

which leads to the definition,

Ab :=
∑
b⊇a

[A]a, (3.10)

which is the part of A that is invariant with respect to
translations of the individual clusters of b, irrespective of the
asymptotic properties:[

Ab,Ub

(
x1, R1, . . . , xnb

, Rnb

)]
− = 0. (3.11)

This is the part of A that remains after the clusters of the
partition b are asymptotically separated.

It is also useful to define

Ab := A − Ab =
∑
b 
⊇a

[A]a, (3.12)

which is the part of A that asymptotically vanishes when the
different clusters of b are asymptotically separated:

lim
|xi−xj |→∞

∥∥AbUb

(
x1, R1, . . . , xnb

, Rnb

)|ψ〉∥∥ = 0. (3.13)

The incidence matrix, δa⊇b, called the zeta function of the
partial ordering, a ⊇ b, has an inverse, called the Möbius
function, δ−1

a⊇b of the partial ordering, which also vanishes
when a 
⊇ b. The Möbius function can be used to express [A]a
in terms of Ab:

[A]a =
∑
b⊆a

δ−1
a⊇bAb. (3.14)

This inverse is explicitly known [10]:

δ−1
a⊇b =

{
(−1)na

∏na

i=1(−)nbi

(
nbi

− 1
)
! a ⊇ b

0 a 
⊇ b,
(3.15)

where nbi
is the number of clusters of b contained in the i th

cluster of a.
The following identities are consequences of the defini-

tions:

(AB)a = AaBa (AB)a = AaB
a + AaBa + AaBa

(Aa)b = Aa∩b. (3.16)

If A has a cluster expansion the connected part of A is the
part of A that vanishes when any pair of particles is separated.
It is

[A]1 = A −
∑
a 
=1

[A]a. (3.17)

Using properties of the Möbius and zeta functions gives the
following expression for [A]1:

[A]1 =
∑
a∈P

∑
b∈P

δ−1
1⊇aδa⊇b[A]b

=
∑
a∈P

δ−1
1⊇aAa = δ−1

1⊇1A1 +
∑
a 
=1

δ−1
1⊇aAa (3.18)

= A +
∑
a 
=1

δ−1
1⊇aAa, (3.19)

where I have used the identities,

δ−1
1⊇1 = 1 A1 = A. (3.20)

I define the coefficients,

Ca := −δ−1
1⊇a = (−)na (na − 1)! (3.21)

from which it follows that

A = [A]1 +
∑
a 
=1

CaAa. (3.22)

This separates the “connected” part [A]1 of A from the
disconnected part,

∑
a 
=1 CaAa , of A.
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IV. SCATTERING EQUIVALENCES

Of interest is a characterization of when two N -body
Hamiltonians are physically equivalent. It is customary in the
literature to call two Hamiltonians equivalent if they are related
by a unitary transformation. This is really insufficient. For a
simple counterexample consider two different short-ranged
repulsive two-body interactions, V1 and V2. The spectrum
and multiplicity of the two-body Hamiltonians are identical.
If the wave operators satisfy the completeness relations
(2.17)–(2.18) then the operator,

A = �+(H1,�,H0)�†
+(H2,�,H0), (4.1)

is a unitary operator on H. It follows from the intertwining
relations, Eq. (2.19), that A also satisfies AH2 = H1A;
however, any two arbitrary repulsive potentials do not give
the same phase shifts. So even though H1 and H2 are related
by a unitary transformation, the scattering observables are
unrelated. For equivalent Hamiltonians I also need to require
that the S matrix remains unchanged and the description of the
free particles remains unchanged.

The two-Hilbert formulation of scattering is useful in this
regard. What is required in general is the unitary equivalence
of the Hamiltonians,

H ′ = A†HA AA† = I, (4.2)

and S-matrix equivalence,

S(H,�,Hf ) = S(H ′,�′,Hf ), (4.3)

where Hf remains unchanged. Recall from the construction
of the previous section that the operator � also depends on H .

To determine the requirements of S-matrix equivalence on
A I use Eq. (2.16) in Eq. (4.3) to obtain

�
†
+(H,�,Hf )�−(H,�,Hf )

= �
†
+(H ′,�′,Hf )�−(H ′,�′,Hf ). (4.4)

Using Eq. (2.15) in Eq. (4.4) gives the following candidate
for A:

A := �+(H,�,Hf )�†
+(H ′,�′,Hf )

= �−(H,�,Hf )�†
−(H ′,�′,Hf ). (4.5)

The intertwining property, Eq. (2.19), gives

AH ′ = HA. (4.6)

Unitarity of A follows from Eqs. (2.17) and (2.18), which also
can be used to show

�+(H,�,Hf )

= �+(H,�,Hf )IHf

= �+(H,�,Hf )�†
+(H ′,�′,Hf )�+(H ′,�′,Hf )

= A�+(H ′,�′,Hf ) = �+(AH ′A†, A�′,Hf )

= �+(H,A�′,Hf ). (4.7)

Subtracting the left from the right side of Eq. (4.7) and using
the definition of the wave operators gives the identity,

0 = �+(H,�,Hf ) − �+(H,A�′,Hf ), (4.8)

which is equivalent to

0 = lim
t→∞ ‖U (t)[� − A�′]Uf (t)|f〉‖

= lim
t→∞ ‖[� − A�′]Uf (t)|f〉‖. (4.9)

Similarly, using the second equation [Eq. (4.4)] gives the
corresponding relation with the other time limit,

0 = lim
t→−∞ ‖[� − A�′]Uf (t)|f〉‖. (4.10)

The vanishing of both time limits is important. The failure of
S-matrix equivalence in the case of the two repulsive potentials
is because the two time limits lead to different unitary
operators, A+ 
= A−, satisfying Eq. (4.2).

The asymptotic conditions, Eqs. (4.9) and (4.10), along with
the definition of the operator A [(Eq. (4.5)], are consequences
of the identity [Eq. (4.3)] of the two scattering operators.

Conversely, if both asymptotic conditions, Eqs. (4.9)
and (4.10), hold for some unitary A, then

�±(H,�,Hf ) = �±(H,A�′,Hf ) = A�±(H ′,�′,Hf ).

(4.11)

Because this holds for the same A for both time limits it follows
that

S(H,�,Hf ) = �
†
+(H,�,Hf )�−(H,�,Hf )

= �
†
+(H ′,�′,Hf )A†A�−(H ′,�′,Hf )

= S(H ′,�′,Hf ). (4.12)

This shows that the asymptotic conditions [Eqs. (4.9)
and (4.10)] are necessary and sufficient conditions for the
invariance of the S matrix. This result is the content of a
theorem in formal scattering theory from Ekstein [11].

I also need to determine the relation of �′ to A and H

in the context of Ekstein’s theorem. I assume that A has a
well-defined cluster expansion and I define an operator Aa by
turning off the parts of A that vanish when the clusters of the
partition a are asymptotically separated. It follows that if I turn
off the interactions between particles in different clusters of
the partition a that H ′ will have the following limiting form:

H ′ = A†HA → H ′
a = A†

aHaAa, (4.13)

where H ′
a is a sum of transformed subsystem Hamiltonians

associated with each cluster. It follows from the definitions
[Eqs. (2.7) and (2.9)] that the channel injection operators �αi

and �′
αi

associated with the partition a are related by

�′
αi

= A†
a�αi

, (4.14)

where �′
αi

is an eigenstate of H ′
a with eigenvalues,

Eαi
=

na∑
j=1

(
p2

j

/
2mj − εj

)
. (4.15)

Thus,

�′ =
∑

i

A†
ai
�αi

. (4.16)

Finally, if I want the subsystem Hamiltonians to be
separately rotationally and translationally invariant, then each
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of the operators Aa , obtained from A by turning off the parts
of A that generate interactions between particles in different
clusters of the partition a should also be translationally and
rotationally invariant.

Given a unitary A with a cluster expansion, Eqs. (4.14)
and (4.16) imply

A�′ =
∑

i

AA†
ai
�αi

. (4.17)

The requirement that H and H ′ = A†HA give the same
S matrix is that A is a unitary transformation with a well-
defined cluster expansion satisfying the asymptotic conditions,

0 = lim
t→±∞

∥∥∥∥∥
∑

i

[I − AA†
a]�αi

Uαi
(t)

∣∣fαi

〉∥∥∥∥∥ = 0, (4.18)

for each channel, or equivalently because of the unitarity of A,

lim
t→±∞

∥∥∥∥∥
∑

i

[A† − A†
a]�αi

Uαi
(t)

∣∣fαi

〉∥∥∥∥∥ = 0. (4.19)

If I assume that all of the fi vanish except for the N -body
breakup channel then Eq. (4.18) implies

0 = lim
t→±∞

∥∥∥∥∥
∑

i

[I − A†]U0(t)|f0〉
∥∥∥∥∥ = 0. (4.20)

When A has a suitable cluster expansion, (4.20) implies (4.18).
This is discussed in Sec. V.

Equation (4.20) is equivalent to

0 = lim
t→±∞

∥∥∥∥∥
∑

i

[I − A]U0(t)|f0〉
∥∥∥∥∥ = 0, (4.21)

where we have used �0 = I and H0 = H for the unique
N -cluster breakup channel.

I refer to unitary transformations A satisfying (4.21) as
scattering equivalences. It is easy to show that with this
definition the set of scattering equivalences form a group with
respect to operator multiplication.

V. ASYMPTOTIC PROPERTIES

It is now possible to construct a parameterized set of
scattering equivalences. Because the scattering equivalences
A are unitary operators, it follows that A can be expressed as
the Cayley transform of a Hermitian operator �,

A = 1 − i�

1 + i�
� = �†. (5.1)

In what follows I will assume that the Cayley transform, �,
has a cluster expansion,

� =
∑
a∈P

[�]a, (5.2)

where the [�]a are Hermitian, invariant with respect to
translations and rotations of the clusters of a, and vanish when
any of the particles in different clusters of a are asymptotically

separated. Specifically,

lim
|xi−xj |→∞

∥∥[�]aUb

(
x1, R1 · · · , xnb

, Rnb

)|ψ〉∥∥ = 0 b 
⊇ a.

(5.3)

A sufficient condition to satisfy all of the cluster conditions
is that [�]a and T [�]aT , where T is the N -body kinetic
energy operator, are both compact after one removes all of the
momentum conserving delta functions. In what follows, rather
than formally taking the cluster limit (5.3), I use a switching
parameter to turn off the parts of the operators that vanish in
the cluster limit. Thus, to take the limit where the clusters of a
partition a are separated, I formally write

�(λ) = �a + λ�a �(1) = �, (5.4)

and take the limit that λ → 0. I call this implementation of
cluster properties algebraic clustering [12]; it separates the
combinatorial aspects of cluster properties from the analytic
aspects.

While the cluster expansions are based on asymptotic
properties of the operators A with respect to translations, the
limits of interest in this paper are the time limits [Eqs. (4.18)–
(4.21)]. Although I will not get into the technical details of
the cluster limits, it is important to understand the relation
between the cluster limit and the time limit.

If I consider the time limit in Eq. (4.19), it has the form,

lim
t→±∞

∥∥∥∥∥
∑

i

[A† − A†
a]�αi

Uαi
(t)

∣∣fαi

〉∥∥∥∥∥
= lim

t→±∞

∥∥∥∥∥
∑

i

Aa†e
−i

∑
(

p2
aj

2maj
−εj )t

�αi

∣∣fαi

〉∥∥∥∥∥ = 0, (5.5)

where the kinetic energy that appears in the exponent is the
sum kinetic energies of each cluster of a. It looks similar to
the cluster limit,

lim
|xj −xk |→∞

∥∥∥∥∥
∑

i

Aa†ei
∑

paj
·xj �αi

∣∣fαi

〉∥∥∥∥∥ = 0. (5.6)

To understand the relation between the limits in Eqs. (5.5)
and (5.6), I consider first a single degree of freedom. Consider
the limit where the y component of cluster i is being translated.
The time limit above is bounded by a sum of terms of the form,

lim
λ→∞

∫ +∞

−∞
f (piy)eipiyλdpiy

= lim
λ→∞

∫ ∞

0
f (piy)eipiyλdpiy

+ lim
λ→−∞

∫ ∞

0
f (−piy)eipiyλdpiy. (5.7)

Both terms vanish by the Riemann Lebesgue lemma if f (piy)
and f (−piy) are absolutely integrable on [0,∞].

The corresponding time limit [Eq. (4.21)] contains a term
of the form,

lim
λ→∞

∫ +∞

0
f (piy)ei

p2
iy

2mi
λ
dpiy. (5.8)
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If I let u = p2
iy

2mi
the time limit becomes

lim
λ→∞

∫ ∞

−∞
[f (

√
2miu) + f (−

√
2miu)]eiuλ

√
mi

u
du

= lim
λ→∞

∫ +∞

0
g(u)eiuλdu, (5.9)

where

g(u) := [f (
√

2miu) + f (−
√

2miu)]

√
mi

u
(5.10)

is an absolutely integrable function of u if f (piy) is an
absolutely integrable function piy . Using an extension of this
same argument it is possible to show that the two limits
[Eqs. (5.5) and (5.6)] are equivalent, provided �αi

, fαi
, and Aa

are all suitably well behaved (i.e., so the resulting integrand is
absolutely integrable).

This means that the time limit associated with a given chan-
nel has a vanishing limit whenever the space limit associated
with the same channel also vanishes. Once I eliminate the
delta functions, the compactness condition always ensures that
Eqs. (5.5) and (5.6) are satisfied. If the functions are smooth
the fall-off is faster.

For channels associated with the partition a, the operators
Aa must vanish for both time limits. A sufficient condition for
this to be satisfied for all partitions a is that

lim
t→±∞ ‖(A − I )�0U0(t)�0|f0〉‖ = 0 (5.11)

for the N -cluster partition 0. In this case �0 = I , H0 = H,
and this condition becomes

lim
t→±∞ ‖(A − I )U0(t)�0|f0〉‖ = 0. (5.12)

This ensures that I − A is a sum of terms that vanish when
all particles are asymptotically separated. This is the basis of
our claim that Eq. (4.21) implies Eq. (4.19) and leads to the
characterization [Eq. (4.21)] of the asymptotic properties of
scattering equivalences.

VI. CONSTRUCTION

To construct a suitable class of operators A that can be used
in variational calculations, consider operators A, where the
Cayley transform has a cluster expansion,

A = 1 − i�

1 + i�
� = �† � =

∑
a∈P

[�]a, (6.1)

where each [�]a is a Hermitian operator that commutes
with Ua(x1, R1, . . . , xna

, Rna
) and satisfies the asymptotic

condition,

lim
|xi−xj |→∞

∥∥[�]aUb

(
x1, R1, . . . , xnb

, Rnb

)|ψ〉∥∥= 0 b 
⊇ a.

(6.2)

I also assume that after the momentum conserving delta
functions are removed, the remainder is a compact operator
with respect to the internal variables. This ensures that Eq. (6.2)

holds. The means that the internal part has an expansion of the
form,

[�]a = I × ˆ[�]a, (6.3)

where I is associated with the delta functions and compact
remainder has the canonical form,

ˆ[�]a =
∑

n

|ξan〉λan〈ξan|, (6.4)

with λan = λ∗
an, limn→∞ |λan| → 0, and 〈ξam|ξan〉 = δmn. In a

variational framework the coefficients λan and the orthogonal
vectors |ξan〉 can be chosen to depend on variational parame-
ters.

In general, the operators [�̂]a , along with the original
Hamiltonian, are the input to any calculation. In addition,
because of Ekstein’s theorem, the transformation leads to
scattering equivalent Hamiltonian characterized by a scattering
equivalence with a cluster expansion of the form (3.5). The
Cayley transform may be unbounded, but it will have an
algebraic cluster expansion of the above form.

The cluster expansion of � can be used to generate the
cluster expansion of A. Because �a and [�]a are related by the
Möbius and zeta functions, it is possible to construct �a from
the [�]b’s.

I have

�a =
∑

b

δa⊇b[�]b, (6.5)

Aa = 1 − i�a

1 + i�a

, (6.6)

[A]a =
∑

δ−1
a⊇bAb. (6.7)

The Aa’s can be computed recursively on the number of
clusters in the partition, starting with N − 1 cluster partitions.

The nature of the general construction can be illustrated
using a three-body example. In this case �(ij )(k) = [�](ij )(k).
For the two cluster partitions, a = (ij )(k), I first solve the
integral equation,

1

i − �(ij )(k)
= 1

i
− i[�](ij )(k)

1

i − �(ij )(k)
. (6.8)

For finite rank [�](ij )(k) this is an algebraic problem. [�]a’s of
the form Eq. (6.4) can be uniformly approximated by finite
rank [�]a . For the special case that [�]a = λ
a is a real
constant multiplied by the direct product of the identity (in
the conserved momentum variables) and a rank-one projection
operator, Eq. (6.8) can be solved analytically. The solution is

A(ij )(k) = 1 − i[�](ij )(k)

1 + i[�](ij )(k)
= I − 2iλ

1 + iλ

(ij )(k). (6.9)

To use these solutions to compute A I define

R := 1

1 + i�
, (6.10)

R(ij )(k) = 1

I + i[�](ij )(k)
, (6.11)

and

R(1)(2)(3) = I. (6.12)
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For the special case of a rank one �(ij )(k),

R(ij )(k) = I − i
λ(ij )(k)

1 + iλ(ij )(k)

(ij )(k). (6.13)

In general, the operators R(ij )(k) and R satisfy the resolvent
identities,

R(ij )(k) = I − i[�](ij )(k)R(ij )(k), (6.14)

and

R = R(ij )(k) − iR(ij )(k)([�](jk)(i) + [�](ki)(j ) + [�](123))R,

(6.15)

R = R(1)(2)(3) + i�R. (6.16)

To get an equation for R note that Eqs. (3.15) and (3.21) imply∑
a 
=1

Ca = 1. (6.17)

Using this with Eq. (3.21) gives the following equation for R:

R =
∑
a 
=1

CaR =
∑
a 
=1

CaRa − i
∑
a 
=1

CaRa�
aR. (6.18)

Equation (6.18) is valid for any number of particles. For the
three-particle case the driving term and kernel of Eq. (6.18)
can be expressed in terms of the [�]a as∑

a 
=1

CaRa = R(ij )(k) + R(ij )(k) + R(ij )(k) − 2I

= I − i[�](12)(3)R(12)(3) − i[�](23)(1)R(23)(1)

− i[�](31)(2)R(31)(2), (6.19)

and

− i
∑
a 
=1

CaRa�
a = −i(I − i[�](12)(3)R(12)(3))([�](23)(1)

+ [�](31)(2) + [�](123)),

− i(I − i[�](23)(1)R(23)(1))([�](31)(2)

+ [�](12)(3) + [�](123)),

− i(I − i[�](31)(2)R(31)(2))([�](12)(3)

+ [�](23)(1) + [�](123)),

+ i2I ([�](12)(3) + [�](23)(1)

× [�](31)(2) + [�](123)), (6.20)

= −i[�](123) − [�](12)(3)R(12)(3)([�](23)(1)

+ [�](31)(2) + [�](123)),

− [�](23)(1)R(23)(1)([�](31)(2)

+ [�](12)(3) + [�](123)),

− [�](31)(2)R(31)(2)([�](12)(3)

+ [�](23)(1) + [�](123)). (6.21)

The important observation is that this operator, which is the
kernel of the integral equation, [Eq. (6.18)], is compact after
delta functions that arise from overall translational invariance

are removed. It follows that Eq. (6.18) can be solved my
standard Fredholm methods. The solution can then be used to
construct A using

A = 1 − i�

1 + i�
= (1 − i�)R (6.22)

= (I − i([�](12)(3) + [�](23)(1) + [�](31)(2) + [�](123))R.

(6.23)

If the individual [�]a are finite rank (after all of the delta
functions from the translational symmetry are removed) then it
follows that the kernel Eq. (6.21) is finite rank (after the overall
momentum conserving delta function is removed). This is most
easily seen in the special case where all of the [�]a are propor-
tional to one-dimensional projectors (after the delta functions
are removed). In this case the kernel Eq. (6.21) becomes

−iλ(123)
(123) − λ(12)(3)

1 + iλ(12)(3)

(12)(3))(λ(23)(1)
(23)(1)

+ λ(31)(2)
(31)(2)λ(123)
(123),

− λ(23)(1)

1 + iλ(23)(1)

(23)(1))(λ(31)(2)
(31)(2)

+ λ(12)(3)
(12)(3)λ(123)
(123),

− λ(31)(2)

1 + iλ(31)(2)

(31)(2))(λ(12)(3)
(12)(3)

+ λ(23)(1)
(23)(1)λ(123)
(123). (6.24)

This is a finite dimensional matrix involving the 10
operators 
(123), 
(12)(3)
(23)(1), 
(12)(3)
(31)(2), 
(12)(3)
(123),

(23)(1)
(31)(2), 
(23)(1)
(12)(3), 
(23)(1)
(123), 
(31)(2)
(23)(1),

(31)(2)
(12)(3), and 
(31)(2)
(123). After the overall momentum
conserving delta function is removed the range of this operator
is a 10-dimensional vector space. The resulting integral
equation involves solving a system of 10 linear equations.
When the operators [�]a are finite rank, rather than rank one,
the matrix is larger, but it is still finite dimensional.

This construction can be extended to any number of
particles. The kernel of the integral equation for the N -body
R is still finite rank if all of the input [�]a are finite rank.
Thus, for finite rank [�]a the construction of A involves only
quadratures and linear algebra.

Returning to the three-body example,

H = T + V(12)(3) + V(23)(1) + V(31)(2) + V(123), (6.25)

A(1)(2)(3) = I, (6.26)

[A](12)(3) = (I − i[�](12)(3))R(12)(3) − I

= −2i[�](12)(3)R(12)(3), (6.27)

[A](23)(1) = (I − i[�](23)(1))R(23)(1) − I

= −2i[�](23)(1)R(23)(1), (6.28)

[A](31)(2) = (I − i[�](31)(2))R(31)(2) − I

= −2i[�](31)(2)R(31)(2), (6.29)

[A](123) = −i
∑
a 
=1

CaRa�
aR (6.30)

= R(12)(3)([�](23)(1) + [�](31)(2) + [�](123))R

+R(23)(1)([�](31)(2) + [�](12)(3) + [�](123))R
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+R(31)(2)([�](12)(3) + [�](23)(1) + [�](123))R

− 2([�](12)(3) + [�](23)(1)

+ [�](31)(2) + [�](123))R. (6.31)

I can use these cluster expansions of the scattering equiv-
alences to determine the cluster expansion of the transformed
three-body Hamiltonian,

H ′ = A†HA, (6.32)

H ′
a = A†

aHaAa, (6.33)

[H ′]1 = H ′ −
∑
a 
=1

CaH
′
a = A†HA −

∑
a 
=1

CaA
†
aHaAa. (6.34)

This means that the transformed two-body interactions are

V ′
(ij )(k) = [H ′](ij )(k)

= (I + [A]†(ij )(j ))(T + V(ij )(k))(I + [A](ij )(j )) − T

= V(ij )(k) + [A]†(ij )(j )V(ij )(k) + [A]†(ij )(j )T

+ [A]†(ij )(j )T [A](ij )(j ) (6.35)

+ [A]†(ij )(j ))V(ij )(k)[A](ij )(j )

+V(ij )(k)[A](ij )(j ) + T [A](ij )(j ), (6.36)

where T is the three-body kinetic energy and the A(ij )(k) are
given by Eqs. (6.27)–(6.29).

An important observation is that V ′
(ij )(k) only depends on

T , V(ij )(k), and [�](ij )(k). It does not depend on [�](123). This
means that after one chooses [�](ij )(k) to give a transformed
two-body interaction, it is still possible to use the freedom to
independently choose [�](123) to transform the resulting three-
body interaction without changing the transformed two-body
interactions.

The transformed three-body interaction is

V ′
(123)′ = A†HA − T − V ′

(12)(3) − V ′
(23)(1) − V ′

(31)(2) (6.37)

= [A†HA]1

= [A](123)HA† + [A](12)(3)((T + V(12)(3))([A]†(23)(1)

+ [A]†(31)(2) + [A]†(123)) + (V(23)(1) + V(31)(2)

+V(123))A
†) + [A](23)(1)((T + V(23)(1))([A]†(31)(2)

+ [A]†(12)(3) + [A]†(123)) + (V(31)(2) + V(12)(3)

+V(123))A
†) + [A](31)(2)((T + V(31)(2))([A]†(12)(3)

+ [A]†(23)(1) + [A]†(123)) + (V(12)(3) + V(23)(1)

+V(123))A
†) + T [A]†(123) + V(12)(3)([A]†(23)(1)

+ [A]†(31)(2) + [A]†(123)) + V(23)(1)([A]†(31)(2)

+ [A]†(12)(3) + [A]†(123)) + V(31)(2)([A]†(12)(3)

+ [A]†(23)(1) + [A]†(123)). (6.38)

This is expressed as a sum of completely connected terms; it
could be expressed in a more symmetric form but that would
involve more terms. The entire expression depends on the
operators [�]a that depend on the variational parameters.

If the [A](1j )(k) have already been determined by fixing the
two-body interaction then one can start with the transformed
potential and use an A where only [�](123)] is nonzero to get
an optimized three-body interaction. Alternatively, one could
start with the original potential and leave the [A](ij )(k) fixed in
the above expression, with all of the variational parameters in
[�](123).

VII. CONTROLLING THE HAMILTONIAN

To use variational methods to determine the best choice of
Hamiltonian, a positive functional is needed that can be mini-
mized. It is possible to either work recursively on the number of
particles, by first determining two-body interactions, followed
by the three-body interaction, or alternatively to determine all
interactions simultaneously.

The simplest type of functionals are of the form,

F (V ) = Tr(ρV †V )1/2, (7.1)

where ρ is a positive, rotationally and translationally invariant
operator. The trace is only taken over the variables that remain
after the momentum conserving delta functions are removed.
Thus, for two-body interactions of the form,

V (k, k′, η1 · · · ηN )δ(p′ − p), (7.2)

F (V ) would have the general form,

F (V ) =
∫

dkdk′dk′′V (k, k′, η1 · · · ηN )

×V ∗(k′′, k′, η1 · · · ηN )ρ(k, k′′), (7.3)

with obvious generalizations for three-body interactions,

F (V ) =
∫

dkdk′dk′′V (k − k′, η1 · · · ηN )

×V ∗(k′ − k′′, η1 · · · ηN )ρ(k′′ − k′). (7.4)

If the starting potential is local, this expression has to be
modified because V V † is a function of the difference k′ − k
which leads to an infinite volume factor. While local potentials
can be treated by using a different positive functional, an
alternative is to note that if V = Vloc + Vr then F (V ) =
F (Vloc) + F ′(Vr, Vloc). It is only the first term that is infinite,
but this term does not depend on the variational parameters.
The second term will be finite for suitable A and it contains
all of the dependence on the variational parameters. It follows
that the critical value of the variational parameters can be
determined by requiring all partial derivatives of the second
term vanish at the critical value of the parameters.

The general procedure is to start from a given N -body
Hamiltonian, H , and a parameterized set of scattering equiva-
lences A(η1, . . . , ηn) where ηi are variational parameters. The
scattering equivalences A(η1, . . . , ηn) generate a parameter-
ized set of equivalent Hamiltonians:

H ′(η1, . . . , ηn) = A†(η1, . . . , ηn)HA(η1, . . . , ηn). (7.5)

They have cluster expansions,

H ′ = T +
∑
ij

V ′
ij (η1, . . . , ηn) +

∑
ijk

V ′
ijk(η1, . . . , ηn)

+ · · · + V ′
N (η1, . . . , ηn). (7.6)
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The two-, three-, four- · · · N-body interactions all depend on
the choice of variational parameters.

For example, to construct two-body interactions that have
primarily low-momentum content I would choose a functional
that is large when the momenta are large. The functional has to
be chosen so the trace is finite for all interactions in the model
space.

A functional of the form,

ρ(k, k′) = tanh
(
α + k2

/
k2

0

)
tanh

(
α + k′2/k2

0

)
, (7.7)

where α is a small dimensionless quantity, would suppress
momentum components above the scale k2

0. Alternatively, I
can design positive functionals that weaken three-body forces
or reduce two-body correlations.

Finding minimum of the functional,

Tr[ρV
†

12(η1, . . . , ηn)V12(η1, . . . , ηn)], (7.8)

with respect to the parameters η1, . . . , ηn selects equivalent
potentials that have low-momentum content.

After the two-, three-, . . . N-body interactions have been
determined, then I can use the new Hamiltonian as the starting
point. I can construct a new set of interactions using scattering
equivalences with [�](ij )(k) = 0. These scattering equivalences
only affect the three- and more-body interactions. I can
choose a new three-body ρ that emphasizes some desirable
feature of the three-body interaction. The local minimum
generates a new three-body interaction. Combining the two
scattering equivalences leads to a scattering equivalence A

that transforms H ′′ = A†HA.
If this is embedded in the N -particle Hilbert space it

generates (1) the selected two- and three-body interactions,
(2) new four-, five-, . . . N-body interactions, and (3) explicit
unitary transformations, A, that can be used to construct
transformed operators like electromagnetic current operators,

Jµ′
(x) = A†Jµ(x)A. (7.9)

VIII. SIMPLE EXAMPLE

To illustrate the method I consider a two-body Hamiltonian
of the form

H = k2

2µ
+ V, (8.1)

where I assume that V is a local potential. I consider a
parameterized rank one unitary transformation of the form

A(λ) = I + |g〉 2iλ

1 − iλ〈g|g〉 〈g| = I + |g〉f (λ)〈g|, (8.2)

where |g〉 is a fixed form factor and λ is a variational parameter.
The transformed potential is

V ′(λ) = A†(λ)HA(λ) − k2

2µ
. (8.3)

The transformed potential differs from the original potential
by the addition of a finite number of separable terms. It has

the form

V ′(λ) = V + |g〉f ∗(λ)〈g|H + H |g〉f (λ)〈g|
+ |g〉f ∗(λ)〈g|H |g〉f (λ)〈g| = V + Vr (λ). (8.4)

The first term in this expression is local but independent of λ.
The remaining terms are separable and depend on λ.

I use the density [Eq. (7.7)], with a chosen value of k0. It
has the form

ρ = |χ〉〈χ |, (8.5)

and leads to the variational function,

F (λ) := 〈χ | (V †′(λ)V ′(λ) − V †V
) |χ〉

= 〈χ | (V †Vr (λ) + V †
r (λ)V + V †

r (λ)Vr (λ)
) |χ〉. (8.6)

The subtracted contribution, V †V , eliminates the infinite
constant that appears for local V . The terms in the resulting
expression are

F (λ) = 〈χ |V †|g〉f ∗(λ)〈g|H |χ〉 + 〈χ |V †H |g〉f (λ)〈g|χ〉
+ 〈χ |V †|g〉f ∗(λ)〈g|H |g〉f (λ)〈g|χ〉
+ 〈χ |g〉f ∗(λ)〈g|HV |χ〉 + 〈χ |H |g〉f (λ)〈g|V |χ〉
+ 〈χ |g〉f ∗(λ)〈g|H |g〉f (λ)〈g|V |χ〉
+ (〈χ |g〉f ∗(λ)〈g|H + 〈χ |H |g〉f (λ)〈g|
+ 〈χ |g〉f ∗(λ)〈g|H |g〉f (λ)〈g|)

× (|g〉f ∗(λ)〈g|H |χ〉 + H |g〉f (λ)〈g|χ〉
+ |g〉f ∗(λ)〈g|H |g〉f (λ)〈g|χ〉). (8.7)

This has the form

F (λ) = c1f (λ) + c∗
1f

∗(λ) + c2f (λ)f ∗(λ) + c3f
2(λ)f ∗(λ)

+ c∗
3f

∗2(λ)f (λ) + c4[f (λ)f ∗(λ)]2, (8.8)

with

f (λ) = 2iλ

1 − iλ〈g|g〉 . (8.9)

The coefficients ck are linear combinations of the integrals
〈χ |V †|g〉, 〈g|H |χ〉, 〈χ |V †H |g〉, 〈g|HV |χ〉, 〈g|χ〉, 〈g|H |g〉,
〈g|g〉, and 〈g|H 2|g〉. Because these do not involve λ they only
have to be computed once. Although f (λ) is complex, F (λ) is
a real function of λ. The λ dependence is a rational function.

The critical value of λ = λc is determined by solving
dF
dλ

(λc) = 0 for λc. The resulting transformed Hamiltonian,

H ′ = k2

2µ
+ V ′(λc), (8.10)

gives the same binding energies and phase shifts as the
original potential of any value of λ. The critical value of λ

will lead to a potential that suppresses momenta above k2
0.

Obviously, a softer potential will result if a larger class of
unitary transformations A is used.

The original Hamiltonian did not have to be diagonalized
to find the new potential. In this case, by varying λ from 0 to
its critical value it is possible to continuously evolve the initial
local potential to the final soft potential.

Because the unitary scattering equivalence is given as an
explicit operator valued function of λ, I can calculate how

014002-9



W. N. POLYZOU PHYSICAL REVIEW C 82, 014002 (2010)

observables evolve with the parameter λ. For example, the
electromagnetic current operators transform as follows:

Jµ(x)′ = Jµ(x) + f ∗(λ)|g〉〈g|Jµ(x) + f (λ)Jµ(x)|g〉〈g|
+ f ∗(λ)f (λ)|g〉〈g|Jµ(x)|g〉〈g|. (8.11)

Finally, given the two-body unitary transformation for each
pair of particles, Aij (λ), it is possible to construct the corre-
sponding three-body unitary operator following the method
of the previous section. In terms of the above parameters, for
three identical particles A has the form

A = I − iα

I + iα
, (8.12)

with

α = i
f (λ)

2 + f (λ)〈g|g〉 (|g12〉〈g12| + |g23〉〈g23| + |g31〉〈g31|) .

(8.13)

If this symmetric product of unitary transformations for each
pair is applied to the corresponding three-body Hamiltonian
the transformed three-body Hamiltonian will have the form

H ′ = A†(λ)HAa

= K + V ′
12(λ) + V ′

23(λ) + V ′
31(λ) + V ′

123(λ). (8.14)

The three-body force terms will appear even if the original
Hamiltonian has only two-body forces. The computation of
A from Eq. (8.12) involves quadratures and linear algebra, as
discussed in Sec. VI.

The evolution of the current and the three-body Hamiltonian
from their original to their final values can be determined by
varying λ from zero to the critical value, λ0.

IX. CONCLUSION

In this paper I determined conditions that are necessary and
sufficient for two Hamiltonians to be physically equivalent.
I used the characterization of these unitary operators to
construct a large class of equivalent N -body Hamiltonians
that depend on variational parameters. There is considerable
freedom in choosing the space of equivalent Hamiltonians.
By choosing functions whose local minima select Hamiltoni-
ans with desirable properties from the space of equivalent

Hamiltonians, it is possible to select classes of equivalent
potentials with desirable properties. The general freedom
available allows for the possibility of selecting two-body in-
teractions with desirable properties, then subsequently select-
ing among equivalent three-body interactions with desirable
properties. This procedure can be continued for any number
of particles, allowing independent control of the two, three,
four, . . . interactions. Because the k-body parts of A affect
all operators with k or more particles, one hopes that desirable
properties of the k-body interaction might persist for the k + m

body problems.
Although, in general, it is possible to systematically weaken

three- and more-body interactions using these methods, it
is not generally possible to eliminate them. The extremal
interactions that are generated are not fundamental, they
depend specifically on the choice of positive functional that
is used to select these interactions.

The selection of equivalent potentials does not require
diagonalizing any Hamiltonians; it only requires finding local
minima of some user-defined functionals. The functionals are
designed so they get large for interactions with undesirable
features. Once the operators [�]a are determined variationally,
it is then possible to construct scattering equivalences A that
operate on systems of any number of particles, and can be
used to construct equivalent observables in the transformed
representation. For a large class of variational Hamiltonians
the operators A can be constructed from the �a by finite linear
algebra.

The general method can be combined with other methods,
such are renormalization group methods, to reduce the strength
of the transformed three-body force without changing the
transformed two-body interactions.

The characterization of the group of scattering equivalences
demonstrates the large class of equivalent Hamiltonians that
can be selected by considering only spectral properties and
scattering observables. This leads to a lot of flexibility in
building equivalent models of the quantum N -body problem.
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