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Neutron halo in deformed nuclei
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Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov
(DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the
interdependence between the deformation of the core and the particles in the halo. Contributions of the halo,
deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by
the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance
from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the
deformed neutron-rich and weakly bound nucleus 44Mg. The core of this nucleus is prolate, but the halo has
a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The
generic conditions for the occurrence of this decoupling effects are discussed.
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The “shape” provides an intuitive understanding of spatial
density distributions in quantum many-body systems, such
as molecules [1], atoms [2], atomic nuclei [3], and mesons
[4]. Quadrupole deformations play an important role in this
context. The interplay between quadrupole deformation and
the weak binding can result in new phenomena, such as
“quadrupole-bound” anions [5].

Halo phenomena in nuclei are driving forces for the
development of the physics with radioactive ion beams. They
are threshold effects [6] and have been first observed in the
weakly bound system 11Li [7]. Considering that most open-
shell nuclei are deformed, the interplay between deformation
and weak binding raises interesting questions, such as whether
there exist halos in deformed nuclei and, if yes, what are their
new features.

Calculations in a deformed single-particle model [8]
have shown that valence particles in specific orbitals with
low projection of the angular momentum on the symmetry
axis can give rise to halo structures in the limit of weak
binding. The deformation of the halo is in this case solely
determined by the intrinsic structure of the weakly bound
orbitals. Indeed, halos in deformed nuclei were investigated
in several mean-field calculations in the past [9–11]. However,
in Ref. [12], it has been concluded that in the neutron orbitals
of an axially deformed Woods-Saxon potential the lowest-�
component becomes dominant at large distances from the
origin and therefore all �π = 1/2+ levels do not contribute to
deformation for binding energies close to zero. Such arguments
raise doubt about the existence of deformed halos. In addition,
a three-body model study [13] suggests that it is unlikely to
find halos in deformed drip-line nuclei because the correlations
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between the nucleons and those due to static or dynamic
deformations of the core inhibit the formation of halos.

Therefore, a model that provides an adequate description of
halos in deformed nuclei must include in a self-consistent way
the continuum, deformation effects, large spatial distributions,
and the coupling among all these features. In addition it
should be free of adjustable parameters that make predictions
unreliable. Density functional theory fulfills all these require-
ments. Spherical nuclei with halos have been described in the
past successfully in this way by the solution of either the
nonrelativistic Hartree-Fock-Bogoliubov (HFB) [14–16] or
the relativistic Hartree Bogoliubov (RHB) equations [17–19]
in coordinate (r) space. However, for deformed nuclei the
solution of HFB or RHB equations in r space is a numerically
very demanding task. In the past, considerable effort has been
made to develop mean-field models either in r space or in a
basis with an improved asymptotic behavior at large distances
[11,20–25]. In particular, an expansion in a Woods-Saxon
(WS) basis was shown to be fully equivalent to calculations in
r space [23].

In the present investigation, we therefore study halo
phenomena in deformed exotic nuclei within a deformed rela-
tivistic Hartree Bogoliubov (DRHB) model using a spherical
WS basis. The RHB equations for the nucleons read [17,26](

hD − λ �

−�∗ −h∗
D + λ

) (
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (1)

where Ek is the quasiparticle energy, λ is the chemical
potential, and hD is the Dirac Hamiltonian [27–31],

hD = α · p + V (r) + β[M + S(r)]. (2)

Neglecting here for simplicity spin and isospin degrees of
freedom, the pairing potential reads

�(r1, r2) = V pp(r1, r2)κ(r1, r2), (3)
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with a density-dependent force of zero range in the particle-
particle channel,

V pp(r1, r2) = V0δ(r1 − r2)

[
1 − ρ(r1)

ρsat

]
1

2
(1 − P σ ), (4)

and the pairing tensor κ , which is defined in the conventional
way.

For axially deformed nuclei with spatial reflection symme-
try, we represent the potentials and densities in terms of the
Legendre polynomials,

f (r) =
∑

λ

fλ(r)Pλ(cos θ ), λ = 0, 2, 4, . . . . (5)

For fixed quantum numbers �π the deformed quasiparticle
wave functions Uk(r) and Vk(r) in Eq. (1) are expanded in a
spherical WS basis (for details see Ref. [23]).

The calculations are based on the density functional
NL3 [32] and the pp interaction (4) with the parameters
ρsat = 0.152 fm−3, V0 = 380 MeV fm3, and a cutoff energy
E

q.p.
cut = 60 MeV in the quasiparticle space. These parameters

reproduce the proton pairing energy of the spherical nucleus
20Mg obtained from a spherical RHB calculation with the
Gogny force D1S. A spherical box of the size Rmax = 20 fm
and the mesh size �r = 0.1 fm are used for generating the
spherical Dirac WS basis of Ref. [23], which consists of states
with j < 21

2 h̄. An energy cutoff E+
cut = 100 MeV is applied

to truncate the positive energy states in the WS basis and the
number of negative energy states in the Dirac sea is taken to be
the same as that of positive energy states in each (�, j ) block.

In the present study of Mg isotopes, the last nucleus within
the neutron drip line is 46Mg. Of course, it is difficult to
predict the position of the drip line precisely for nuclei so
far from the experimentally known area and therefore the
results discussed in the following have to be taken as generic
results. In this study 46Mg is an almost spherical nucleus.
The neighboring nucleus 44Mg is well deformed (β2 = 0.32)
and weakly bound with the two-neutron separation energy
S2n = 0.44 MeV. Therefore, this nucleus is taken here as an
example for a detailed investigation. The density distributions
of all protons and all neutrons in 44Mg are shown in Fig. 1(a).
Owing to the large neutron excess, the neutron density not only
extends much farther in space but it also shows a halo structure.
The neutron density is decomposed into the contribution of
the core in Fig. 1(b) and that of the halo in Fig. 1(c). Details
of this decomposition are given further down. We find that
the core of 44Mg is prolate, and that the halo has a slightly
oblate deformation. This indicates the decoupling between the
deformations of core and halo.

Weakly bound orbitals or those embedded in the continuum
play a crucial role in the formation of a nuclear halo. For an
intuitive understanding of the single-particle structure we keep
in mind that HB functions can be represented by BCS functions
in the canonical basis and show in Fig. 2 the corresponding
single-neutron spectrum. As discussed in Ref. [33] the single-
particle energies in the canonical basis εk = 〈k|hD|k〉 shown in
Fig. 2 are expectation values of the Dirac Hamiltonian (2) for
the eigenstates |k〉 of the single-particle density matrix ρ̂ with
the eigenvalues v2

k . The spectrum of ρ̂ has a discrete part with
v2

k > 0 and a continuous part with v2
k = 0. Obviously, only the

FIG. 1. (Color online) Density distributions of 44Mg with the
z axis as the symmetry axis. (a) The proton density (for x < 0) and
the neutron density (for x > 0), (b) the density of the neutron core,
and (c) the density of the neutron halo. In each plot, a dotted circle is
drawn to guide the eye.

first part contributes to the HB-wave function and only this
part is plotted in Fig. 2. This part of the spectrum εk is discrete
even for the levels in the continuum. Of course, this is only
possible because the wave functions |k〉 are not eigenfunctions
of the Hamiltonian. As long as the chemical potential λn is
negative, the corresponding density ρ(r) is localized [15] and
the particles occupying the levels in the continuum are bound.

The orbitals in Fig. 2 are labeled by the conserved quantum
numbers � and π . The character n numbers the different
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FIG. 2. (Color online) Single neutron levels with the quantum
numbers �π around the chemical potential (dotted line) in the
canonical basis for 44Mg as a function of the occupation probability
v2. The order n, �π , and the main WS components for orbitals close
to the threshold are also given. The dashed line corresponds to the
BCS-formula with an average pairing gap.
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orbitals appearing in this figure according to their energies.
The neutron Fermi energy lies within the pf shell and most of
the single-particle levels have negative parities. Because the
chemical potential λn = −230 keV is relatively small, orbitals
above the threshold have noticeable occupation owing to
pairing correlations. For example, the occupation probabilities
of the fifth (�π = 7/2−) and the sixth (�π = 1/2−) orbitals
are 27.2% and 14.3%, respectively.

As we see in Fig. 2, there is a considerable gap between
the two levels with the numbers n = 2 and n = 3. The
levels with εcan < −2.5 MeV contribute to the “core,” and
the other remaining weakly bound and continuum orbitals
with εcan > −1 MeV naturally form the “halo.” Therefore,
we decompose the neutron density ρn(r) into two parts, one
part coming from the orbitals with canonical single-particle
energies εcan < −2.5 MeV (called “core”) and the other from
the remaining weakly bound and continuum orbitals (called
“halo”). The spherical components of these densities [i.e.,
the contribution of λ = 0 in Eq. (5)] are plotted together
with that of the total neutron density in Fig. 3(a). It is seen
that the tail part of the neutron density originates mainly
from the orbitals with εcan > −1 MeV. The average number
of neutrons which are weakly bound or in the continuum
is around 4.34. On the average, 2.92 of these neutrons are
in the weakly bound orbits 3 and 4 and the others in the
continuum. The rms radii of the core and the halo are 3.72
and 5.86 fm, respectively. A further decomposition shows that
the two weakly bound orbitals, that is, the third (�π = 1/2−)
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FIG. 3. (Color online) Neutron density distributions for 44Mg.
(a) The total density and its decomposition into core and halo.
Contributions from several neutron orbitals around the Fermi level
are also given. (b) Relative contributions of these neutron orbitals to
the total neutron density, which is indicated in arbitrary units by the
shaded area.

and the fourth (�π = 3/2−), contribute mostly to the halo.
This is more clearly seen in Fig. 3(b), where we represent the
relative contributions of weakly bound and continuum orbitals
to the total neutron density. The two continuum orbitals, that
is, the sixth (�π = 1/2−) and the eighth (�π = 1/2+), also
contribute to the tail.

If we decompose the deformed wave functions of the two
weakly bound orbitals, that is the third (�π = 1/2−) and the
fourth (�π = 3/2−), in the spherical WS basis it turns out that
in both cases the major part comes from p waves, as indicated
on the right-hand side of Fig. 2. The p wave components for
the third and the fourth orbitals are 66% and 80%, respectively.
Having in mind that the occupation probabilities of these two
orbitals are 0.736 and 0.693 and each orbital has degeneracy 2,
there are about two neutrons in weakly bound p states. The low
centrifugal barrier for p waves gives rise to the formation of
the halo. Having a small p-wave component, the sixth orbital
(�π = 1/2−) contributes less to the halo though it is in the
continuum and the occupation probability is rather large. The
contribution of the eighth orbital (�π = 1/2+) to the tail of
the density is even smaller because its main components are
of d waves. The large centrifugal barrier of f states hinders
strongly the spatial extension of the wave functions of the other
two continuum orbitals, that is, the fifth (�π = 7/2−) and the
seventh (�π = 3/2−).

In Fig. 4 the densities of the core and the halo are
decomposed into spherical, quadrupole, and hexadecapole
components. As is seen in Fig. 4(a), the quadrupole component
of the core is positive, thus being consistent with the prolate
shape of 44Mg. However, for the halo, the quadrupole com-
ponent has a negative sign, which means that the halo has an
oblate deformation. The quadrupole moments of the neutron
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FIG. 4. (Color online) Decomposition of the neutron density of
44Mg into spherical (λ = 0), quadrupole (λ = 2), and hexadecapole
(λ = 4) components for (a) the core and (b) the halo.

011301-3



RAPID COMMUNICATIONS

SHAN-GUI ZHOU, JIE MENG, P. RING, AND EN-GUANG ZHAO PHYSICAL REVIEW C 82, 011301(R) (2010)

core and the halo are 160 and −27 fm2, respectively. This
explains the decoupling between the quadrupole deformations
of the core and the halo, as we have seen in Figs. 1(b) and 1(c).
There is also a noticeable hexadecapole component in the
density distribution of the halo.

The slightly oblate shape of the halo originates from the
intrinsic structure of the weakly bound and continuum orbitals.
As is shown in Fig. 2, the main WS components of the
two weakly bound orbitals, the third (�π = 1/2−) and the
fourth (�π = 3/2−), are p states. We know that the angular
distribution of |Y10(θ, φ)|2 ∝ cos2 θ with a projection of the
orbital angular momentum on the symmetry axis � = 0 is
prolate and that of |Y1±1(θ, φ)|2 ∝ sin2 θ with � = 1 is oblate.
It turns out that in the third (�π = 1/2−) orbital, both � = 0
and � = 1 components contribute and the latter dominates.
Therefore, this orbital has a slightly oblate shape. For the
fourth (�π = 3/2−) state, there is only the � = 1 component
from the p3/2 wave; an oblate shape is also expected.

To show that these results depend crucially on the single-
particle structure in the neighborhood of the Fermi surface,
we also investigate weakly bound nuclei in the neighboring
chain of Ne isotopes. In Fig. 5(a) the density distributions of
all protons and all neutrons in the prolate deformed nucleus
36Ne are shown (β2 = 0.52). Again, as in 44Mg, owing to the
large neutron excess, the neutron density not only extends
much farther in space but it also shows a halo structure. The
neutron density is decomposed into the contribution of the
core in Fig. 5(b) and that of the halo in Fig. 5(c). Contrary
to the nucleus 44Mg, we observe now a prolate halo, because
the essential level of the halo has a large contribution from the
prolate � = 0 (p wave) component. In Fig. 6 we show similar
density distributions for the oblate deformed nucleus 38Ne
(β2 = −0.24), which is the last nucleus within the neutron
drip line in the present calculation. In this case, the Fermi level

FIG. 5. (Color online) Density distributions of 36Ne. Details are
given in Fig. 1.

FIG. 6. (Color online) Density distributions of 38Ne. Details are
given in Fig. 1.

is again within the pf shell. However, the levels dominated
by p waves are either less occupied or not so weakly bound
and therefore we do not find a pronounced halo. From these
examples it is clear that the existence and the deformation
of a possible neutron halo depends essentially on the quantum
numbers of the main components of the single-particle orbits in
the vicinity of the Fermi surface: s levels with � = 0 produce
spherical halos, p levels with � = 0 prolate, and p levels with
� = 1 oblate halos [8].

In summary, the very neutron-rich deformed nucleus 44Mg
is investigated within DRHB theory in the continuum. In con-
trast to several expectations [12,13], a pronounced deformed
neutron halo is found. It is formed by several orbitals close to
the threshold (either weakly bound or in the continuum). They
have large components of low � values and feel therefore only
a small centrifugal barrier. Although 44Mg and its core are well
deformed and prolate, the deformation of the halo is slightly
oblate. This implies a decoupling between the deformations of
core and halo. This mechanism is investigated by studying the
details of the neutron densities for core and halo, the single-
particle levels in the canonical basis, and the decomposition
of the halo orbitals. We also studied the weakly bound nuclei
in Ne isotopes and discussed the conditions for the occurrence
of a halo and its shape. It is shown that the existence and the
deformation of a possible neutron halo depends essentially
on the quantum numbers of the main components of the
single-particle orbits in the vicinity of the Fermi surface.

Finally, we note that besides the “quadrupole-bound”
molecule [5] and the nuclear halo in deformed nuclei, similar
coupling effects between the deformation and the weakly
bound part of the system could also exist in other quantum
many-body systems, such as Rydberg atoms in which the
electron(s) can be extremely weakly bound and where the
quadrupole moment is sizable [2].
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