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Two-body nucleon-nucleon correlations in Glauber models of relativistic heavy-ion collisions
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We investigate the influence of the central two-body nucleon-nucleon correlations on several quantities
observed in relativistic heavy-ion collisions. It is demonstrated with explicit Monte Carlo simulations that
the basic correlation measures observed in relativistic heavy-ion collisions, such as the fluctuations of participant
eccentricity, initial size fluctuations, or the fluctuations of the number of sources producing particles, are all
sensitive to the inclusion of the two-body correlations. The effect is at the level of about 10–20%. Moreover, the
realistic (Gaussian) correlation function gives indistinguishable results from the hard-core repulsion, with the
expulsion distance set to 0.9 fm. Thus, we verify that for investigations of the considered correlation measures,
it is sufficient to use the Monte Carlo generators accounting for the hard-core repulsion.
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I. INTRODUCTION

The atomic nucleus is closer to a self-bound saturated
liquid than to a Fermi gas of noninteracting particles, as is
for simplicity frequently assumed in studies of relativistic
heavy-ion collisions. Thus the inclusion of correlations in
the initial configuration of nucleons in the colliding nuclei
is a priori very important. Recently Alvioli, Drescher, and
Strikman [1,2] generated distributions of nucleons in nuclei
which account for the central two-body nucleon-nucleon
(NN) correlations. The procedure, based on the Metropolis
search for configurations satisfying constraints imposed by
the NN correlations, reproduces the one-body Woods-Saxon
distributions, as well as central NN correlations, taken in the
Gaussian form. This calculation is a very important step in the
investigations using the Glauber approach [3,4] to relativistic
heavy-ion collisions, as it is well known [5,6] that correlations
induce event-by-event fluctuations of the measured quantities.

The Glauber Monte Carlo codes [7–10] (for a discussion of
physics issues see Ref. [9] and the review [11]) which model
the early phase of the collision have not been incorporating, for
practical reasons, realistic NN correlations. Instead, the hard-
core expulsion, easy to implement, is used. In that method,
centers of nucleons, whose positions are randomly generated
according to the Woods-Saxon one-body distribution, are
not allowed to be placed closer to one-another than the
expulsion distance d ∼ 1 fm, which simulates the hard-core
NN repulsion. It is not a priori clear that the results obtained
with the realistic (Gaussian) and the hard-core correlations
should be the same for various correlation measures used
in the heavy-ion studies. Moreover, it is not obvious what
precise value of d should be taken to make the simulations
most realistic.

The purpose of this article is to investigate, with the help of
explicit Glauber Monte Carlo simulations by GLISSANDO [9],
the role of the central two-body NN correlations for several
popular observables in relativistic heavy-ion collisions. In
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particular, we look at the following fluctuation measures: the
participant eccentricity fluctuations related to the fluctuations
of the elliptic flow [12–24], the multiplicity fluctuations as
analyzed in the setup of the CERN NA49 experiment [25], and
the recently investigated initial size fluctuations [26], which
influence the transverse-momentum fluctuations [27–42]. We
find that all these measures are sensitive to the inclusion
of the two-body correlations at a level of about 10–20%.
However, the realistic (Gaussian) correlation function gives
virtually indistinguishable results from the calculations with
the hard-core repulsion, with the expulsion distance tuned to
d = 0.9 fm. Thus, we will argue that for all practical terms
of modeling the Glauber initial phase of the collision, it is
sufficient to use the Monte Carlo generators with the hard-core
repulsion.

Certainly, the method of Ref. [1] is more general, as it
allows to include correlations from attractive forces, as well
as introduce the isospin dependence. These were recently
considered in Ref. [43], and when these distributions are
published, they can be implemented in Glauber generators
and tested in a similar way as in the present work.

II. NUCLEAR CORRELATIONS

The method of Ref. [1] imposes a given form of one-
and two-body nucleon distributions. The one-body density is
parametrized with the standard Woods-Saxon form

ρ(1)(r) = A

1 + e
r−R

a

. (1)

Our fit to the distributions for 208Pb from [2] yields the
optimum parameters

R = 6.59(1) fm, a = 0.549(2) fm (208Pb), (2)

where the uncertainties follow from the regression analysis on
the available sample [2] of 105 configurations. The result of
our numerical simulation is displayed in Fig. 1 with the open
symbols.
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FIG. 1. (Color online) Radial one-body density of centers of
nucleons in 208Pb, 4πr2ρ(1)(r), obtained numerically from the
distributions of Ref. [1,2] (open dots), with the dashed line showing
the Woods-Saxon fit with the optimum parameters (2). Filled dots
show the results of the calculation with the hard-core correlations with
parameters (10), with the solid line representing the Woods-Saxon fit.
All points and lines overlap, showing the agreement between the two
methods in obtaining the one-body distribution.

Similarly, for the lightest available nucleus, 16O, we find
from Ref. [2]

R = 2.593(1) fm, a = 0.492(1) fm (16 O). (3)

The radial two-body correlation function C(r) is defined
as [1]

C(r) = 1 − ρ
(2)
C (r)

ρ
(2)
U (r)

, (4)

where ρ
(2)
C (r) and ρ

(2)
U (r) are the correlated and uncorrelated

radial two-body densities,

ρ
(2)
i (r) =

∫
d2�

∫
d3Rρ

(2)
i (R + r/2, R − r/2). (5)

Here ρ
(2)
i (r1, r2), i = C,U , denotes the appropriate two-

nucleon density, r is the relative coordinate, r = |r|, and �

corresponds to the two angles associated with r , over which
the density is integrated. The correlated density is read off
from the distributions [2] with the help of GLISSANDO by
histogramming the relative distances between the centers of
nucleons in the same nucleus, while the uncorrelated density
is found by taking the pairs of nucleons from different nuclei
(this corresponds to the well-known mixing technique, which
gets rid of correlations). The result of our procedure is shown
in Fig. 2. We recover the Gaussian central NN correlation,
implemented in the procedure of Ref. [1],

C(r) = e
− r2

2b2 , (6)

with

b = 0.561(1) fm (208Pb) (7)

and

b = 0.552(1) fm (16O). (8)
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FIG. 2. (Color online) Central two-body NN radial correlation
density for 208Pb, obtained from Eq. (4) (points), and the Gaussian
fit of Eqs. (6), and (7) (line). The vertical line indicates the hard-core
expulsion with d = 0.9 fm.

The tiny uncertainties come from the finite sample of 105

configurations from Ref. [2].
Thus indeed the distributions of Refs. [1,2] properly im-

plement the one-body Woods-Saxon density and the Gaussian
central two-body correlations. The purpose of the above study
was to read off the one-body parameters (2), which in the
following sections will be input in the generation of the
uncorrelated distributions by the Glauber simulations with
GLISSANDO [9]. Results from the uncorrelated distributions
will be compared to the correlated case, where the corre-
lated distributions of Ref. [1] will be fed directly into our
simulations.

III. GLAUBER MODELS

The prototype Glauber model used in the heavy-ion phe-
nomenology is the wounded-nucleon model [44]. A wounded
nucleon has collided inelastically at least once in the collision
process. Variants of the approach [9,45–47] admix a certain
fraction of binary collisions to the wounded nucleons, which
leads to a better overall description of multiplicities of the
produced particles. In the mixed model, investigated in this
work, the number of the produced particles is proportional to
the number of sources

Ns = (1 − α)Nw/2 + αNbin, (9)

where Nw is the number of the wounded nucleons and Nbin

the number of binary NN collisions. The fits to particle
multiplicities of Ref. [47] give α = 0.145 for collisions
at

√
sNN = 200 GeV and α = 0.12 for

√
sNN = 19.6 GeV.

Extrapolation to the Large Hadron Collider energies yields
α � 0.2.

More sophisticated approaches [48–50] discriminate be-
tween the nucleons which have collided only once (corona) and
more than once (core), which leads to an appealing physical
picture. Also, the wounded-quark model [51–56] yields a
successful phenomenology. All in all, the Glauber picture of
the initial stage of the relativistic heavy-ion collision is a key
element of many phenomenological analyses of the particle
production mechanism.
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In this article we apply the mixed model for the 208Pb-208Pb
collisions, with α = 0.12, corresponding to the highest Super
Proton Synchrotron energy. We term the locations of centers
of the wounded nucleons or the binary collisions as “sources,”
with the weight of the wounded nucleon wi = (1 − α)/2, and
the weight of the binary collision wi = α. A source emits
particles, according to a superposed distribution [9].

While for the one-body measures, such as the particle
multiplicities or spectra, only the one-body distributions matter
and correlations are irrelevant, the fluctuations measures are
expected to be sensitive to the NN correlations in the nucleon
distributions. These are examined in detail in the next section.

IV. RESULTS OF SIMULATIONS

In this section we compare the results of the Glauber cal-
culation initialized with the distributions of Refs. [1,2] (solid
lines in the figures), with uncorrelated distributions (dashed
lines), and with the distributions accounting for the hard-core
repulsion with the expulsion radius d = 0.9 fm (dotted lines).
The simulations are performed with GLISSANDO [9].

We note that in the case with no correlations at all we
simply use the Woods-Saxon parameters (2), while in the case
with the hard-core repulsion we need to start with a somewhat
more compact distribution, as the expulsion leads to swelling,
as explained in Ref. [9]. We find that starting the Monte Carlo
generation for 208Pb with

R = 6.44 fm, a = 0.549 fm, d = 0.9 fm (208 Pb)

(10)

leads to the one-body distribution with parameter values (2).
The two cases are compared in Fig. 1, where the Monte Carlo
points and the fitted curves overlap within the thickness of the
lines.

For 16O we find that the parameters

R = 2.487 fm, a = 0.493 fm, d = 0.9 fm (16 O)

(11)

yield a very exact reproduction for the Gaussian-correlation
case of Eq. (3), with the quality of the agreement similar to the
case of 208Pb of Fig. 1.

We stress that it is not true that the Monte Carlo generation
of the nuclear distributions with the hard-core repulsion leads
to too large radii. Simply, the effect must be compensated with
the shrinkage of the initial (“bare”) radius [9]. The applied
construction, with the shrunk “bare” one-body distributions,
is important, as that way all calculations presented in the
figures correspond to identical one-body distribution, and the
differences in results are caused entirely by the two-body
correlations, which differ in various methods.

A. Eccentricity

We start with a measure sensitive to the fluctuations, the
so-called participant eccentricity. This measure appears in
the studies of the event-by-event fluctuations of the initial
shape, in particular of its elliptic component [12–24]. The
effect is important, as the fluctuations lead to enhanced
eccentricity of the initial system and, as a result of the

subsequent hydrodynamic evolution, to enhanced elliptic flow.
The participant eccentricity is defined in each event as

ε∗ =
√(

σ 2
x − σ 2

y

)2 + 4σ 2
xy

σ 2
x + σ 2

y

, (12)

where σ 2
x and σ 2

y are the variances of the two transverse
coordinates and σxy is the covariance. Specifically, in each
event

〈x〉 =
∑

i wixi∑
i wi

, σ 2
x =

∑
i wi(xi − 〈x〉)2∑

i wi

(13)

and similarly for the y variable and the covariance. The index
i runs over all generated sources, and wi are the weights. The
quantity ε∗ has the interpretation of the eccentricity evaluated
event by event in a variable reference frame [21], rotated in
such a way that the eccentricity in a given event is maximized.

In Fig. 3 we show the dependence of the event-by-event av-
erage, 〈ε∗〉, on the number of wounded nucleons (determining
the centrality of the event). We note that the three calculations
are virtually indistinguishable, except for a tiny difference for
the most central collisions, where the uncorrelated case is a
few percentages higher. The same conclusions were reached
in the analogous study of eccentricity in Ref. [57].

Figure 4 shows the scaled standard deviation, �ε∗/〈ε∗〉,
obtained from our event-by-event analysis. We note a signif-
icant difference between the uncorrelated case, which has up
to 10% larger fluctuations at intermediate centralities, and the
cases with correlations. However, the calculations with the
realistic NN correlations and the hard-core correlations give
an indistinguishable result, with the two curves overlapping
within the statistical noise.

The short horizontal line at the most central events
corresponds to the theoretical value

√
4/π − 1 of Ref. [21],

following from the central limit theorem.

FIG. 3. (Color online) The average participant eccentricity, 〈ε∗〉,
vs. the number of wounded nucleons, Nw , obtained with the three
investigated nucleon distributions described in the text.
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FIG. 4. (Color online) The scaled standard deviation �ε∗/〈ε∗〉,
obtained from an event-by-event study. The short horizontal line at the
most central events corresponds to the theoretical value

√
4/π − 1

of Ref. [21] following from the central limit theorem. 208Pb-208Pb
collisions.

B. Multiplicity fluctuations

Next, we consider a quantity relevant for the multiplicity
fluctuations as measured in the NA49 experimental setup [25],
where the number of participants from the projectile nucleus is
determined via the VETO calorimeter. Significant fluctuations
of the number of sources may follow in this case from the
fact that even at a fixed number of the wounded nucleons in
the projectile, the number of wounded nucleons in the target
fluctuates due to the statistical nature of the Glauber approach.
In superposition models the scaled variance of the produced
particle, N , satisfies the equality

var(N )

〈N〉 = var(m)

〈m〉 + 〈m〉var(Ns)

〈Ns〉 , (14)

where m is the multiplicity of particle produced from a
single source and Ns is the number of sources [25]. Both
terms in Eq. (14) contribute to the measured number of
produced particles. We recall [58,59] that simple superposition
models with the effect of fluctuations of the target wounded
nucleons are not able to explain the data of Ref. [25], and
their proper description remains a challange. Nevertheless,
for the present purpose of analyzing the importance of
the NN correlations, the quantity serves its purpose. The
fluctuations of multiplicity in nucleus-nucleus collisions were
also investigated experimentally in Refs. [60–63].

In Fig. 5 we show the scaled variance of the total number
of sources defined in Eq. (9),

ω = var(Ns)

〈Ns〉 , (15)

plotted as a function of the number of wounded nucleons
in the projectile, NPROJ

w . We note a significant, about 20%,
reduction of ω when the two-body NN correlations are
included. However, again there is no noticeable difference
between the realistic (Gaussian) correlations and the hard-core
expulsion, as the two lower curves in the figure overlap.

FIG. 5. (Color online) The scaled variance of the number of
sources, ω, plotted as a function of the number of wounded nucleons
in the projectile, NPROJ

w , for 208Pb-208Pb collisions.

For the case of 16O-16O collisions, the corresponding results
are displayed in Fig. 6. Again, we note a very close agreement
between the cases of the Gaussian correlations of Ref. [1,2] and
the hard-core correlations with d = 0.9 fm. For other measures
of the fluctuations presented in this work for the 208Pb-208Pb
only, these conclusions are the same.

C. Size fluctuations

Finally, we look at the event-by-event size fluctuations,
namely the fluctuations of the variable

r =
∑

i

wi

√
(xi − 〈x〉)2 + (yi − 〈y〉)2. (16)

It was recently shown in Ref. [26] that the initial size
fluctuations are carried over via hydrodynamics and statistical
hadronization into the event-by-event transverse-momentum
fluctuations [27–42], where they lead to a natural description
of the Relativistic Heavy Ion Collider data for the measure
σdyn(pT ). In Fig. 7 we show the scaled standard deviation
of r . Once again, the presence of the NN correlations

FIG. 6. (Color online) Same as Fig. 5 but for 16O-16O collisions.
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FIG. 7. (Color online) The scaled standard deviation of the size
variable r of Eq. (16), plotted as a function of the total number of
wounded nucleons, Nw , for 208Pb-208Pb collisions.

reduces somewhat the fluctuations, while the realistic and
hard-core correlations with d = 0.9 fm give virtually the same
result.

V. IMPACT-PARAMETER STUDY

In theoretical calculation one uses the impact parameter b to
classify the centrality of the collision. Although this quantity
is not observed experimentally, it is of interest due to its
interpretational simplicity. In studies of fluctuations, however,
care is needed, as Nw and other measures fluctuate as functions
of b [64]. We first recall how Nw and its variance depend on
b, which is displayed in Figs. 8 and 9.

All studies of the previous sections can be repeated in
the function of b. As an example, in Fig. 10 we provide the
scaled standard deviation of the participant eccentricity in the
208Pb-208Pb collision, plotted as a function of b. The qualitative
conclusions are the same as in the discussion of Fig. 4.

FIG. 8. (Color online) Average number of the wounded nucleons
in the 208Pb-208Pb collision, plotted as a function of the impact
parameter.

FIG. 9. (Color online) Same as in Fig. 8 for the variance of the
number of the wounded nucleons.

VI. CONCLUSIONS

We have checked by carrying out explicit Glauber Monte
Carlo simulations with GLISSANDO [9], that the inclusion of the
central NN correlations influences the fluctuation measures in
relativistic heavy-ion collisions at a level of, say, 10–20%. We
have studied both heavy (208Pb) and light (16O) nuclei. Com-
parison of the realistic (Gaussian) correlations implemented
in Ref. [1] and the hard-core correlations, typically used in
the Glauber Monte Carlo codes, shows that they lead to the
same results when the hard-core expulsion distance between
the centers of nucleons is tuned to

d = 0.9 fm. (17)

Thus the main message for the practitioners of the Glauber
Monte Carlo models is that, at least for the investigated
observables, the implementation of the hard-core repulsion
with d given by Eq. (17), straightforward to implement in
Monte Carlo generators, leads to realistic predictions. We note
that the dependence of the results on the value of d is a sensitive

FIG. 10. (Color online) Scaled standard deviation of the partici-
pant eccentricity in the 208Pb-208Pb collision, plotted as a function of
the impact parameter.
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effect, as the excluded volume scales as d3. Importantly, the
one-body density is kept fixed with the help of appropriately
adjusting the distribution used in the Monte Carlo generator.

Certainly, the general method of Ref. [1] allows one to
implement channel-dependent NN correlations, as well as the
nuclear attraction, relevant at intermediate distances. The role
of these effects for the fluctuation measures in relativistic
heavy-ion collisions can be investigated in a manner similar
to that used in this work. In essence, every effect which
increases the “regularity” of the initial nucleon distributions

of the colliding nuclei, such as the considered central NN
correlations, will have the tendency of decreasing the event-
by-event fluctuations in nuclear collisions generated by the
Glauber models.
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