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Almost complete transparency of the α + 12C system at sub-barrier energies
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α + 12C elastic scattering at low energies is analyzed with the optical model. The α + 12C system is transparent
over the entire radial range. Weak coupling to other reaction channels seems good enough below Ec.m. = 5 MeV.
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Low-energy nuclear reactions are generally thought to
occur via the complicated internal structure of compound
nuclei. In contrast, the direct reaction mechanism, where only
a few nucleons (clusters) are activated, is applicable at high
energies. Is a very large number of degrees of freedom always
involved at low energies? Let us recall, in the present Brief
Report, that the key to solve this problem is in the excitation
function of elastic scattering.

Elastic event has been extensively studied in the α + 12C
system. Elastic scattering above Elab ≈ 100 MeV is described
with the optical model, and interpreted as refractive phenom-
ena [1,2]. (Elab denotes the incident energy in the laboratory
system.) The optical model seems to make the reproduction of
the data at individual energies for Elab = 10–54 MeV, (e.g.,
Refs. [3,4]). The volume integrals of the deduced optical
potential, which are used for the index of the net strength of the
potential [5], appear to be similar to those for 3He + 12C and
α + 16O elastic scattering [6–8]. The so-called anomalous
large angle scattering (ALAS) has been observed in Elab ≈
10–35 MeV [3,9–11]. The refractive scattering and ALAS are
described by the deep real potential with weak absorption
[5,7,12]. These phenomena are considered to indicate that the
contribution from the inside of the interaction range plays the
significant role in the elastic cross section. The phase shifts
have been analyzed below Elab = 7 MeV [13,14].

The 12C(α,γ )16O reaction is an important reaction for astro-
physical events [15]. Recently, the low-energy cross sections
have been investigated with the direct capture potential model
based on the deep potential [16]. The analysis of elastic
scattering provides the model with the initial wave, i.e., the
α + 12C continuum state including the resonant states.

In the present Brief Report, we analyze the differential cross
sections for α + 12C elastic scattering below Ec.m. = 5 MeV
in the center-of-mass system. We show that the contribution
from the internal wave [7,12], reflecting on the internal region
of the potential, leads to the enhancement of backward scatter-
ing. The excitation function is also indicated. The purpose of
this report is to illustrate that: (A) The optical model, i.e.,
the potential model, gives the good description of elastic
scattering; (B) The α + 12C system is transparent at sub-
barrier energies; (C) Coupling to other channels seems weak.

The optical potential is defined by

U (r) = −V (r) − iW (r) + Vc(r), (1)
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where Vc(r) is the Coulomb potential calculated with a
uniform charge sphere of the radius Rc = 3.5 fm. The ordinary
Woods-Saxon form is used as the functional form of the nuclear
potential,

fξ (r) = 1

1 + exp [(r − Rξ )/aξ ]
. (2)

The parity-dependent potential is employed as the real part,

V (r) =
{
V+f+(r) (even)
V−f−(r) (odd) . (3)

Vξ , Rξ , and aξ are the potential parameters for the even and odd
parities. The parameters are set to be V+ = 199.7 MeV, R+ =
2.18 fm, a+ = 0.743 fm, V− = 168.1 MeV, R− = 2.76 fm,
and a− = 0.567 fm [16]. Absorption is given by W (r) =
WIfI (r).

In the analysis at low energies, we encounter the different
strength of the potentials reproducing the cross section simi-
larly well. We chose the appropriate strength for the real part of
the optical potential. The volume integrals of the potential used
here are concordant with those for 3He + 12C and α + 16O
elastic scattering [6–8,16]. The derived rotational band of the
α + 12C system, shown in Fig. 3 of [16], is similar to that
predicted by [17,18].

The differential cross sections for α + 12C elastic scatter-
ing are shown in Figs. 1(a) and 1(b). The calculated results
are shown by the solid curves. The WI = 0 is used in the
calculation. The number near the curve indicates the incident
energy in the center-of-mass system. The experimental data are
taken from [13,19], and they are converted to Rutherford ratio
in the center-of-mass system. To clarify elastic backscattering,
we show the angular distributions in Rutherford ratio. The
vertical axis is in log scale.

At Ec.m. = 1.100 MeV, the cross section is dominated by
Coulomb scattering, showing approximately constant over
the entire angular range, σ/σR ≈ 1. As the incident energy
increases, elastic scattering deviates from pure Coulomb scat-
tering due to the short-range nuclear potential. The interference
caused by the nuclear potential results in the enhancement at
the backward angles. The absolute values at θc.m. ≈ 180◦ are
approximately one or two order of magnitude larger than those
from pure Coulomb scattering. At Ec.m. = 3.188 MeV, the
contribution from the 4+

1 resonant state generates the frequent
oscillation, compared with the neighboring energies. From
the systematic behavior shown in Fig. 1, we consider that
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FIG. 1. Differential cross sections of α + 12C elastic scattering at
(a) Ec.m. = 1.100–3.488 MeV and (b) Ec.m. = 3.638–4.919 MeV. The
solid curves are the results obtained from the optical model with the
parity-dependent potential [16]. The number near the curve indicates
the incident energy in the center-of-mass system. The experimental
data, converted to Rutherford ratio in the center-of-mass system, are
taken from [13,19]. The vertical axis is in log scale.

the characteristic structure in the cross sections appears to be
reproduced by the solid curves.

When elastic scattering is interpreted, the scattering ampli-
tude is decomposed into some components associated with the
trajectories [5]. The popular techniques are the so-called near-
side/far-side decomposition [20] and internal-wave/barrier-
wave decomposition [7,12]. The former is used for analyses
of the contribution from the edge waves of the interaction
range, generally adopted at high energies. The latter is used
at low energies. The schematic diagram of the decomposition
is illustrated in Fig. 2. The effective barrier, generated by the
nuclear + Coulomb + centrifugal potentials, divides the radial
distance into the internal and outer regions. The barrier wave
corresponds to the scattering wave reflecting on the surface of

r (fm)

Ueff (r) 

I
B

W(r)

FIG. 2. Schematic diagram of the internal and barrier waves.
Ueff (r) is the effective potential, constructed by the nuclear, Coulomb,
and centrifugal potentials. “I” and “B” denote the components of the
internal wave and barrier wave, respectively. The dashed curve is the
tentative absorption W (r) used for the adjustment of the contribution
from the internal wave.

the effective barrier. The internal wave reflects on the internal
region after penetrating the effective barrier. The technique of
the internal/barrier-wave decomposition has been introduced
by Brink and Takigawa [12], and developed by Michel and
his collaborators, (e.g., Ref. [7]). In the present Brief Report,
we roughly estimate how the internal wave interferes with
the barrier wave. For the estimation, the tentative absorption
W (r), illustrated by the dashed curve in Fig. 2, is introduced.
The parameters are set to be WI = 10 MeV and aI = 0.2 fm.
The radius parameter is varied in RI � 7 fm.

The corresponding schematic calculations at Ec.m. =
2.457 MeV are shown in Fig. 3. The interference is examined
with RI = 0.2, 0.5, 1.0, 3.0, 5.0, and 7.0 fm. “N.A.” denotes
the result with nonabsorption, which is the same as that in
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FIG. 3. Interference between the internal and barrier waves at
Ec.m. = 2.457 MeV. By varying RI , the contribution from the internal
wave is examined. N.A. is the result with nonabsorption, the same as
that in Fig. 1. The experimental data are taken from [13,19].
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FIG. 4. Excitation functions for α + 12C elastic scattering below Ec.m. = 5 MeV. The calculated results are shown by the solid curves. The
experimental data are taken from [13,19]. The energy position of the states is indicated by the arrow [21].

Fig. 1. If the internal wave is weakened by the absorption
with a large radius RI = 7.0 fm, the differential cross section
shows the monotonic decline with increasing scattering angles,
becomes approximately σ/σR ≈ 1 in Rutherford ratio. The
large part of the cross section originates from the barrier
wave. With decreasing RI , the internal wave interferes with
the barrier wave, and it appears to enhance the cross section
at the backward angles. We confirm, from this figure, that
the internal wave contribution plays the important role in the
backward enhancement.

Let us move back to the lower energies. The contribution
from the internal wave becomes weak with decreasing energy,
because of the effective barrier [Fig. 1(a)]. Below Ec.m. =
2 MeV, the differential cross sections are not enhanced at the
backward angles. At these energies, however, it is quite natural
that elastic scattering is dominated by Coulomb scattering.
Moreover, the α-particle separation energy of the 0+

2 (Ex =
6.05 MeV) and 2+

1 (Ex = 6.92 MeV) states in 16O are obtained
with the adopted real potential [16]. If elastic scattering were
dominated by the strong absorption in Ec.m. = 0–2 MeV, the
discontinuity of the potential would be unphysical.

The excitation function of α + 12C elastic scattering is
illustrated in Fig. 4. The differential cross sections at 16 angles
are plotted as a function of the incident energy. As shown in
this figure, the excitation function is found to be well described
with the model calculation, shape elastic scattering, shown by
the solid curves. The resonant behavior originates from the
single particle motion of the α particle around 12C. Judging

from the reproduction, the contribution from the coupling
to other reaction channels would be negligible except the
vicinity of the narrow resonances at Ec.m. ≈ 4.3 MeV. If the
coupling to other channels were strong below Ec.m. = 5 MeV,
the excitation function would have more complicated frequent
structure.

The experimental energy position of the 1−
2 , 4+

1 , and 3−
2

resonances [21] is indicated by the arrow in Fig. 4. The excited
states in 16O near the α-particle threshold, including the 0+

2 and
2+

1 states, are interpreted fairly well by the simple α + 12C
configuration, and they construct the rotational bands of which
the total quantum numbers correspond to N = 8 and N = 9
[16]. The existence of this rotational band is known as the
so-called Ikeda threshold energy rule (e.g., Ref. [22]).

In the microscopic point of view, the Pauli principle
compels the total wave function to be antisymmetric under the
interchange of nucleons. Provided the internal wave functions
of α-particle and 12C are individually antisymmetrized, the
antisymmetrization between nucleons of two nuclei should be
taken into account. Some insight into the antisymmetrization,
have been provided by the studies with the resonating group
method (RGM), lead to the use of the deep real potential
(e.g., Ref. [23]). The adopted empirical potential is expected
to correspond to the local potential equivalent to the result
from microscopic theories. The derived relative wave function
between the α particle and 12C is thus considered to have
the sufficient node, appropriate local momentum at short
distances, and to satisfy the Pauli principle.
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The R- and K-matrix methods have been employed to
analyze α + 12C elastic scattering, 12C(α, γ )16O, and β-
delayed α spectrum of 16N (e.g., Refs. [24,25]). However,
the contributions from the 1−

1 (Ex = 7.12 MeV) and 3−
1 (Ex =

6.13 MeV) states below the α + 12C threshold may seem to be
a source of controversy [16,26,27]. These states do not belong
to the α + 12C rotational band, and they are considered to
be well described by the shell model [16–18,28,29]. Under
the influence of the transparency, how could they contribute
largely above the particle threshold? At least, in the analyses of
16N(β)16O∗(α)12C, the excited state 16O∗ may not seem to be
described by the compound nuclear states independent of the
synthesis process, because life time is very short, especially
the state with a broad width or the background state.

In summary, we have confirmed that the optical model
with the parity-dependent potential and non-absorption makes
the successful reproduction of the differential cross section
for α + 12C elastic scattering below Ec.m. = 5 MeV. The
interference between the internal and barrier waves has been
examined by adjusting the tentative absorption. We have
illustrated, from the schematic calculation, that the barrier
wave component does not show the backward enhancement,
and that the internal wave plays the important role in the

characteristic angular distribution. The excitation function
of elastic scattering appears to be described by only the
simple α + 12C configuration. We, therefore, consider that
weak coupling to other channels is good enough below
Ec.m. = 5 MeV, judging from the small difference between
the calculated result and experimental data.

Not only the transparency of the system but also the
single-particle α orbital surviving in the excitation function
seems to reinforce the applicability of the potential model with
the simple configuration in the analysis of the 12C(α,γ )16O
reaction [16].
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