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Phase ambiguity of the threshold amplitude in pp → ppπ 0
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Measurements of spin observables in pp → �p �pπ 0 are suggested to remove the phase ambiguity of the
threshold amplitude. The suggested measurements complement the Indiana University Cyclotron Facility data
on �p �p → ppπ 0 to completely determine all the 12 partial wave amplitudes taken into consideration by Meyer
et al. [Phys. Rev. C 63, 064002 (2001)] and Deepak et al. [Phys. Rev. C 72, 024004 (2005)].
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Introduction. Meson production in NN collisions has con-
tinued to excite considerable interest [1–4] since total cross-
section measurements [5] for pp → ppπ0 in the early 1990s
were found to be more than a factor of 5 larger than the then
available theoretical predictions [6]. To bridge the gap between
experiment and theory, several mechanisms, like exchange of
heavy mesons, two-pion exchange, off-shell extrapolation of
the vertex form factor, final-state interactions, and contribu-
tions owing to � resonance and of low-lying nucleon reso-
nances, were proposed. Hanhart et al. [7] in 2000 observed:
“As far as microscopic model calculations of the reaction
NN → NNπ are concerned, one has to concede that theory is
definitely lagging behind the development of the experimental
sector . . . Further more they take into account only the lowest
partial wave(s). Therefore, it is not possible to confront these
models with the wealth of experimental information available
nowadays specifically with differential cross-sections and with
spin dependent observables.” The Julich model, on the other
hand, takes into consideration higher partial waves as well.

In contrast to elastic NN scattering, where channel
spin is conserved, the pp → ppπ0 transition at threshold
to the final Ss state is a triplet to singlet. Next in order
are the transitions to Ps states, which are singlet to triplet.
As the energy is increased, transitions to Pp states are also
expected to contribute, which are, however, triplet to triplet.
Pionic d-wave effects were reported [8] even at a beam energy
of 310 MeV. Measurements up to 425 MeV have also been
reported [9], where evidence for a Ds state was seen even
at 310 MeV. Advances in storage ring technology [10] led
to detailed experimental studies, including measurements of
spin observables employing polarized beams of protons on
polarized proton targets. Of the two existing models [11,12]
which include higher partial waves, the Julich meson exchange
model [7,11] was thoroughly confronted with these data. The
model was comparatively more successful with the less com-
plete data on �p �p → dπ+ [13] and �p �p → pnπ+ [14] but failed
to provide an overall satisfactory reproduction of the complete
set of polarization observables in the case of �p �p → ppπ0

[15]. In this context, a model-independent approach [16,17]
was developed using irreducible tensor techniques [18]. The
reaction is characterized, in this formalism, by irreductible
tensor amplitudes Mλ

µ(sf , si) of rank λ = |sf − si |, . . . , (sf +
si), where si, sf denote the initial and final spin states of the

two protons. Each of these amplitudes is expressible in terms
of partial wave amplitudes M

j

l(lf sf )jf ;li si
, which are functions

of the c.m. energy E and invariant mass W of the two-proton
system in the final state. The relative orbital angular momenta
between the two protons in the initial and final states are
denoted by li and lf , respectively, and l denotes the pion orbital
angular momentum in the c.m. frame. The threshold amplitude
M0

0(00)0;11 contributes to M1
0 (0, 1), and an empirical estimate

of the integrated |M1
0 (0, 1)|2 was presented in Ref. [16],

based on the then existing data [5]. The same approach was
employed subsequently to analyze [19] the Indiana University
Cyclotron Facility data on �p �p → ppπ0 [15] immediately after
its publication. The 16 partial waves listed by Meyer et al. [15]
covered the Ss, Ps, Pp, Sd, and Ds channels. Here, the capital
letters denote lf while the lower case indicate l. In Ref. [20],
the same set of partial waves were listed, of which, the last
four, covering Sd and Ds, were ignored following Ref. [15].
Because the final spin-singlet and spin-triplet states do not
mix in any of the spin observables measured in Ref. [15], the
Ss amplitude and the larger of the Ps amplitudes were both
chosen to be real in Ref. [20]. This implies that the phase of
the Ss amplitude remained ambiguous but chosen to be zero
with respect to the larger Ps amplitude. The comparison of
the empirically extracted amplitudes with the Julich model
predictions revealed that (i) the � contributions are important
and (ii) the model deviated very strongly in the case of
3P1 → 3P0p and to a lesser extent in 3F3 → 3P2p, which
“will guide the search for the possible shortcomings” [20].

The purpose of the present Brief Report is to extend
the model-independent theoretical discussion to the spin
polarization of the protons in the final state and to examine how
the additional experimental measurements regarding the final
spin state can be used to determine empirically the strengths
of all these amplitudes and the ambiguous relative phase of the
threshold Ss amplitude with respect to the 11 near-threshold
Ps and Pp amplitudes considered in Refs. [15,19,20] for
pp → ppπ0. We mention that the p-wave charged pion
production in pn → ppπ−, pp → pnπ+, pp → dπ+ has
more recently been discussed [21] using effective field
theory and it was proposed earlier [4,12] to pin down the
phase of the Ss partial wave amplitude with reference to
the isospin-0-to-isospin-1 Sp amplitude by looking at the
forward-backward assymetry in pn → ppπ−.

0556-2813/2010/81(6)/067601(4) 067601-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.63.064002
http://dx.doi.org/10.1103/PhysRevC.72.024004
http://dx.doi.org/10.1103/PhysRevC.81.067601


BRIEF REPORTS PHYSICAL REVIEW C 81, 067601 (2010)

Theoretical formalism. We consider the reaction pp →
ppπ0 at c.m. energy E and initial c.m. momentum pi = pi p̂i,
which may be chosen to be along the z axis. Let q = qq̂ =
−(p1 + p2) denote the pion momentum in the c.m. frame and
let pf = pf p̂f = 1

2 (p1 − p2) in terms of the c.m. momenta p1
and p2 of the two protons in the final state.

Following Ref. [16], we write the matrix M in spin space
for the reaction pp → ppπ0 in the form

M =
1∑

si ,sf =0

si+sf∑
λ=|si−sf |

(Sλ(sf , si) · Mλ(sf , si)), (1)

where si and sf denote the initial and final channel spins,
respectively. The irreducible tensor operators Sλ

µ(sf , si) of rank
λ, with µ taking values µ = λ, λ − 1, . . . ,−λ, are defined
in Ref. [18]. The irreducible tensor amplitudes Mλ

µ(sf , si) in
Eq. (1) are expressible as

Mλ
µ(sf , si) =

∑
L,j

W (lisiLf sf ; jλ) Z(sf , si,L, j )Aλ
µ(L),

(2)

where

Aλ
µ(L) = ((

Ylf (p̂f ) ⊗ Yl(q̂)
)Lf ⊗ Yli (p̂i)

)λ

µ
, (3)

and the symbol L is used to collectively denote L ≡
{lf , l, Lf , li}. It may be noted that (−1)lf +l+li = −1 owing
to parity conservation. The complex numbers Z(sf , si,L, j )
are given by

Z(sf , si,L, j ) = [Lf ][j ]2

[sf ]
(−1)j−si+1

×
∑
jf

[jf ]W (sf lf j l; jf Lf )Mj

l(lf sf )jf ;li si

(4)

in terms of the 16 partial wave reaction amplitudes

M
j

l(lf sf )jf ;li si
= F 〈(l(lf sf )jf )j ||T ||(lisi)j 〉, (5)

proportional to the reduced on-energy-shell T -matrix elements
〈(l(lf sf )jf )j ||T ||(lisi)j 〉 for the reaction. The purely kinemat-
ical factor

F = (−i)li−l−lf 4(2π )1/2
√

Wω(E − ω)qpf /pi (6)

is introduced explicitly in Eq. (5) so that the dependence
on E and W is seen to be completely taken care of by the
M

j

l(lf sf )jf ;li si
. They are identical to the amplitudes denoted as

T in Ref. [20]. We may, following Refs. [15,20], neglect the
last 4 amplitudes, which are Sd and Ds, and consider the
first 12 amplitudes, which are, for simplicity, enumerated as
f1, . . . , f12 in Table I.

The unpolarized double-differential cross section may now
be written as

d2σ0

dW d�f d�
= 1

4
Tr[M M†], (7)

where M† denotes the Hermitian conjugate of M given by
Eq. (1). The invariant mass W of the two protons in the final

TABLE I. List of the partial wave amplitudes for the reaction
pp → ppπ 0.

Initial pp Type Final ppπ 0 Partial wave
state state amplitudes

3P0 Ss 1S0, s M0
0(00)0;11 = f1

1S0 Ps 3P0, s M0
0(11)0;00 = f2

1D2
3P2, s M2

0(11)2;20 = f3

3P0 Pp 3P1, p M0
1(11)1;11 = f4

3P2
3P1, p M2

1(11)1;11 = f5

3P2
3P2, p M2

1(11)2;11 = f6

3F2
3P1, p M2

1(11)1;31 = f7

3F2
3P2, p M2

1(11)2;31 = f8

3P1
3P0, p M1

1(11)0;11 = f9

3P1
3P1, p M1

1(11)1;11 = f10

3P1
3P2, p M1

1(11)2;11 = f11

3F3
3P2, p M3

1(11)2;31 = f12

state is given by

W =
√(

E2 + m2
π − 2Eω

)
, (8)

where mπ denotes the pion mass and ω denotes the c.m. energy
of pion. It may be noted that

d2σ0

d3pf d�
= W

pf

d2σ0

dWd�f d�
. (9)

It is worth noting that the threshold Ss amplitude f1 alone
contributes to

M1
µ(0, 1) = 1

4
√

3π
f1Y1µ(p̂i), (10)

which is spherically symmetric both with respect to p̂f as well
as to q̂ in the final state, while all the other irreducible tensor
amplitudes are independent of f1.

Final-state polarization with initially unpolarized protons.
If the colliding protons are unpolarized, the spin density matrix
ρf characterizing the two protons in the final state is given by

ρf = 1
4MM†, (11)

so that Eq. (7) is identical to Tr[ρf ].
The final spin state is completely determined through

measurements of the polarizations

Pi = Tr[σ i ρ
f ]

Tr[ρf ]
, i = 1, 2 (12)

of the two protons and their spin correlations

Cαβ = Tr[σ 1α σ 2β ρf ]

Tr[ρf ]
, α, β = x, y, z. (13)

All these spin observables may elegantly be calculated by
considering

P k
µ(s ′

f , sf ) = Tr
[
Sk

µ(s ′
f , sf ) ρf

]
, (14)
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where Sk
µ(s ′

f , sf ) are given in terms of the Pauli spin matrices
σ 1 and σ 2 of the two protons in the final state through

S0
0 (0, 0) = 1

4
(1 − σ 1 · σ 2), (15)

S0
0 (1, 1) = 1

4
(3 + σ 1 · σ 2), (16)

S1
µ(1, 1) =

√
3

2
√

2
(σ 1 + σ 2)1

µ, (17)

S2
µ(1, 1) =

√
3

2
(σ 1 ⊗ σ 2)2

µ, (18)

S1
µ(0, 1) = 1

2
√

2
(σ 1 ⊗ σ 2)1

µ − 1

4
(σ 1 − σ 2)1

µ, (19)

S1
µ(1, 0) =

√
3

2
√

2
(σ 1 ⊗ σ 2)1

µ +
√

3

4
(σ 1 − σ 2)1

µ. (20)

Thus, the double-differential cross section is given by

d2σ0

dW d�f d�
= Tr[ρf ] = P 0

0 (0, 0) + P 0
0 (1, 1), (21)

in terms of the double-differential cross sections, P 0
0 (0, 0)

leading to the final singlet state and P 0
0 (1, 1) leading to the

final triplet state of the two protons. If we use the notations
(Pi)µ to denote the spherical components, that is,

(Pi)0 = Piz; (Pi)±1 = ∓ 1√
2

(Pix ± Piy), (22)

it follows from Eqs. (19) and (20) that

P 1
µ(1, 0) −

√
3P 1

µ(0, 1) =
√

3

2
Tr[ρf ](P1 − P2)µ, (23)

whereas it follows from Eq. (17) that

P 1
µ(1, 1) =

√
3

2
√

2
Tr[ρf ](P1 + P2)µ, (24)

which together determine P1 and P2 individually. Finally, the
spin correlations Cαβ defined in Eq. (13) may likewise be
related to Eq. (14) using

P 0
0 (1, 1) − 3P 0

0 (0, 0) = Tr[(σ 1 · σ 2)ρf ], (25)

P 1
µ(1, 0) +

√
3P 1

µ(0, 1) =
√

3i

2
Tr[ρf (σ 1 × σ 2)]µ, (26)

P 2
µ(1, 1) =

√
3

2
Tr

[
ρf (σ 1 ⊗ σ 2)2

µ

]
. (27)

Using the known properties [18] of the spin operators Sλ
µ and

standard Racah techniques, we may obtain a master formula
for all the final-state spin observables, which is given by

P k
µ(s ′

f , sf ) = 1

4

∑
si ,λ,λ′

(−1)sf −si [sf ] [s ′
f ]2[λ][λ′]

×W (s ′
f λ′sf λ; sik)[Mλ(sf , si) ⊗ M

†λ′
(s ′

f , si)]
k
µ,

(28)

where M
†λ
µ (sf , si) are defined in terms of the complex

conjugates Mλ
µ(sf , si)∗ of Mλ

µ(sf , si) given by Eq. (2) through

M
†λ
µ (sf , si) = (−1)µMλ

−µ(sf , si)
∗. (29)

Noting once again that (−1)lf +l+li = −1, owing to parity
conservation, we may express

M
†λ
µ (sf , si) = (−1)1−λ

∑
L

W (lisiLf sf ; jλ)

×Z∗(sf , si, j,L) Aλ
µ(L), (30)

where Z∗(sf , si, j,L) denote the complex conjugates of
Z(sf , si, j,L) given by Eq. (4).

Relative phase of the threshold amplitude. We may now
take advantage of the fact that M1

0 (0, 1) given by Eq. (10) is
spherically symmetric with respect to p̂f and q̂ and involves
only the threshold amplitude f1. Moreover, Mλ

µ(1, 1) are
independent of f1 and depend only on the Pp amplitudes
f4, . . . , f12. Therefore, we focus attention on Eqs. (26) and
(23), which involve

[Mλ(1, 1) ⊗ M
†1(0, 1)]1

µ =
∑
L,j

Z(1, 1, j,L)f ∗
1 A1

µ (31)

[M1(0, 1) ⊗ M
†λ(1, 1)]1

µ = −
∑
L,j

Z∗(1, 1, j,L)f1 A1
µ, (32)

where

A1
µ = 1

4
√

3π
W (li1Lf 1; jλ)[Aλ(L) ⊗ Y1(p̂i)]

1
µ. (33)

Expressing

[Aλ(L) ⊗ Y1(p̂i)]
1
µ =

√
3

4π

∑
Li

W (Lf li11; λLi)[λ][Li][li]

×C(li1Li, 000)A1
µ(lf lLf Li) (34)

and carrying out the summation over L and j , we obtain

P 1
µ(1, 0) = f ∗

1 [F1A
1
µ(1110) + F2A

1
µ(1112) + F3A

1
µ(1122)],

(35)

P 1
µ(0, 1) = −1√

3
f1

[
F ∗

1 A1
µ(1110) + F ∗

2 A1
µ(1112)

+F ∗
3 A1

µ(1122)
]
, (36)

where Fi, i = 1, 2, 3 are well-defined linear combinations of
the Pp amplitudes given by

F1 = 1

32π3/2

[
f4 − 5

6
f5 + 5

2
√

3
f6 + 1

3
√

3
f9

− 1

6
f10 −

√
5

6
√

3
f11

]
, (37)

F2 = 1

32
√

2π3/2

[
f5 −

√
3f6 +

√
3

2
f7 + 3√

2
f8

]
, (38)

F3 = −1

32
√

2π3/2

[√
3f5 + f6 +

√
7f7 +

√
7

3
f8

]
, (39)
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Because the Pp amplitudes have been determined both in
magnitude and in relative phase with respect to f2 in Ref. [20],
we may express Fα = |Fα| exp[i�α] , α = 1, 2, 3 and treat
|Fα| and �α as known. In Ref. [20], f2 was assumed to be
real. Because the relative phase between f1 and f2 could not
be ascertained from the measurements of Meyer et al. [15],
f1 was also assumed to be real, although only one of the
amplitudes can be taken as real. Therefore, we choose f2 to be
real and express f1 = |f1| exp[iδ1]. This leads to

P 1
µ(1, 0) −

√
3P 1

µ(0, 1) = 2
3∑

α=1

Rα cos(�α − δ1)A1
µ(α),

(40)

P 1
µ(1, 0) +

√
3P 1

µ(0, 1) = 2i

3∑
α=1

Rα sin(�α − δ1)A1
µ(α),

(41)

where Rα = |Fα||f1| and A1
µ(α) for α = 1, 2, 3 denote

A1
µ(1110), A1

µ(1112), A1
µ(1122), respectively.

It is seen from Eq. (11) that measuring the double-
differential cross section (7) yields Tr[ρf ]. Measurements of
(P1 − P2)µ given by Eq. (23) then lead to empirical determi-
nation of Eq. (40), while measurements of spin correlations
Cxy − Cyx, Cyz − Czy, Czx − Cxz, where Cαβ are given by
Eq. (13) lead to empirical determination of Eq. (41) using
Eq. (26).

Thus, we find that it is possible to determine empirically the
relative phase δ1 of f1, without any trigonometric ambiguities,
because Rα and �α are known from Ref. [20]. We therefore
advocate measurement of these pp spin observables in the final
state, employing simply an unpolarized beam and unpolarized
target initially, to complement the spin observables measured
by Meyer et al. [15], so that the amplitudes f1, f2, . . . , f12

may be determined empirically without any phase
ambiguity.

We thank the referee for bringing Refs. [21,22] to our
attention and suggesting that our formalism be applied to
discuss polarization in strangeness production [22], which will
be taken up later.
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