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We show that two P11 nucleon resonance poles near the π� threshold, obtained in several analyses, are stable
against large variations of parameters within a dynamical coupled-channels analysis based on meson-exchange
mechanisms. By also performing an analysis based on a model with a bare nucleon state, we find that this two-pole
structure is insensitive to the analytic structure of the amplitude in the region below the πN threshold. Our results
are Mpole = (1363+9

−6 − i79+3
−5) and (1373+12

−10 − i114+14
−9 ) MeV. We also demonstrate that the number of poles in

the 1.5-GeV � W � 2-GeV region could be more than one, depending on how the structure of the single-energy
solution of SAID is fitted. For three-pole solutions, our best estimated result of a pole near N (1710) listed by
Particle Data Group is (1829+131

−65 − i192+88
−110) MeV, which is close to the results of several previous analyses.

Our results indicate the need for more accurate πN reaction data in the W > 1.6-GeV region for high-precision
resonance extractions.
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I. INTRODUCTION

An important task in hadron physics is to extract nucleon
resonances from πN reaction data. The extracted resonance
parameters are needed to understand the spectrum and struc-
ture of excited nucleons within QCD. They are also the starting
point for analyzing electromagnetic meson production reaction
data, which have been of high precision and extensive in recent
years [1].

There exist several approaches [2–14] to extracting nucleon
resonances (N∗) from πN reaction data. In general, almost all
four-star nucleon resonances listed by Particle Data Group [15]
(PDG) are found in all approaches. However, the existence of
some N∗ states, in particular those in the higher mass region,
is controversial. The most investigated case is the number of
resonances in πN P11 partial wave. In the region near Roper
N (1440), two poles close to the π� threshold were found in
Refs. [3–5,12] and in our recent extraction [14], while only one
pole in the similar energy region was reported in Refs. [6,9,10].
In the higher mass region, the N (1710) in P11 πN partial wave
is not reported in Refs. [5,12], but is identified in all other
analyses [2,3,6–11,14].

To make progress, it is important to address a commonly
asked question on the extent to which the extracted resonance
parameters depend on the reaction models employed and
the accuracy of the empirical partial-wave amplitudes used
in the analysis. For P11 resonances, this was investigated
by Cutkosky and Wang [3] and more recently by Ceci
et al. [9] within the Carnegie-Mellon University-Berkeley
model [2] (CMB). In an analysis including πN , ηN , and
pseudo-ππN channels, it was demonstrated [9] that the
existence of N (1710) depends on the structure of the πN

amplitude which is related to the coupled-channels effects
due to the ηN channel. In this work, we carry out a similar
investigation within a dynamical coupled-channels model [16]
(EBAC-DCC). The main difference between our approach
and CMB model is to define the nonresonant amplitude
by using the meson-exchange mechanisms. We thus have

provided additional information for examining the dependence
of the P11 resonances on the reaction models employed in the
analysis.

Our investigation has two parts. First we examine the
stability of the two-pole structure of P11 resonances near the
π� threshold (W ∼ 1.3 GeV). Our objective is to examine
how this two-pole structure is sensitive to the parameters
of the meson-exchange mechanisms within the EBAC-DCC
model used in our extraction [14]. In the fits [17] (JLMS)
of πN data [5], these parameters were determined within
the ranges known from previous studies of meson-exchange
mechanisms. Here we allow them to vary much more freely
such that several models with different analytic properties are
obtained for examining whether the resulting pole positions
are stable within the EBAC-DCC model.

The two-pole structure is also reported by Döring et al.
[12] in an analysis based on a meson-exchange model with
a bare nucleon state [18]. As discussed in Ref. [19], the
analytic structure of this model as well as other similar
models [20–22] is rather different from the EBAC-DCC model,
in particular in the region near the nucleon pole, mainly
because of the differences in deriving [23] three-dimensional
scattering equations from relativistic quantum field theory.
To further examine the stability of the two-pole structure of
P11 resonances and the existence of N (1710) state within the
meson-exchange models, we also perform fits by using such a
model. Our formulation is similar to that developed by Pearce
and Afnan [20].

We show that the positions of two poles near the π�

threshold extracted from all of the meson-exchange models
constructed here are rather stable. This explains why the
similar two-pole structure is also found in the other analyses
[3,5,12], which use very different reaction models.

The second part of our investigation is to examine the
extent to which the structure of the P11 amplitude in higher
invariant mass (W ) region can influence the two-pole structure
near the π� threshold. Here we also follow Ref. [9] to
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examine how the number of resonance states in the region
near N (1710) state listed by PDG depend on the structure
of the data. We thus consider both the energy-dependent and
the single-energy solutions (SP06) of SAID [5]—hereafter
referred to as SAID-EDS and SAID-SES, respectively—as
well as a solution from the CMB [3] collaboration. The CMB
amplitudes could be outdated, but are used here only for
investigating the dependence of the P11 poles on the accuracy
of the data. We show that the number of resonance poles in
the 1.6-GeV < W < 2-GeV region could be more than one,
depending on how the structure of the amplitude is fitted. Our
results indicate the importance of improving the accuracy of
empirical partial-wave amplitudes. More accurate πN reaction
data from the new hadron facilities, such as the Japan Proton
Accelerator Research Complex (J-PARC), are needed. Our
conclusion is consistent with the finding of Ref. [9], in which
the importance of also fitting the πN → ηN amplitude is
demonstrated in identifying the P11 N (1710) state.

In Sec. II, we give a brief description of the coupled-
channels models used in this work. The results are given and
discussed in Sec. III. Section IV is devoted to the discussions
on possible further developments.

II. DYNAMICAL COUPLED-CHANNELS MODELS

In this section we first recall briefly the EBAC-DCC model
[16] used in this work. We then describe how the model can
be modified to obtain a model with a bare nucleon, which
has the main feature of other πN reaction models with a bare
nucleon [12,20–22].

A. EBAC-DCC model

The EBAC-DCC model describes meson-baryon reactions
involving the following channels: πN , ηN , and ππN , which
have π�, ρN , and σN resonant components. The excitation
of the internal structure of a baryon (B) by a meson (M) to
a bare N∗ state is modeled by a vertex interaction �MB↔N∗ .
The meson-baryon (MB) states can interact via interactions
vMB,M ′B ′ that describe the meson-exchange mechanisms de-
duced from phenomenological Lagrangians. Within the model,
the partial-wave amplitude of the M(�k) + B(−�k) → M ′(�k′) +
B ′(−�k′) reaction can be cast in the following form (suppressing
the angular momentum and isospin indices):

TMB,M ′B ′(k, k′, E) = tMB,M ′B ′ (k, k′, E) + tRMB,M ′B ′ (k, k′, E),

(1)

where the first term is defined by a set of coupled-channels
integral equations,

tMB,M ′B ′(k, k′, E) = vMB,M ′B ′ (k, k′)

+
∑
M ′′B ′′

∫
CM′′B′′

q2dqvMB,M ′′B ′′ (k, q)

×GM ′′B ′′(q,E)tM ′′B ′′,M ′B ′(q, k′, E). (2)

Here CMB is the integration contour in the complex-q plane
used for the channel MB. The term associated with the bare

N∗ states in Eq. (1) is

tRMB,M ′B ′ (k, k′, E)

=
∑
i,j

�̄MB→N∗
i
(k,E)[D(E)]i,j �̄N∗

j →M ′B ′(k′, E), (3)

where the dressed vertex function �̄N∗
j →M ′B ′(k,E) is calcu-

lated [17] from the bare vertex �N∗
j →M ′B ′ (k) and convolutions

over the amplitudes tMB,M ′B ′(k, k′, E). The inverse of the
propagator of dressed N∗ states in Eq. (3) is

[D−1(E)]i,j = (
E − m0

N∗
i

)
δi,j − �i,j (E), (4)

where m0
N∗

i
is the bare mass of the ith N∗ state, and the N∗

self-energy is defined by

�i,j (E)

=
∑
MB

∫
CMB

q2dq�̄N∗
j →MB(q,E)GMB (q,E)�MB→N∗

i
(q,E).

(5)

Defining Eα(k) = [m2
α + k2]1/2 with mα being the mass of par-

ticle α, the meson-baryon propagators in the above equations
are: GMB(k,E) = 1/[E − EM (k) − EB(k) + iε] for the sta-
ble πN and ηN channels and GMB(k,E) = 1/[E − EM (k) −
EB(k) − �MB(k,E)] for the unstable π�, ρN , and σN

channels. The self-energy �MB(k,E) is calculated from a
vertex function defining the decay of the considered unstable
particle in the presence of a spectator π or N with momentum
k. For example, we have for the π� state

�π�(k,E) = m�

E�(k)

∫
C3

q2dq
MπN (q)[

M2
πN (q) + k2

]1/2

× |f�→πN (q)|2
E − Eπ (k) − [

M2
πN (q) + k2

]1/2 + iε
,

(6)

where MπN (q) = Eπ (q) + EN (q), f�→πN (q) defines the de-
cay of the � → πN in the rest frame of �, and C3 is the
corresponding integration contour in the complex-q plane. The
self-energies for the ρN and σN channels are similar.

To search for resonance poles, the contours CMB and C3

must be chosen appropriately to solve Eqs. (2)–(6) for E on the
various possible sheets of the Riemann surface. The procedures
for performing this numerical task have been discussed in
Refs. [14,24]. Like all previous works [5,10], we only look
for poles that are close to the physical region and have effects
on the πN scattering observables. All of these poles are on
the unphysical sheet of the πN channel, but could be on
either unphysical (u) or physical (p) sheets of other channels
considered in this analysis. We indicate the sheets where the
identified poles are located by (sπN , sηN , sππN , sπ�, sρN , sσN ),
where sMB and sππN can be u or p.

B. Model with a bare nucleon state

To examine further the model dependence of resonance
extractions, it is useful to also perform analysis using
models with a bare nucleon, as developed in, for example,
Refs. [12,20–22]. Within the formulation given in Sec. II A,
such a model can be obtained by adding a bare nucleon (N0)
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state with mass m0
N and N0 → MB vertices and removing the

direct MB → N → M ′B ′ in the meson-baryon interactions
vMB,M ′B ′ . All numerical procedures for this model are identical
to those used in the JLMS analysis, except that the resulting
amplitude must satisfy the nucleon pole condition. Here we
follow the procedure of Afnan and Pearce [20].

For simplicity, we include one bare N0 state and only one
bare N∗ state. The amplitude can still be written in the form
of Eq. (1) and the propagator D(E) of the term tR of Eq. (3)
is a 2 × 2 matrix. The nucleon pole condition can be most
transparently defined by introducing an orthogonal matrix
UT U = 1 (UT

ij = Uji) to diagonalize D−1(E) of Eq. (4). The
term tRπN,πN of Eq. (3) can then be cast into the diagonal form

tRπN,πN (k, k, E) =
∑
i=1,2

t̃ i
πN,πN (k, k, E), (7)

with

t̃ i
πN,πN (k, k, E) = F̃πN,i(k)F̃i,πN (k)

E − m0
i − �̃i(E)

, (8)

where m0
1 = m0

N and m0
2 = m0

N∗ and the mass shifts are

�̃1(E) = 1
2

{
m0

2 − m0
1 + �11(E) + �22(E)

− [(
m0

2 + �22(E) − m0
1 − �11(E)

)2

+ 4�2
12(E)

]1/2}
, (9)

�̃2(E) = 1
2

{
m0

1 − m0
2 + �11(E) + �22(E)

+ [(
m0

2 + �22(E) − m0
1 − �11(E)

)2

+ 4�2
12(E)

]1/2}
. (10)

Here �i,j (E) are defined by Eq. (5). The transformed vertices
in Eq. (8) are

F̃i,πN (k) =
∑

j

Ui,j �̄N∗
j →πN (k), (11)

F̃πN,i(k) =
∑

j

Ui,j �̄πN→N∗
j
(k), (12)

where N∗
j = N0 or N∗, and the transformation operator U is

defined by

U11 = U22 = 1

(1 + ν2)1/2
, (13)

U12 = −U21 = ν

(1 + ν2)1/2
, (14)

with

ν = �11 − �̃1

�12
= −�22 − �̃2

�12
. (15)

Suppose E = mN pole is found in the first term of Eq. (7);
we then expand

E − m0
1 − �̃1(E)

= E − m0
1 −

{
�̃1(mN ) +

[
∂

∂E
�̃1(E)

]
E=mN

× (E − mN ) + · · ·
}

= (E − mN )

{
1 −

[
∂

∂E
�̃1(E)

]
E=mN

+ · · ·
}

, (16)

where we have defined the nucleon pole

mN = m0
1 + �̃1(mN ). (17)

This is the first nucleon pole condition taken into account in
constructing the bare nucleon model.

Defining the renormalized vertex as

FπNN (k) = F̃1,πN (k)Z−1/2

=
∑

j

U1,j �̄N∗
j →πN (k)Z−1/2, (18)

with

Z = 1 −
[

∂

∂E
�̃1(E)

]
E=mN

, (19)

we then have

t̃Ri (k → kon, k → kon, E → mN ) = − [FπNN (kon)]2

E − mN

. (20)

Here the on-shell momentum is defined by E =
√

m2
N + k2

on +√
m2

π + k2
on. Below E = mN + mπ , kon becomes positive or

negative imaginary. Here we take the positive imaginary
because we look for the physical nucleon pole. The second
nucleon pole condition then defines the renormalized vertex
FπNN (kon) as the physical πNN form factor. Following the
partial-wave decomposition procedure given in Ref. [16], we
find

FπNN (kon) = F
phys.
πNN (kon), (21)

with

F
phys.
πNN (k) = − i

(2π )3/2

fπNN

mπ

√
12πk

√
EN (k) + mN

2EN (k)

× 1√
2ωπ (k)

[
1 + Eπ (k)

EN (k) + mN

]
, (22)

where fπNN = √
4π × 0.08. Following the previous ap-

proach, the bare N0 → πN vertex �N0,πN (k) is parametrized
as Eq. (22), except that fπNN is replaced by a bare coupling
constant f 0

πNN , and the form factor is introduced. Explicitly,
it is written as

�N0,πN (k) = − i

(2π )3/2

f 0
πNN

mπ

√
12πk

√
EN (k) + mN

2EN (k)

× 1√
2ωπ (k)

[
1 + Eπ (k)

EN (k) + mN

]
F (k,�πNN ),

(23)

where we use the following form factor,

F (k,�πNN ) =
(

�2
πNN

k2 + �2
πNN

)2

. (24)
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The cutoff parameter �πNN of the form factor and the bare
coupling constant f 0

πNN are varied along with other parameters
of the model to fit the empirical πN scattering amplitudes and
the pole conditions (17) and (21).

Here we note that the pole condition (17) depends on both
m0

1 and m0
2 as can be seen in Eq. (9) for �̃1(E). Thus, the mass

renormalization of the physical nucleon includes not only the
meson cloud effects, but also the contribution from the bare
N∗ state. If we drop the N∗ state, the nucleon pole condition
becomes the usual form:

mN = m0
1 + �11(mN ). (25)

We use the exact conditions (17) and (21) in our
investigations. Our approach is not completely consistent with
the rigorous approach of Ref. [20], but is sufficient for our
present limited purpose of investigating model dependence
of resonance extractions. Qualitatively, this model contains
the main feature of the coupled-channels model developed in
Ref. [12] in handling the πN scattering in P11 partial wave.
The main difference is in the derivation of meson-baryon
potential vMB,M ′B ′ from phenomenological Lagrangians, as
discussed in Ref. [19].

III. RESULT

We first discuss the parameters of the coupled-channels
models described in Sec. II, which are varied in performing χ2

fits to empirical P11 amplitudes using MINUIT. The nonresonant
amplitude tMB,M ′B ′ of Eq. (1) is determined by the coupling
constants and cutoffs of form factors of the meson-exchange
interactions vMB,M ′B ′ through solving the coupled-channels
integral equation (2). In the JLMS fit [17] to the πN data, these
parameters were constrained within the ranges known from
previous studies of meson-exchange mechanisms, as discussed
in Ref. [16]. Here we allow them to vary much more freely,
such that several models are obtained for examining whether
the resulting pole positions are stable against the variation of
the analytic properties of the resulting amplitudes.

In the absence of theoretical input, our main challenge is to
determine the bare N∗ mass m0

N∗ and the N∗ → MB vertex
function. For P11 partial wave, the number of N∗ parameters
is NN∗ + NN∗ × ∑

MB nv,MB , where NN∗ is the number of
the bare N∗ and nv,MB is the number of parameters needed
to parametrize each N∗ → MB vertex function �N∗→MB .
In our fit we have NN∗ = 1 or 2 and nv,MB = 2 (MB =
πN, ηN, π�, σN ) or 4 (MB = ρN ) from the coupling
constants gMB and cutoffs �MB (as explained in Ref. [17]).
We have a total of five channels (NMB = 5). We thus face
a many-parameter problem in fitting the data, which is also
present in using the CMB models with NMB = 8, 6, and 3 in
Refs. [3], [10], and [9], respectively. We also note that
the similar many-parameters problem is also a concern in
all approaches of resonance extraction which require high-
precision fits of πN data. This common problem poses
difficulties in assigning the errors for the determined model
parameters. We thus follow all previous works and only
assign errors in the determined P11 resonance pole parameters
which are determined nonlinearly by the model parameters
associated with meson-exchange interactions vMB,M ′B ′ and
bare N∗ states.

Our fitting procedure is as follows. We first adjust the
parameters associated with the meson-exchange interaction
vMB,M ′B ′ to fit P11 amplitude at low energies W � 1.2 GeV.
To control the number of parameters associated with bare N∗
states, we then include only one bare N∗ state and try to fit
the data in the entire considered energy region by adjusting
its bare mass m0

N∗ and vertex function parameters gMB and
�MB . If this fails, we then also allow the parameters associated
vMB,M ′B ′ to vary. If this fails again, we then include one
more bare N∗ state and repeat the process. In the region
below W = 2 GeV, we find that the considered P11 amplitudes
can be fitted with one or two bare N∗ states. Most of the
resulting cutoff parameters are in the range of 500–1500 MeV,
which are similar to those in typical meson exchange models
[18,20–22,25]. The bare N∗ masses are searched within the
range m0

N∗ � 2500 MeV. The interpretations of these resulting
bare N∗ parameters with hadron structure calculations remain
to be developed. At the present time, they should be considered
purely phenomenologically and only the extracted resonance
pole parameters have well-defined physical meaning.

Once a fit is obtained, we then apply the method of analytic
continuation of Ref. [24] to find resonance poles, as also briefly
described at the end of Sec. II A. The errors of the resonance
parameters are then estimated by using all values obtained in
all fits we have performed.

For each of the fits presented in what follows, we assess its
quality by evaluating its χ2 per data point defined by

χ2
pd =

∑
i=1,NW

1

Ndata

{
|Re[T model(Wi)] − Re[T data(Wi)]|2

|Re(δ[T data(Wi)])|2

+ |Im[T model(Wi)] − Im[T data(Wi)]|2
|Im(δ[T data(Wi)])|2

}
, (26)

where T data(Wi) and δ[T data(Wi)] are the values and errors of
the considered data, respectively; NW is the number of the en-
ergy points where the data exist; Ndata = 2NW is the number of
the data points (note that there are real and imaginary compo-
nents at each energy point). We use the single-energy solution
SAID-SES as data in our fits, except in one fit using CMB data
(see later in this article). As a reference, we take the energy-
dependent solution SAID-EDS as T model(E) to get χ2

pd = 2.94,
as listed in the first row of Table I along with their values of P11

resonance pole positions. Note that their sheet assignments are
different from ours because they do not have a σN channel.
Also, they do not have a pole at a higher energy region.

We now proceed to present our results by first recalling
the three P11 poles extracted [14] using the JLMS param-
eters. They are listed in the second row of Table I and
the corresponding amplitudes (solid curves) are compared
with the SAID-EDS [5] (open circles) in Fig. 1. Here we
note that the χ2

pd from the JLMS fit listed in Table I is
comparable to that of SAID-EDS. In general, we find it is rather
difficult to get a fit with χ2

pd � 2.5 within meson-exchange
model, mainly because the errors of SAID-SES are very small
in the W � 1.45-GeV region within which the reproduction of
the rapid sign changes of empirical amplitude is rather difficult
owing to the need of delicate balance between the attractive
and repulsive effects in different energy regions.
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TABLE I. The resonance pole positions MR for P11 [listed as (ReMR , −ImMR) in the units of MeV] extracted from various parameter
sets. The location of the pole is specified by, for example, (sπN , sηN , sππN , sπ�, sρN , sσN ) = (upuupp), where p and u denote the physical and
unphysical sheets for a given reaction channel, respectively. χ2

pd is defined by Eq. (26).

Model upuupp upuppp uuuupp uuuuup χ 2
pd

SAID-EDS (1359, 81) (1388, 83) – – 2.94
JLMS (1357, 76) (1364, 105) – (1820, 248) 3.55
1N∗-3p-H (1357, 74) (1363, 111) – (1792, 280) 2.41
1N∗-3p-L (1359, 69) (1371, 112) – (1940, 242) 5.33
2N∗-3p (1368, 82) (1375, 110) – (1810, 82) 3.28
2N∗-4p (1372, 80) (1385, 114) (1636, 67) (1960, 215) 3.36
2N∗-4p-CMB (1379, 89) (1386, 109) (1613, 42) (1913, 324) 4.91
1N01N∗-3p (1363, 81) (1377, 128) – (1764, 137) 2.51

In the following sections, we present results from various
fits by varying the dynamical content of the EBAC-DCC model
as described earlier and using a model with a bare nucleon
described in Sec. II B.

A. 1N∗-3 p-H and 1N∗-3 p-L fits

We first consider the simplest variation of the JLMS fit
by including only one bare N∗ state, instead of two, to
fit the SAID-SES solution. In these fits, the parameters of
meson-baryon interactions vMB,M ′B ′ of Eq. (2) are taken from
JLMS. We also examine how the extracted resonance poles
depend on the data included in the fits. Here we present results
from two fits. The solution 1N∗-3p-H fits the SAID-SES
up to 2 GeV, while the 1N∗-3p-L to only 1.6 GeV. These
two fits are compared with the JLMS results in Fig. 1. The
resulting resonance poles are listed in the third and fourth
rows of Table I. We see that the first two poles near the π�

threshold (∼1.3 GeV) are in good agreement with those from
JLMS. This suggests that these two poles are only sensitive to
the data below about 1.5 GeV. The differences between these
two fits and JLMS at higher W > 1.5 GeV mainly affect the
positions of their third poles, as seen in Table I.

The results presented here also indicate that with the
nonresonant amplitudes of JLMS, only one bare N* state is
sufficient to describe the πN scattering data up to 2 GeV. All of
the fits presented in what follows are obtained by starting with

1200 1400 1600 1800 2000
W (MeV)

-0.2

0

0.2

0.4

1200 1400 1600 1800 2000
W (MeV)

0

0.4

0.8

Re T Im T(a) (b)

FIG. 1. (Color online) The real (a) and imaginary (b) parts of
the on-shell P11 amplitudes as a function of the πN invariant mass
W (MeV). The solid curves are from the JLMS fit; the dashed (dotted)
curves are from the 1N∗-3p-H (1N∗-3p-L) fit to the SAID-EDS [5] up
to W = 2 GeV (W = 1.6 GeV); the open circles are the SAID-EDS
[5]. T is unitless in the convention of Ref. [5].

nonresonant amplitudes which are chosen to be different from
that of JLMS by tuning the parameters of vMB,M ′B ′ . It turns
out that in these fits, using the procedure described earlier, two
bare N∗ states are needed to get comparable χ2.

B. 2N∗-3 p and 2N∗-4 p fits

Here we investigate the dependence of the extracted
resonances on the accuracy of the employed partial-wave
amplitudes by considering the SAID-SES solution which show
some oscillating structure in the high W � 1.5-GeV region.
Such a structure is absent in the SAID-EDS (open circles
in Fig. 1). From the empirical point of view, it raises the
question on whether the fits to the smooth SAID-EDS miss
some resonance physics of the original πN data. Before more
precise empirical amplitudes are available, it is necessary to
explore the extent to which these experimental uncertainties
can affect the resonance extractions. We explore this issue
by allowing the parameters associated with meson-baryon
interaction vMB,M ′B ′ to deviate from the JLMS values in
varying these parameters along with the bare N∗ parameters
in minimizing χ2

pd. In general, the resulting πN� and ρNN

coupling constants from these new fits are weaker than the
JLMS values and hence give rather different nonresonant
amplitudes tπN,πN .

We have obtained several fits that differ from each other
mainly in how the oscillating structure of the data at high W

are fitted. The results from the 2N∗-3p (dotted curves) and
2N∗-4p (dashed curves) fits are compared with the JLMS
fit (solid curves) in Fig. 2. The resulting resonance poles
are listed in the fifth and sixth rows of Table I. Here we
see again the first two poles near the π� threshold from
both fits agree well with the JLMS fit. This seems to further
support the conjecture that these two poles are mainly sensitive
to the data below W ∼ 1.5 GeV, where the SAID-SES has
rather small errors. However, the 2N∗-4p fit has one more
pole at MR = 1630 − i45 MeV. This is perhaps related to its
oscillating structure near W ∼ 1.6 GeV (dashed curves), as
shown in the Figs. 2(b) and 2(d). However, this resonance pole
could be fictitious because the fit 2N∗-3p (dotted curve) with
only three poles is equally acceptable within the fluctuating
experimental errors. Our result suggests that it is important
to have more accurate data in the high-W region for a
high-precision resonance extraction.
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FIG. 2. (Color online) The real (top panels) and imaginary
(bottom panels) parts of the P11 amplitudes as a function of the πN

invariant mass W (MeV). The JLMS (solid) results are compared
with the results from the 2N∗-3p (dotted) and 2N∗-4p (dashed) fits.
The points with errors are from the SAID-SES [5]. T is unitless in
the convention of Ref. [5].

C. 2N∗-4 p-CMB fit

To further explore the dependence of the resonance poles on
the data, we consider a solution from the CMB collaboration
[3]. This solution differs significantly from the SAID-SES
mainly at W > 1.55 GeV. For our present purpose of inves-
tigating the stability of the lowest two poles near the π�

threshold, we fit the data that are obtained from replacing
SAID-SES in the high-W > 1.55-GeV region with the CMB
solution. The results (dashed curves) from this fit with all
parameters allowed to vary within the EBAC-DCC model are
compared with those of the 2N∗-4p (solid curves) in Fig. 3. We
see that both have oscillating behavior near W ∼ 1.6 GeV and
this could be the common reason why both have an addition
pole near W ∼ 1.6 GeV, as seen in rows 6 and 7 of Table I.
The large differences in their fits at high W make their poles
near W ∼ 1.9 GeV very different; in particular their imaginary
parts. However, their lowest two poles near the π� threshold
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FIG. 3. (Color online) The real (a) and imaginary (b) parts of the
P11 amplitudes as a function of the πN invariant mass W (MeV). The
2N∗-4p fit (solid) and the 2N∗-4p-CMB fit (dashed) are compared
with the data. The open circles with errors are from the SAID-SES [5],
and the crosses with errors are from the SAID-SES at W < 1.55 GeV
and the CMB solution [3] at W > 1.55 GeV. T is unitless in the
convention of Ref. [5].

are close to other fits discussed so far. This again supports
the preceding observation that these two poles are determined
only by the data below W < 1.5 GeV, which are reproduced
very well in all fits.

D. 1N01N∗-3 p

Here we consider the question concerning whether the
analytic structure of the employed reaction model in
the W � mN + mπ unphysical region can strongly influence
the resonance extractions. We first note that most of the
resonances listed by PDG [15] are from analyses that treat
the nucleon as a structureless basic degree of freedom in
describing the πN reactions; such models are used in SAID [5]
and CMB [3]. Similar simplification is used in formulating the
EBAC-DCC model [16]. However, a more elaborate approach
has been taken to analyze πN data using models within which
the nucleon is made of a bare nucleon N0 and meson clouds.
Such models [12,20–22] need to account for the nucleon pole
condition, as described in Sec. II B, in fitting the πN reaction
data. While all of these models give similar P11 amplitudes
from threshold Wth = mN + mπ to about 1.6 GeV, their
analytic structure as a function of the complex energy could be
very different in the W � mN + mπ region where all dynami-
cal models [12,17,20–22,25] have various singularities owing
to the parametrization of the considered meson-baryon inter-
actions. This is discussed in Ref. [19]. The question is whether
such differences can lead to very different resonance poles.

We investigate this issue by comparing the results presented
earlier with that from the fits using the model with a bare
N0 described in Sec. II B. In these fits, the parameters of the
meson-baryon interaction vMB,M ′B ′ are adjusted along with the
parameters associated with N0 and N∗ in fitting the SAID-SES
up to W = 2 GeV under the nucleon pole conditions (17)
and (21). The results from one of the fits (dashed curves) are
compared with the JLMS fits (solid curves) in Fig. 4. We see
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FIG. 4. (Color online) The real (top panels) and imaginary
(bottom panels) parts of the P11 amplitudes as a function of the πN

invariant mass W (MeV). The JLMS fit (solid) and the 1N01N∗-3p

fit (dashed) are compared with the SAID-SES [5]. T is unitless in the
convention of Ref. [5].
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TABLE II. Averaged values of the extracted P11 resonances [listed
as (ReMR , −ImMR) in the unit of MeV]. Here we identify these poles
with the states listed by PDG [15]. The location of the pole is specified
by, for example, (sπN , sηN , sππN , sπ�, sρN , sσN ) = (upuupp), where
p and u denote the physical and unphysical sheets for a given reaction
channel, respectively.

States Location Averaged values (MeV)

N (1440) (upuupp) (1363+9
−6, 79+3

−5)

(upuppp) (1373+12
−10, 114+14

−9 )

N (1710) (uuuuup) (1829+131
−65 , 192+88

−110)

that the two fits agree very well below W = 1.5 GeV, while
their differences are significant in the high-W region, as seen
in the right panels of Fig. 4. The resulting resonance poles
are given in the last row of Table I. Similar to all of the cases
discussed earlier, we also see here that the first two poles near
the π� threshold are close to those of JLMS. Our results seem
to indicate that these two poles are rather insensitive to the
analytic structure of the amplitude in the region below πN

threshold and are mainly determined by the data in the region
mN + mπ � W � 1.6 GeV. The third pole from this fit is close
to that of JLMS, except that its imaginary part is smaller, as
seen in the first and last rows of Table I.

E. Averaged values of the extracted P11 resonances

To get the averaged values of the extracted P11 resonance
poles, we take the values listed in Table I, except those from
models 1N∗-3p-L and 2N∗-4p-CMB, which are obtained
from fitting different sets of data, as described earlier. We
further omit the values from 2N∗-4p in the evaluation because
it has one more pole owing to its oscillating behavior (dashed
curves in Fig. 2), which needs further investigations, although
it is within the experimental uncertainties. Our values are listed
in Table II. The errors are assigned by the differences between
the largest and smallest values listed in Table I.

The model parameters from our fits are not relevant to the
discussions given earlier and are therefore not presented. These
data are available upon requests.

IV. SUMMARY AND DISCUSSIONS

In this work we have investigated the extraction of P11

nucleon resonances. By performing extensive fits to SAID-
SES, we show that two resonance poles near the π� threshold
are stable against large variations of parameters of meson-
exchange mechanisms within EBAC-DCC model [16]. This
two-pole structure is also obtained in an analysis based on

a model with a bare nucleon state. Our results indicate
that the extraction of P11 resonances is insensitive to the
analytic structure of the amplitude in the region below the
πN threshold.

By performing different fits to the structure of SAID-SES as
well as the old, perhaps also outdated, CMB data, we demon-
strated that the number of poles in the 1.5-GeV � W � 2-GeV
region could be more than one. Thus, our determination of the
resonance poles in this higher W region is not so conclusive.
We can only report one pole near N (1710) state listed by
PDG, in agreement with several previous analyses. Our results
indicate the need of more accurate πN reaction data in the
W > 1.5-GeV region for high-precision resonance extractions.
In particular, accurate inelastic amplitudes for ηN , π�, ρN ,
and σN channels are highly desirable for our five-channels
analysis. This will allow simultaneous fits to both elastic and
inelastic amplitudes to firmly determine the nucleon reso-
nances in the 1.5-GeV � W � 2-GeV region. The importance
of performing multichannel fits was demonstrated in a recent
three-channel CMB analysis [9], in which it was shown that a
simultaneous fit to both πN → πN and πN → ηN is needed
to establish the N (1710) state. Thus, it is important to obtain
more extensive data of πN reactions including polarization
observables such that high-precision partial-wave amplitude
analysis of πN → ππN data can be performed. Such experi-
ments are possible in the new hadron facility J-PARC in Japan.

Finally, we mention that the analysis of electromagnetic
π and 2π production data can help confirm the nucleon
resonances extracted from πN reaction data, although its main
objective is to extract electromagnetic properties of nucleon
resonances. However, some resonances, which have small
branching ratios to π and 2π channels and have large ones
for KY and ωN channels, could be identified by analyzing
the data of γN → KY,ωN which have been accumulated
extensively in recent years. This is also an important task in
N∗ study before the hadronic data for these channels become
extensive at the new hadron facility.
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