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Nonidentical-particle femtoscopy probes not only the size of the emitting system, but also the emission
asymmetries between particles of different masses, which are intimately related to the collective behavior of
matter. We apply the technique to simulations from the THERMINATOR + LHYQUID model of heavy-ion collisions
at

√
sNN = 200 GeV. We present predictions for all pairwise combinations of pions, kaons, and protons and

discuss their interpretation. We show that kaon and proton distributions are strongly influenced by flow: the
source gets smaller and shifted to the outside with growing pT , while for pions the shift is significantly smaller,
producing an emission asymmetry. We explain how particles coming from decays of hadronic resonances enhance
the asymmetry signal coming from flow, contrary to naive expectations. Emphasis is put on extracting this unique
information on the collective behavior of matter from nonidentical-particle correlations. We also present, in
detail, the technical aspects of the nonidentical-particle femtoscopy technique applied to data from heavy-ion
collisions. We list the sources of systematic errors coming from the method itself and the usual assumptions. We
describe robust analysis methods and discuss their limitations.
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I. INTRODUCTION

Femtoscopy has been used for more than 35 years [1,2]
to measure sizes of the systems created in nucleus-nucleus
collisions. Initially it was developed for analyzing the two-
particle correlations arising from wave-function symmetriza-
tion for pairs of identical particles [3] and was similar in
mathematical framework to the “HBT (Hanbury Brown and
Twiss) interferometry” used in astronomy [4–6]. Later it was
realized that similar correlations arise owing to final-state
interactions (FSIs; Coulomb and strong) between particles that
are not necessarily identical [7–11].

Femtoscopy of nonidentical particles provides unique
information: while identical-particle correlations usually only
measure the “size” of the emitting region (more precisely,
the second moments of the emission function), nonidentical
correlations can, thanks to the very fact that they correlate
particles that are not identical, also measure the relative
emission shifts (the first moments of the emission function)
[7–10,12–14].

The unique features of nonidentical-particle femtoscopy
was used in low-energy nuclear collisions to study the time
ordering of the emission of various nuclear fragments from
the compound nucleus [15–19]. This required measuring
time differences from several to hundreds of femtometers
per c [16–19].

In this work we focus on the applications of this technique in
collisions of ultra-relativistic heavy ions, specifically Au ions
in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory, although the discussion is also relevant
for lower-energy [in the Super Proton Synchrotron (SPS) at
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CERN] and higher-energy (in the Large Hadron Collider at
CERN) energy collisions.

One of the major discoveries at the RHIC has been the
observation of quark-gluon plasma, which was found to
behave collectively, very much like a fluid [20,21]. Hydro-
dynamic equations seemed to describe this behavior well in
the momentum sector. However, attempts to simultaneously
describe the space-time behavior measured by femtoscopy
have not been successful until recently. This failure was
commonly referred to as the “RHIC hydro-HBT puzzle”
[22–25]. Through a detailed analysis of the experimental data
and various improvements of the hydrodynamic description,
it was realized that certain assumptions had to be modified
to properly describe both sets of observables. The initial
condition was changed to one that uses a Gaussian initial
profile for the transverse energy density [26], which results
in faster development of the initial flow, compared to the
traditional one [27,28]. The equation of state used did not
exhibit a first-order phase transition but, rather, a crossover.
Detailed simulation of the resonance contribution in the later
stage of the collisions was carried out [26]. In addition, some
studies have suggested that the introduction of viscosity and
universal (pre-equilibrium) flow into the model may also play
an important role [29,30].

The hydrodynamic scenario produces specific space-
momentum correlation patterns, which are commonly referred
to as flow. The system created in the heavy-ion collision
expands rapidly outward, showing a very strong radial flow,
which is observed in the modification of the single-particle
inclusive pT spectral shape. In addition, in noncentral col-
lisions, the initial overlap region has an elongated (usually
described as “almond”) shape, and this spatial asymmetry
is converted to a momentum one in the final state. This
momentum asymmetry is observed as an elliptic flow v2 and
is the subject of very intensive theoretical and experimental
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studies; see Refs. [31] and [32] for recent reviews. However,
because of its origin, it is small in central collisions. This
is unfortunate, as it is in central collisions that we expect
to create the largest volume of deconfined matter, which we
would like to study. Both the pT spectra and the elliptic flow are
observables depending only on the momenta of the particles, so
their connection to space-time can only be indirectly inferred.
To access it directly we employ femtoscopic techniques. It
is argued that the fall of the “femtoscopic radii” with the
particle’s mT can be interpreted as a decrease in the “lengths of
homogeneity,” a direct consequence of radial and longitudinal
flow [33]. However, one might come up with alternative
explanations, involving temperature gradients that produce
similar dependencies [34]. In this work we show how the
collective flow present in hydrodynamic and transport models,
in addition to the effects just discussed, produces differences
in average emission points between particles of different
masses. We also describe how these emission asymmetries
can be accessed via nonidentical-particle femtoscopy [35].
Measuring such effects would enable us to eliminate scenarios
alternative to hydrodynamic expansion and provide a crucial
and strict test for the models. Results on π+-π− and π -proton
correlations have been reported previously by NA49 [35,36]
and the CERES experiment [37,38] at the SPS. The first results
on pion-kaon correlations have been reported by STAR [39].
Preliminary results on π -� correlations from STAR have also
been presented [40]. Proton-� correlations have also been
measured by STAR [41], but that analysis did not attempt to
extract emission asymmetries.

To properly simulate the emission asymmetries between
particles of different masses, we need a model that has all the
important features: a hydrodynamic phase, which produces
space-momentum correlations, and an hadronic phase, where
at least the hadronic resonance decays and propagation are
treated. In addition, the model should provide the space-
time freeze-out coordinates of particles, so that femtoscopic
calculations can be carried out. It should, as much as possible,
reproduce the available data on particle spectra and fem-
toscopy. Hydrodynamics-inspired “blast-wave” parametriza-
tion of freeze-out have been used to model asymmetries
between nonidentical particles [42]. That study nicely illus-
trated the connection between strong collective matter behav-
ior and asymmetries; however, it used simplified emission
functions and neglected resonance propagation and decay.
In this work we have chosen the THERMINATOR + LHYQUID

model, which we introduce in Sec. II. In Sec. III we describe
the particular set of simulations of heavy-ion collisions at
six centralities that we have carried out. We calculated the
system size and emission asymmetry for three pair types:
pion-kaon, pion-proton, and kaon-proton. We discuss the
origins of the asymmetry and provide the connection to the
space-momentum correlations coming from flow. We also
discuss other nonflow sources of emission asymmetries and
provide a quantitative estimate of all contributions.

Having emphasized the importance of the emission asym-
metries phenomenon, we describe the theoretical framework
of nonidentical-particle correlations in Sec. IV. Then we move
to the technical aspects of the measurement in heavy-ion
collisions in Sec. V. We argue that a specific mathemati-

cal representation of nonidentical correlation functions [the
spherical harmonics (SH) decomposition] shows remarkable
synergies with the analysis and maximizes the statistical
significance of the emission asymmetry signal. We describe the
measurement procedure that enables recovery of the properties
of the model emission function from the “experimental”
correlation function. In Sec. VI we test the robustness of
the procedure, list the assumptions and the approximations
that must be employed, and estimate the systematic error
coming from the technique itself. We show that the most
important contribution to this error is the correct estima-
tion of the fraction of non–femtoscopically correlated pairs
(traditionally called the “purity”). We analyze this effect
in detail and present purity estimates, based on our model
of choice, which can be directly used in the experimental
analysis.

Finally, in Sec. VII we use numerical simulations with the
THERMINATOR model to produce “experimental-like” corre-
lation functions, which we then analyze with the methods
presented earlier. We demonstrate that the method is able
to recover the theoretical input values. The results presented
in this section are the theoretical predictions for the overall
system size as well as the emission asymmetry for all
considered pair types and six centralities. They can be
immediately compared to the experimental results with a
minimal number of approximations and, therefore, minimal
systematic uncertainty.

II. LHYQUID + THERMINATOR MODEL

In this work we use what we call the standard approach,
consisting of ideal-fluid hydrodynamics followed by statistical
hadronization. Numerous calculations have been performed
in this framework, with the common difficulty [22] of
simultaneously describing femtoscopy and other signatures
in the data. More precisely, the RHIC HBT puzzle [22–25]
refers to problems in reconciling the large value of the elliptic
flow coefficient v2 with the identical-particle interferometry
in calculations based on hydrodynamics [43–47]. Recently, a
successful uniform description of soft observables at the RHIC
has been accomplished, including the femtoscopic radii, within
the standard approach [26]. The essential ingredients of this
analysis were a Gaussian initial condition for hydrodynamics,
an early start of the evolution, a state-of-the art equation of state
with smooth crossover, and the use of THERMINATOR [48] with
all resonances from SHARE [49] incorporated to carry out the
statistical hadronization at the freeze-out surface temperature
of 150 MeV. The interplay of these elements resulted in a
simultaneous description of the transverse-momentum spectra
of pions, kaons, and protons, the v2, and the femtoscopic
correlation radii of pions, including full centrality, kT , and
reaction plane dependence of azimuthally sensitive HBT
signatures [50].

In this section we describe the essential elements of
our method to the extent that they are necessary for the
presented results. More details concerning the hydrodynamics
are given in Refs. [26], [51], and [52], while the method
used for femtoscopic calculations has been presented in
Ref. [53].
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A. Initial condition

As reported in Ref. [26], the use of the initial condition for
hydrodynamics of the Gaussian form,

n(x, y) = exp

(
− x2

2a2
− y2

2b2

)
, (1)

where n is the initial energy density, while x and y denote
the transverse coordinates, leads to a much better uniform
description of the data for the pT spectra, v2, and pionic
femtoscopic radii compared to the use of the standard initial
condition from the Glauber model.

The width parameters a and b depend on centrality. To
estimate realistic values for them we run the GLISSANDO [54]
Glauber Monte Carlo simulations, which include eccentricity
fluctuations [55,56]. Then we match a2 and b2 to reproduce
the values 〈x2〉 and 〈y2〉 from the GLISSANDO profiles. Thus,
by construction, the spatial RMS radius of the initial condition
and its eccentricity are the same as those from the Glauber
calculation. Nevertheless, the shape is not the same. The
Gaussian profiles are sharper near the origin, which results in
a faster buildup of the Hubble-like flow in the hydrodynamical
stage.

The Glauber calculations, needed to obtain the a and b

parameters, correspond to the mixed model [57], where the
number of produced particles is proportional to (1 − α)Nw/

2 + αNbin, with Nw and Nbin denoting the number of wounded
nucleons [58] and binary collisions, respectively. The pa-
rameter α = 0.145 for the top RHIC energy [59,60]. The
inelastic nucleon cross section is 42 mb for the RHIC [61].
The simulations incorporate the fluctuations of orientation
of the fireball (the variable-axis geometry), which result in
increased eccentricity compared to the fixed-axis geometry
[62]. Finally, the expulsion distance of 0.4 fm is used in the
generation of the nuclear distributions. A source-dispersion
parameter of 0.7 fm is used. It describes the random displace-
ment of the source from the center of the wounded nucleon or
the binary-collision position [54].

The values of the a and b parameters for various centralities
and the corresponding eccentricity parameters,

ε∗ = b2 − a2

a2 + b2
, (2)

are reported in Table I.
The energy-density profile, Eq. (1), determines the initial

temperature profile via the equation of state [52]. The initial
central temperature Ti is a parameter dependent on centrality.

For RHIC calculations it is adjusted to reproduce the total
particle multiplicity.

B. Hydrodynamics

The hydrodynamics equations used in this work are de-
scribed in greater detail in Refs. [51] and [52]. We use inviscid
(ideal-fluid), baryon-free, boost-invariant hydrodynamics. The
equations are written in terms of the velocity of sound cs ,
whose temperature dependence encodes the full information
on the equation of state of the system. We incorporate the
known features of cs(T ), which, at high temperatures, are
given by the lattice QCD calculations [63]; at a low T they
follow from the hadron gas including all resonances, while at
an intermediate T an interpolation is used. No sharp phase
transition, but, rather, a smooth crossover, is built in, in
accordance with the present knowledge of the thermodynamics
of QCD at zero baryon chemical potential. The plot of the
resulting cs(T ) is given in Ref. [26].

The initial proper time of the start of hydrodynamics is
fixed at the value

τ0 = 0.25 fm. (3)

This early start of hydrodynamics allows for a fast generation
of transverse flow, similar to the effect described in Ref. [30].

C. Freeze-out

Hydrodynamic evolution proceeds until freeze-out occurs,
where the assumed condition for the universal freeze-out
temperature is Tf = 150 MeV. This value is somewhat lower
than in several fits of the chemical freeze-out [64–66];
however, it agrees with the recently made global fits to particle
transverse momentum spectra in Refs. [67] and [68], where a
value of about 150 MeV was obtained for the kinetic freeze-out
temperature.1

THERMINATOR is used to carry out statistical hadronization
at the freeze-out hypersurface according to the Cooper-Frye
formulation [69]. According to the assumed single-freeze-out
approximation, identifying the kinetic and chemical freeze-
out temperatures, rescattering processes after freeze-out are
neglected. We have checked that the collision rate after freeze-
out is moderate for the hypersurfaces applied in this work.

1The use of this lower freeze-out temperature requires the intro-
duction of the strangeness inequilibrium factors γs to reproduce the
abundances of strange particles [67].

TABLE I. Shape parameters a and b in Eq. (1) for various centrality classes obtained by matching 〈x2〉 and 〈y2〉 to GLISSANDO simulations,
the variable-axis eccentricity ε∗, and the central temperature Ti .

RHIC Au + Au at
√

sNN = 200 GeV, at c (%)

0–5 5–10 10–20 20–30 30–40 40–50 50–60 60–70 70–80

a (fm) 2.70 2.54 2.38 2.00 1.77 1.58 1.40 1.22 1.04
b (fm) 2.93 2.85 2.74 2.59 2.45 2.31 2.16 2.02 1.85
ε∗ 0.08 0.12 0.18 0.25 0.31 0.36 0.41 0.46 0.52
Ti (MeV) 500 491 476 460 429 390 344 303 261
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We estimate it by considering a pion straight-line trajectory
and counting the number of encounters with other particles
closer than the distance corresponding to the pion-hadron cross
section. The average number of these trajectory crossings is
about 1.5–1.7 per pion. This shows that the single-freeze-out
approximation [65] works reasonably well for the present
case. At a more detailed level, one could use hadronic
afterburners to model the elastic collisions [70–72] or attempt
the hydrokinetic approach implemented in Refs. [27], [28],
and [73].

D. Two-particle femtoscopy

The method used for femtoscopic analysis of the THER-
MINATOR model output was described in detail in Ref. [53].
The features of the formalism specific to nonidentical-particle
correlations are described in Sec. IV. Their discussion is one
of the main points of this work.

III. MODEL PREDICTIONS FOR THE RELATIVISTIC
HEAVY ION COLLIDER

In this section we discuss the general trends that are
expected to emerge in the nonidentical correlations. We
also discuss their physical origins and the possible physics
conclusions that can be drawn when they are observed
experimentally. Later in this paper, we see how these
trends manifest themselves in the calculations and we
test whether it is indeed possible to observe them in the
experiment.

Following convention, we assign the the symbol x for the
emission points of single particles, usually used as a vector, x,
or as a vector magnitude, x. The momentum of a particle is
denoted p. The single-particle velocity is β. We also define the
pair variables. Relative separation between particles (vector)
is r = x1 − x2. We use the out-side-long coordinate system,
where the long or longitudinal direction is along the beam
axis, the out or outward direction is along the pair total
transverse momentum, and the side or sideward direction is
perpendicular to the other two. In a longitudinally comoving
system (LCMS) the pair longitudinal momentum vanishes:
p1,long = −p2,long. In the pair rest frame (PRF; also called the
pair center of mass), the pair center of mass rests: p1 = − p2.
In our convention all pair variables in PRF are marked with
an asterisk. The pair relative half-momentum is denoted k∗
and is equal to the first particle’s momentum in the PRF. The
pair total momentum is denoted P (or sometimes K , which
is traditionally used in identical-particle femtoscopy). All
single-particle coordinates as well as pair relative variables are
designated by lowercase letters. In contrast, we use uppercase
letters to denote the parameters of distributions. In particular,
we call the variance or the two-particle separation distribution
R. We call the mean of this distribution µ (with an L

superscript if they are defined in an LCMS). We refer the reader
to the Appendix for explicit mathematical formulas as well as
relations between source characteristics in the two reference
frames.

The discussion that follows is based on an example
calculation from the THERMINATOR + LHYQUID model, done
for parameters tuned to the central (0–5%) RHIC Au + Au

FIG. 1. Diagram of the particle’s velocity β decomposition into
the flow βf and thermal βt components.

collisions at
√

sNN = 200 GeV. Whenever we mention RHIC
Au + Au calculations we mean simulations at the top RHIC
energy.

A. Emission asymmetries

Hydrodynamic evolution of matter implies strong space-
momentum correlations in particle emission. Particles emitted
from a given fluid cell will have a velocity that is a combination
of two components: the fluid cell velocity βf [taken from the
flow field uµ(r)] and the thermal velocity β t . This is shown
schematically in Fig. 1.

The system created in a heavy-ion collision, when modeled
in hydrodynamics, naturally develops a collective behavior—
the radial flow in the transverse plane; that is, matter is
collectively moving “outward” from the central axis of the
source to the outside. In essence this is an x-p correlation:
the direction φf of the fluid element’s transverse velocity is
aligned with its transverse position vector direction φr . When
the fluid element emits particles, all of them will have the
same common flow velocity βf taken directly from uµ. To
this velocity one adds a thermal component βt , which has a
random direction φt in the rest frame of the fluid element. It
will dilute the x-p directional correlation. Let us now consider
the mean emission point of a single particle, more specifically
its component parallel to the velocity [74]:

xout = xβ

β
= r(βf + βt cos(φt − φf ))

β
. (4)

We analyze its average over particles at a fixed β. If we assume
a Gaussian density profile with radius r0 and linear transverse
velocity profile βf = β0r/r0, then we obtain [74]

〈xout〉 = 〈rβf 〉〈√
β2

t + β2
f

〉 = r0β0β

β2
0 + T/mt

, (5)

where we have explicitly given the formula for the velocity
component coming from temperature. Pions and kaons emitted
from the fluid element will have the same common flow
velocity βf (and different momenta). They will also get a
random thermal kick, depending on the momentum. For a
pion the same pT kick will mean a much larger velocity βt
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kick than for a kaon. The final velocity direction of a
pion will be, on average, less correlated with its emission
position than that of a kaon. We assume that the spatial
characteristics of pion and kaon emission are the same and
the flow velocity is also the same. Hence, for both pions and
kaons, 〈rβf 〉 is the same. The only difference is the T/mT

component, which is smaller for kaons. Therefore, 〈xout〉 for
pions is smaller than 〈xout〉 for kaons. To summarize: when
correlating pions and kaons with the same velocity (or more
generally, two nonidentical particles of different masses, but
the same velocity), pions (lighter particles) appear to be, on
average, emitted closer to the center of the system than kaons
(heavier particles). Consequently, hydrodynamics predicts
a negative emission asymmetry µ

light,heavy
out = 〈r light,heavy

out 〉 =
〈x light

out − x
heavy
out 〉 between nonidentical particles of different

masses.2

Let us discuss various limits in Eq. (5). When there is
no flow (βf = 0), all average emission points are 0 and the
asymmetry vanishes. If the temperature is very high compared
to the flow velocity (or more generally the random component
dominates over the correlated one), the average emission point
is 0 (center of the source). If this happens for both particles,
the asymmetry is 0. If it happens for only one of them, the
asymmetry exists. If the flow velocity strongly dominates over
temperature, and particles are emitted from the same system,
both average emission points are strongly shifted by the
same amount, and consequence the asymmetry is again small.
From the discussion we see that the existence of emission
asymmetry is not trivial and only arises in a system where both
random(thermal) and correlated(flow) velocities exist and are
comparable in magnitude.

We illustrate the consequences that this mechanism has
for the particle’s emitting regions using the THERMINATOR

2We have chosen the convention of always taking the lighter particle
to be first in the pair.

calculations for central Au + Au collisions at the top RHIC
energy as an example. First, we focus on the “primordial”
particles, that is, particles coming directly from the hydrody-
namical stage. Let us consider two variables:

xout = x pT /pT ,
(6)

xside = x × pT /pT .

The first one is the component of the particle’s transverse
emission vector parallel to the particle’s transverse momen-
tum; the other is the perpendicular component. In Fig. 2(a)
the distributions of these emission components are shown for
primordial kaons. A strong correlation is seen: all particles
moving “upward” (to the positive out direction) are emitted
from the positive xout part of the source. This focusing of the
particle’s emission has two distinct effects: the overall size of
the emitting region shrinks in both the out and the side direction
and the average emission position shifts in the out direction
but not in the side direction. Looking at Fig. 3(a), one sees the
same effects, but to a much smaller degree, for pions with the
same velocity: the size is shrunk, but not as much, the average
emission position is also shifted but by a smaller amount.
The exact numerical values for the “size” (or variance) and
“shift” (or mean) of these distributions are reported in Table II.
Figure 4 shows analogous pictures for protons. As expected,
the effect is the strongest there, as protons have almost twice
the mass of kaons.

From the preceding discussion, and the numerical values in
Tables II and III, one immediately sees that hydrodynamics
produces two distinct trends in femtoscopic observables.
(a) The size of the emitting system gets smaller with increasing
pT of the particle. This effect is well understood theoretically
(the so-called “lengths of homogeneity”) and universally
observed experimentally in femtoscopy in heavy-ion collisions
(“mT scaling”) [24]. (b) Average emission points of particles
with different pT values (e.g., with the same velocity but a
different mass) are different, and this difference is well defined:

TABLE II. Single-particle source parameters (mean 〈r〉 and RMS X) for three particle types in
selected kinematic regions.

Particle β pT (GeV/c) Xout (fm) 〈xout〉 (fm) Xside (fm) 〈xside〉 (fm)

Primordial particles
K 0.6–0.8 0.42–0.56 2.68 4.46 3.25 0.03
π 0.6–0.8 0.120.16 3.47 2.85 3.66 −0.02

π 0.95–0.97 0.42–0.56 2.56 4.81 3.31 −0.01
p 0.6–0.8 0.80–1.06 2.02 5.40 2.82 −0.05
π 0.6–0.8 0.12–0.16 3.47 2.85 3.66 −0.02
π 0.985–0.991 0.80–1.06 1.88 5.68 2.90 0.00

All particles
K 0.6–0.8 0.42–0.56 2.99 4.97 3.55 0.00
π 0.6–0.8 0.12–0.16 4.52 1.73 4.72 −0.03
π 0.95–0.97 0.42–0.56 2.94 5.03 3.20 −0.01

p 0.6–0.8 0.80–1.06 2.31 6.12 2.88 −0.02
π 0.6–0.8 0.12–0.16 4.52 1.73 4.52 −0.02
π 0.985–0.991 0.80–1.06 2.19 6.20 3.08 −0.01
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TABLE III. Mean emission points and pair asymmetries for pions, kaons, and protons with velocity (0.6, 0.8) in central
Au + Au simulation. Averaging is done over all pairs in this range. See text for the explanation of “flow” and “scrambled.”

〈xπ
out〉 〈xK

out〉 〈xp
out〉 〈xπ

out〉 − 〈xK
out〉 〈xπ

out〉 − 〈xp
out〉 〈xK

out〉 − 〈xp
out〉

Flow
Primordial 2.83 4.47 5.61 −1.64 −2.78 −1.14
Nonprimordial 1.34 7.35 9.19
All 2.00 5.54 6.69 −3.54 −4.69 −1.15

Scrambled
Primordial −0.04 0.00 −0.03 −0.04 −0.01 0.03
Nonprimordial 0.88 3.17 4.20
All 0.48 1.20 1.28 −0.72 −0.80 −0.08

lighter particles appear to be, on average, emitted closer to the
center of the source.3

3Note that the values in Table II are calculated vs. the single-particle
momentum direction, which is only the approximation of the out
direction. Values in Table III are calculated vs. the proper out
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FIG. 2. (Color online) Emission points of particles with a velocity
in (0.6, 0.8), their direction pointing “upward,” for kaons, central
Au + Au. (a, c, e) Standard simulation results; (b, d, f) with flow
correlation “scrambled” (see text for details). (a, b) Primordial
particles; (c, d) particles coming from resonance decays; (e, f) all
particles.

The second trend is the main focus of nonidentical-particle
analysis. It so happens that nonidentical-particle femtoscopy
correlates particles with the same velocity but possibly with
different masses. Moreover, it has a unique feature of being

direction: the total momentum of the pair. Therefore small differences
between the shift values in the two tables are to be expected.
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FIG. 3. (Color online) Emission points of particles with a velocity
magnitude in the range (0.6, 0.8), their direction pointing “upward,”
for pions, central Au + Au. Notation is the same as in Fig. 2.
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able to measure not only the “size” (more precisely, the second
moment of the two-particle distribution—the variance) but also
the “shift” (i.e., the first moment of the distribution—the mean)
between average emission points. It is therefore able to directly
test the predictions of the hydrodynamic model with respect
to the x-p correlations. We would like to emphasize that
this is the most direct and unambiguous signal of collectivity
available to femtoscopy. The mT scaling, which is predicted by
hydrodynamics, can also be explained by other mechanisms
not requiring collectivity (e.g., “temperature gradients” [34]);
but no mechanism is known that would produce such specific
emission asymmetries with no collectivity.

The asymmetry is predicted to arise only in the out
direction. The side asymmetry is 0. It can also be shown that
for rapidity symmetric systems of a collider, such as the RHIC,
when the target is identical to the projectile, the longitudinal
asymmetry is also expected to vanish.

B. “No directional correlation” test

In the previous section we have argued that the correlation
between the spatial emission angle φr and the particle’s
velocity direction φf is responsible for the emission asymme-
tries. We tested this argument by performing a calculation in
which we intentionally broke this correlation, to show that in
such a case no asymmetries arise. We take each primordial
particle separately. From its original transverse emission
coordinates (xo, yo), we calculate its transverse emission radius
r and angle φr . Then we randomize the angle φr , but keep
the emission radius r unchanged, and calculate the new
“scrambled” emission point (xs, ys). If the particle is unstable
and consequently decays, the emission points of all daughter
particles are shifted by the same amount, calculated for the
parent particle (xs − xo, ys − yo). Note that the momentum
observables are not affected.

Figures 2–4 show the effect of this procedure on primordial
particles. As expected, the average emission point of all
particle types is now at (0, 0), and the asymmetry between
particles of different masses, listed in Table III, is 0. Our claims
are confirmed: the model with no directional correlation shows
no asymmetry.

C. Importance of resonances

The LHYQUID + THERMINATOR model assumes that the
evolution of the heavy-ion collision proceeds in stages. After
the initial nonequilibrium phase there is a collective phase,
that can be well described by hydrodynamic equations, with
the equation of state assuming the existence of quark-gluon
plasma. However, at some point the system becomes so dilute
that the continuous medium description of hydrodynamics is
no longer viable and one converts the system to hadronic
degrees of freedom: the THERMINATOR model does it via the
von Neumann sampling of the probability distribution obtained
from the Cooper-Frye formula. All known resonances are the
degrees of freedom in the hadronic phase. Their abundances
are well described by chemical models, and if one trusts
these calculations, then at least two-thirds of the observed
pions do not come from the original hydrodynamic phase (the
so-called primordial particles) but are daughters of resonances.
Additionally, all resonances have their intrinsic lifetime, so
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FIG. 4. (Color online) Emission points of particles with a velocity
in (0.6, 0.8), their direction pointing “upward,” for protons, central
Au + Au. Notation the same as in Fig. 2.

they travel some distance before decaying—hence they will
certainly modify the space-time picture of particle emission. It
is clear that a careful and detailed simulation of the resonance
propagation and decay (e.g., as implemented in THERMINATOR)
is a critical feature of the model, which aims to describe
femtoscopic observables. Also, the relative abundances and
decay momenta of resonances producing pions, kaons, and
protons as final particles are obviously quite different; so,
the feature is even more important for nonidentical-particle
correlations, where we study relative differences between
various particle types.

Let us first qualitatively consider a resonance decay process.
We have the original resonance, produced as a primordial par-
ticle. Its emission follows the common “flow” x-p correlation,
as for any other particle. Resonances are usually quite heavy, so
we expect this correlation to be strong. The resonance travels
some distance with the original velocity; this enhances the
x-p correlation. After some random time the decay process
occurs. Two (or three) particles are created at the decay point.
We note the similarity between the resonance decay process
and the emission from the fluid element. The daughters of
the resonance will have a “common” velocity: this time it is
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not the fluid element’s velocity, but simply the resonance’s
velocity. And they will have a “random” component—the
“decay momentum” of the given decay channel. And again, the
random component will matter more for the lighter particle:
the velocity that corresponds to the fixed “decay momentum”
will be larger for the lighter particle. One can imagine two
scenarios. If the decay momentum of the given decay channel
is large, compared to the daughters’ mass, then the daughters’
emission direction will be randomized, and the common x-p
correlation will be lost. In contrast, if the decay momentum
is small, the correlation will be preserved (or, in other words,
the daughter particle will travel in roughly the same direction
as the parent) or even enhanced, owing to the additional x-p
correlation resulting from resonance propagation.

From the preceding description one concludes that the
resonance process will induce the space-momentum cor-
relation in a way similar to the collective flow; so, one
can ask if it could be an alternative mechanism produc-
ing such asymmetries. However, qualitative expectations for
values of the asymmetries or even general trends are not
immediately obvious. They will nontrivially depend on the
relative abundances of resonances and their daughters, as
well as particular values of decay momenta in specific decay
channels. The fact that some resonances decay in cascades
makes it even more complicated [75]. Moreover, the original
primordial resonances will have a natural x-p correlation
coming from the earlier hydrodynamic phase. One then faces
a quantitative problem: Do the resonance decays introduce
emission asymmetries on their own, independent of flow
asymmetries? And if yes, how big are they, compared to the
asymmetries coming from the flow? In particular, are they
small enough that one can still safely interpret the asymmetry
observed in the experiment as coming from collective behavior
such as flow?

To answer these questions a detailed simulation is needed,
in particular, one that has intrinsic x-p correlations coming
from flow (preferably with the possibility to switch them off)
and that incorporates all known resonances, together with the
state-of-the art knowledge of their masses and decay channels.
From this description it is clear that the THERMINATOR model is
perfectly suited for the task. In addition, we use the scrambling
procedure described in the previous section to switch off the
x-p correlations coming from flow, to estimate the asymmetry
coming from the decay processes alone.

Let us see the effect of resonance decays on the properties
of the emitting regions. In Figs. 2(a), 3(a), and 4(a) the
emission points of all particles (both primordial and from
resonances) are shown, while Table II reports the numerical
values of sizes and shifts. The resulting asymmetries are listed
in Table III. We consider the size of the system first. As
expected, the overall size is larger: this is naturally expected, as
the resonances travel some distance before they decay. The mT

scaling seems to be preserved. In general the trend is consistent
with previous studies of resonance influence on femtoscopic
observables [53,75] and agrees with the natural expectations.
Less trivial and more interesting effects are visible in the
average emission points. A qualitatively different effect is
seen for pions than for kaons and protons. We first inspect
the emission points for particles coming from resonances only

(no primordial ones), shown in Figs. 2(c), 3(c), and 4(c). For
pions the average emission point is shifted less from the center
for resonance daughters than for primordial ones. Apparently
the first scenario, described previously, is in effect here: the
decay momenta of the resonances producing pions are so
large, compared to the pion mass, that they completely wash
out the original flow x-p correlation. In contrast, for both
kaons and protons the resonance daughters are shifted more
from the center than primordial particles. This time the second
scenario is in effect: the decay momenta are small compared
to the particles’ masses, so small, in fact, that they are not
even able to counter the additional x-p correlation coming
from resonance propagation. A more detailed discussion of
this effect, with examples of particular resonances and decay
channels for pions and kaons, is given in Ref. [76]. The effect
persists when one takes all particles, primordial and resonance
daughters, together. Both effects collaborate in enhancing the
pion-kaon and pion-proton asymmetries:〈

rπK
out

〉 ≈ 〈
xπ

out

〉 − 〈
xK

out

〉
,

(7)〈
r

πp
out

〉 ≈ 〈
xπ

out

〉 − 〈
x

p
out

〉
,

while the kaon-proton asymmetry stays rather similar to the
primordial-only case (and small):〈

r
Kp
out

〉 ≈ 〈
xK

out

〉 − 〈
x

p
out

〉
. (8)

We compare the source distributions on the left side in
Figs. 2–4 to the ones on the right, where the scrambling
procedure was applied. The numerical values for asymmetries
are listed in Table III. First, let us focus on pion-kaon and
pion-proton pairs. As already discussed, scrambled primordial
particles show no asymmetry. Nonprimordial particles do show
some, but it is still significantly lower than that of non-
scrambled ones. This shows that for nonprimordial particles
both sources of asymmetry are important: the original x-p
correlation of the parent particle and the additional asymmetry
from the decay process. However, the former dominates. A
critical test is the comparison of asymmetries for all particles
between the normal flow and the scrambled scenarios, as this is
the observable measured in the experiment. As the simulation
shows, the asymmetry that can be attributed solely to the trivial
resonance decay processes can account for only 20% (17%) of
the total asymmetry produced in central Au + Au collisions at
the top RHIC energy for the pion-kaon(pion-proton) pair. For
kaon-proton pairs the additional asymmetry produced by the
resonance decays is negligible.

In summary, we have shown that resonance decays do not
dilute but, rather, enhance the asymmetry signal for pion-kaon
and pion-proton pairs. At the same time, even though the
resonance decay process can potentially be an independent
source of emission asymmetry, we have shown, by detailed
calculations, that under realistic conditions such asymmetry
is less than a quarter of that produced by flow. Therefore our
original expectation holds: if significant emission asymmetry
is observed in pion-kaon and pion-proton correlations in
the experiment, it favors the explanation of strong x-p
correlations in the emitting system, such as those produced
by hydrodynamic radial flow.
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D. Flow-versus-time asymmetries

As noted in Sec. I, the nonidentical-particle correla-
tions technique was initially developed to measure mainly
the emission time differences between various particle
species. Only later was the connection to radial flow
noted [9,35].

In Au + Au collisions one expects intrinsic time differences
for at least two reasons. The reader is referred to Ref. [50],
where the evolution of the average emission times with the
particle’s pT is discussed. It is noted there that, owing to the
particular features of the hydrodynamic emission function,
particles with a larger pT were, on average, emitted earlier. In
addition, studies with the “blast-wave” parametrization [42]
showed that a time difference between particles of different
masses arises in boost-invariant models (the influence of the
violation of boost invariance on the time and longitudinal
shifts is discussed in Ref. [74]). In our case both effects would
contribute to the additional asymmetry in the PRF:

r∗
out = γt (rout − βt
t) , (9)

which would go in the same direction as the spatial one coming
from radial flow. Even though it cannot be directly correlated
with the radial flow, it is still very much hydrodynamic in
nature and we do not consider it as an alternative, noncollective
explanation of the asymmetry.

However, the resonance decay process can also introduce
additional time asymmetries, as resonance decays occur with
a certain time delay, and if some particles are more abundantly
produced by resonances than others, asymmetries may arise.
In contrast to the effect discussed in the previous paragraph,
these time delays are not hydrodynamic in nature and should
be treated as alternative sources of asymmetry. Moreover, one
expects pions to be most abundantly produced by resonance
decays, which would mean that they would appear to be, on
average, produced later than kaons and protons, producing
asymmetry in the same direction as the flow. Clearly the matter
requires careful quantitative study.

Figures 5(a) and 5(b) show the time and space emission
asymmetries. One sees that both are present and are signifi-
cant. Resonance decays modify both distributions and add a
complication of long-range tails. Therefore, the simple mean
of a distribution is no longer a good variable to characterize

TABLE IV. Time and space asymmetries (from the fits to the
distributions around their peaks) for central Au + Au collisions. PRF
values are indicated by the asterisk.

〈rout〉 〈γt 〉〈rout〉 〈
t〉 −〈βt 〉〈γt 〉〈
t〉 〈r∗
out〉

πK

All −3.3 −5.0 2.7 −3.0 −8.0
Primordial −1.6 −2.4 1.5 −1.7 −4.1
πp

All −4.0 −5.7 3.8 −3.5 −9.2
Primordial −2.4 −3.4 2.1 −2.0 −5.4
Kp

All −0.8 −1.1 0.9 −0.6 −1.7
Primordial −1.0 −1.3 0.5 −0.4 −1.7
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FIG. 5. (Color online) Pion-kaon emission functions in an LCMS
for (a) space and (b) time components, combined into the observable
asymmetry (c) in the PRF. Circles (red) are for all particles; squares
(blue) for primordial particles only.

such asymmetries. One is forced to use the mean values of
the functional forms fitted to the distributions around the
peak. Table IV reports a summary of these fits. We see
that even for the primordial particles only, there is already
a time difference, although it is smaller than the space
one. Introducing resonances increases the time asymmetry.
Evidently the expected effect is seen. Comparing the values
in the PRF we take the difference between the “all” and the
primordial cases for the time asymmetry as an estimate of how
much time asymmetry the resonance decays introduce. For
both pion-kaon and pion-proton pairs the “nonhydrodynamic”
asymmetry coming purely from resonance time delay is less
than 15% of the predicted overall asymmetry. For kaon-proton
pairs it is less than 25%. Again, the flow asymmetry dominates
the calculated asymmetry signal.

E. Expectations for qualitative trends

Following the discussion in the previous subsections, one
can formulate several predictions of expected qualitative
trends. We consider pions, kaons, and protons in specific
pT windows, corresponding to the acceptance of the STAR
experiment at the RHIC. This means that the velocities of these
particles will be fixed, and one may assume that the same pions
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will be correlated with kaons for the pion-kaon correlation
and with the protons for the pion-proton correlation. Because
we are correlating particles with similar velocities, we will be
correlating very low-pT (≈0.1 GeV/c) pions with medium-pT

kaons (≈0.5 GeV/c) and moderate-pT protons (≈1 GeV/c).
We give a detailed relation between single-particle and two-
particle sizes in the Appendix. In terms of the observables
themselves, that is, the two particle variances, one expects that
RπK and Rπp will be similar and large, as they are dominated
by the large low-pT pion size. In contrast, RKp is expected to
be significantly smaller.

The asymmetries show a common feature, that is, by the
definition in Eqs. (7) and (8) (the lighter particle always taken
as first), they are all negative: this reflects the fact that lighter
particles are expected to be emitted closer to the center of the
system than heavier ones.

As for the relations between asymmetries, hydrodynamics
naturally predicts that the µπp will be the largest, µπK will be
of a similar magnitude but smaller, and µKp will be much
smaller than the other two. It can also be shown that the
following relation should hold:

µπp = µπK + µKp. (10)

The asymmetries for all particles for pion-kaon and pion-
proton pairs should be significantly different than for primor-
dial particles only, while for kaon-proton pairs the difference
should be small.

In Figs. 6, 7, and 8 the predicted system size and emis-
sion asymmetry for pion-kaon, pion-proton, and kaon-proton
pairs, respectively, calculated by LHYQUID + THERMINATOR,
are shown. All the expected trends mentioned in this section
are confirmed.
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FIG. 6. (Color online) (a) Pion-kaon overall radius and
(b) emission asymmetry in the PRF as a function of centrality for
Au + Au collisions at

√
sNN = 200 GeV. Filled symbols represent

all particles; open symbols, primordial particles only. Circles denote
same-sign pairs; triangles, opposite-sign pairs.
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FIG. 7. (Color online) (a) Pion-proton overall radius and
(b) emission asymmetry in PRF as a function of centrality. Filled
symbols represent all particles; open symbols, primordial particles
only. Squares denote same-sign pairs; triangles and diamonds,
opposite-sign pairs.

F. Centrality dependence

We first consider the centrality dependence of the system
size. The assumed initial conditions have a clear dependence:
the system size and initial temperature grow with Npart; both
should result in larger sizes throughout the evolution. The
hydrodynamic evolution assumes identical equation of states
and identical freeze-out temperatures for all centralities, so
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FIG. 8. (Color online) (a) Kaon-proton overall radius and
(b) emission asymmetry in the PRF as a function of centrality. Filled
symbols represent all particles; open symbols, primordial particles
only.
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FIG. 9. (Color online) The emission asymmetry scaled by the
overall system size in the PRF. Filled symbols represent all particles;
open symbols, primordial particles only. Circles denote pion-kaon
pairs; squares, pion-proton pairs; and stars, kaon-proton pairs.

there is no reason to expect that this dependence will be
altered in the final state. Also, calculations for identical pions
show the same trend. Finally, all available experimental data,
including pion, kaon, and proton femtoscopy, show the same
trend. Therefore an increase in the system size with Npart is
expected.

The asymmetry is the result of a hydrodynamic evolution.
As already mentioned, the parameters of the evolution do not
change with centrality, only the initial conditions. Because
the chemical properties of matter do not depend on centrality
either, the resonance decay phase is not expected to be very
different, giving an enlargement of the system size by a
constant amount. In contrast, as the collisions become more
peripheral, the initial overlap region shrinks, so one expects
that the long-range resonance corona will become relatively
more important. Because we know that the overall size of the
system grows with centrality, the absolute value of asymmetry
will also grow. The ratio of asymmetry to the system size is
shown in Fig. 9, and indeed we can see that the scaling of µ

with R∗
av holds well for all centralities and all pair types, for

both all and primordial-only particles.

IV. NONIDENTICAL-PARTICLE FEMTOSCOPY
FORMALISM

In femtoscopy one aims to measure the space-time con-
figuration of the emission process in hadronic collisions by
analyzing the specific behavior of the two-particle correlation
function. A natural variable versus which this correlation is
measured is half of the generalized pair relative momentum k∗,
as opposed to analyses focused on event structures, which use,
for example, azimuthal angle and pseudorapidity differences.
k∗ is calculated in the PRF, so it is also the momentum of
the “first” particle of the pair in the PRF. The particles in the
pair are different, so it is important to define which one is
“first.” Later we give the conventions that we use in this paper.
Femtoscopy also requires a precise knowledge of particle type,
which means that experiments intended to do such an analysis
must have a good particle identification capability.

The correlation function is defined as

C( pa, pb) = P2( pa, pb)

P1( pa)P1( pb)
, (11)

where P2 is the conditional probability of observing a particle
with momentum pb if a particle of momentum pa is also
observed, while P1 is the simple probability of observing a
particle with a given momentum. Note that this definition is
general and applies equally well to the femtoscopic correlation
function and to other two-particle correlations, for example,
event structure ones.

The experimental femtoscopic correlation function is a
specific form of Eq. (11), written as

C(k∗) =
∫

A( pa, pb)δ
(
k∗ − 1

2 ( p∗
a − p∗

b)
)
d3pad

3pb∫
B( pa, pb)δ

(
k∗ − 1

2 ( p∗
a − p∗

b)
)
d3pad3pb

≡ A(k∗)

B(k∗)
, (12)

where A( pa, pb) is the distribution of correlated pairs (i.e.,
both particles coming from the same event) of particles of
types a and b, and B( pa, pb) is the same distribution, but the
particles are not correlated (i.e., they come from two different
events). Note that the argument of C is changed to half of the
pair relative momentum k∗. Also note that with this definition
the correlation function will contain not only femtoscopic
correlations, but also all other eventwide correlations projected
to the two-particle space. These include the elliptic flow v2,
global event energy and momentum conservation, resonance
decay correlations (if a and b are different and could be
products of the decay of a given resonance, for example,
products of the 
++ resonance in the π+-p correlation
function), residual correlations (remnants of the femtoscopic
correlations between parent particles, which decayed weakly
into the particles of interest, for example, residual correlations
between � and p feeding into the p–p correlations), jets, etc.
There are numerous experimentalist recipes for constructing B

in such a way that these correlations are included there. In that
case, dividing A and B also divides out the correlations. One
should also correct for other nonfemtoscopic effects, so that
one is left with a pure femtoscopic correlation in C. The latter
is desirable, as it is the femtoscopic-only effect that is usually
computed in models. But such correction procedures are never
fully effective, so one must take this into account when
comparing the “compound” correlation functions from the
experiment with the “pure” femtoscopic correlation function
from models. The details of such procedures are clearly
experiment dependent and are beyond the scope of this paper.
We only note that some models may include the effects of
global correlations (e.g., elliptic flow and energy-momentum
conservation), so they can be used to model such effects. We
discuss how this can be done later.

In models one defines the correlation function via the
single- and two-particle emission functions:

SA(x1, p1) =
∫

S(x1, p1, x2, p2, . . . , xN , pN )

× dx2dp2 · · · dxNdpN, (13)

SAB(x1, p1, x2, p2) =
∫

S(x1, p1, x2, p2, . . . , xN , pN )

× dx3dp3 · · · dxNdpN, (14)
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which are interpreted as the probability of emission of a
particle (or a pair of particles) from a given space-time point
with a given momentum. With this definition one might
substitute SAB for P2 and SA for P1 in Eq. (11). Such a
correlation function is a 14-dimensional object (7 independent
components per particle: 4 space-time and 3 momenta).
Assumptions are needed to reduce the number of dimensions.
We describe them here.

In principle, the source emission function SAB should
reflect all the physics aspects of the particle emission process,
including the proper symmetrization for bosons and fermions,
as well as the influence of the two-body and many-body
FSIs. However, commonly used heavy-ion collision models
do not include these effects. Instead, one assumes that each
particle’s emission process is independent or, in other words,
that an interaction between the two final-state particles after
they are created is independent of their emission process. The
introduction of this factorization of the FSI and two-particle
wave function symmetrization gives the equation

C( p1, p2) =
∫

SAB( p1, x1, p2, x2) |�AB |2 d4x1d
4x2, (15)

where � is the pair wave function. Particle types A and
B are known, so the momenta have only three independent
components, while for positions all four components are
independent. We also mention that Eq. (15) has strong
similarities to the Fermi equation used to describe the β decay
process [77].

A. Pair wave function

The pair wave function � describes the behavior of a
pair of particles, one of type A and the other of type B. In
nonidentical-particle correlations we use a particular form of
�, which corresponds to the following physical scenario: two
particles A and B, which, shortly after they are produced
in a heavy-ion collision, interact via the FSI, in our case
Coulomb and/or strong. After this interaction they propagate
to the detector as plane waves. In that case, the particular
form of � is the solution of the scattering problem, viewed
in the reversed time direction. We also use an equal-time
approximation, which assumes that the particles were born at
the same time in the PRF (see Refs. [10] and [14] for a detailed
description and estimation of the systematic error introduced
by this assumption). We factorize the wave function into a part
describing the motion of the pair as a whole (a function of
the pair total momentum and “average” emission point) and
a component describing the interaction itself—dependent on
the pair relative momentum k∗ and separation r∗. The first
component produces only an additional phase, which does not
influence the modulus of the wave function. Because in our
study we are only interested in the modulus, we can neglect
this component, and we are left with [10]

�
(+)
−k∗ (r∗)

=
√

AC(η)

[
e−ik∗r∗

F (−iη, 1, iζ ) + fC(k∗)
G̃(ρ, η)

r∗

]
,

(16)

where AC is the Gamow factor, ζ = k∗r∗(1 + cos θ∗), η =
1/(k∗aC), F is the confluent hypergeometric function, G̃ is
the combination of the regular and singular S-wave Coulomb
functions, and fC is the strong scattering amplitude, modified
by the Coulomb interaction. θ∗ is the angle between the
pair relative momentum k∗ and the relative position r∗ in
the PRF, while aC is the Bohr radius of the pair, equal to
248.52, 222.56, and 83.59 fm for pion-kaon, pion-proton, and
kaon-proton pairs, respectively, and is negative for opposite-
charged pairs. For identical particles, � must also be properly
(anti-)symmetrized. This equation is valid in the outer regions
of the strong interaction potential and neglects the components
for angular momentum l � 1; the latter is a valid approxima-
tion for small k∗.

In femtoscopic analysis we assume that we know � with
infinite accuracy, so that we can try to invert Eq. (15) to
obtain, from the measured correlation function C, information
about the emission function SAB . In this work we focus on
nonidentical combinations of the most abundant stable hadrons
measured in heavy-ion collisions: pions, kaons, and protons.
For each of the combinations (pion-kaon, pion-proton, and
kaon-proton), there are four charge combinations: two of the
same sign and two of the opposite sign. The wave function
for both same-sign (and both opposite-sign) combinations
are identical. We note that the wave function characteristics
are indeed well known for all combinations, except for the
opposite-sign kaon-proton pair. The strong interaction in this
system is interesting in its own right and is the focus of intense
theoretical investigation (see, e.g., Ref. [78]). The femtoscopy
technique can be useful in this regard—by inverting the
problem and assuming that we know the source distribution
(from other femtoscopic measurements), we can invert Eq. (15)
to deduce the parameters of � from the measured correlation
function. Similar technique can also be used to study the strong
interaction in the π+π− system precisely. Such studies are
beyond the scope of this paper (see, e.g., Refs. [10] and [74]).

For the systems analyzed in this work, fC can be
parametrized in the effective range approximation by

fC(k∗) =
[

1

f0
+ 1

2
d0k∗2 − 2

aC

h(k∗aC) − ik∗AC(k∗)

]−1

,

(17)

where f0 is 0.137 fm for the same-sign pion-kaon pair,
−0.071 fm for the opposite-sign pion-kaon pair, −0.148 fm for
same-sign pion-proton pair, 0.112 fm for opposite-sign pion-
proton pair, and −0.360 fm for the same-sign kaon-proton pair.
The effective radius d0 can be put equal to 0 for all considered
pairs at small k∗ where the 1/f0 term dominates.

The full form of the wave function, Eq. (16), must be used
when calculating correlation functions to be compared with
data. However, for theoretical calculations it is sometimes
instructive (and faster numerically) to neglect the strong
interaction. This is acceptable, as the strong interaction is
expected to be small for the pairs of interest, except for
opposite-sign kaon-proton pairs, which we do not include in
the model calculations. For simplicity we use the Coulomb-
only wave function in the discussion in the next paragraph, but
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the conclusions hold for the full Coulomb + strong calculation
as well.

For the discussion it is important to provide the form of the
F function explicitly:

F (α, 1, z) = 1 + αz + α(α + 1)z2/2!2 + · · · . (18)

B. Emission function

The FSI correlation, described by Eq. (16), depends only
on the relative momentum k∗ and separation r∗ of the pair (the
angle between the two vectors is θ∗). The first simplification
of SAB from Eq. (14) is to change to the relative variables and
integrate out the sum ones:

SAB(k∗, r∗) =
∫ ∫ Pmax

Pmin

SAB(x1, p1, x2, p2)

× δ(k∗ − 1/2( p∗
1 − p∗

2)) d3p1d
3p2

× δ(r∗ − (x∗
1 − x∗

2)) d4x1d
4x2. (19)

The integration over space is done over the full variable range.
In contrast, particles’ momenta are measurable, so it is possible
to define the boundary momenta Pmin and Pmax for which the
integration is done. In fact, for identical-particle femtoscopy
it is common to define several kT = 1/2(p1

T + p2
T ) ranges

and create separate correlation functions for each of them.
In this way, the information about the P dependence of SAB is
not completely integrated out and can still be inferred. Up to
now similar binning was not possible for nonidentical-particle
correlations at the RHIC, because of small statistics and limited
pT acceptance with good particle identification coverage.
However, when one compares the model and the experiment
data, one must take care to restrict the P integration range
at least to the one dictated by the pT acceptance of the
experiment.

The emission function, Eq. (19), is a seven-dimensional
object. We use it to rewrite equation (15), using the specific
form of the wave function, Eq. (16), as well:

C(k∗) =
∫

SAB(k∗, r∗)
∣∣�(+),AB

−k∗ (r∗)
∣∣2

d4r∗. (20)

This form can be explicitly used to calculate the correlation
function from models. However, it is very rare for a model to
provide the full two-particle emission function. The existing
models fall into two categories: either they provide an analytic
form of a single-particle emission function or they provide
information only about the produced particles.

In the first case we assume that each particle’s emission pro-
cess is independent. Then the two-particle emission function
SAB can be constructed from single-particle emission functions
via a convolution:

SAB(k∗, r∗) =
∫

SA( p1, x1)SB( p2, x2)

× δ

(
k∗ − 1

2
( p1 + p2)

)
δ(r∗ − x1 + x2)

× d4x1d
4x2d

3 p1d
3 p2. (21)

In the case of identical particles (A ≡ B), several simpli-
fications can be made. The convolution of two identical

Gaussians is also a Gaussian with σ multiplied by
√

2.
Femtoscopy can provide information about the two-particle
emission function only, but with the preceding simplifying
assumption, the σ of the single-particle distribution can be
inferred. For nonidentical particles, A �= B, the simplified
method of comparison is not applicable. The comparisons
with models is more complicated, but retrieving single-
particle source sizes is still possible, provided a complete
set of measurements is performed. The formula is used in
Sec. VII and derived in the Appendix. Also, because generally
SA �= SB , the SAB can yield a nonzero mean value of the
separation vector 〈r∗〉. Later in this section we explain how
this mean value can be accessed experimentally and argue that
this is an important and unique piece of information accessible
via nonidentical-particle femtoscopy only.

In the second case, a model discretely producing particles,
Eq. (20), is evaluated via the Monte Carlo procedure:

C(k∗) =
∑

pairs δ(k∗
pair − k∗)

∣∣�(+),AB
−k∗ (r∗)

∣∣2∑
pairs δ(k∗

pair − k∗)
. (22)

Note that if the particles from the model are produced in a
correlated way (e.g., with energy and momentum conservation
for the full event, with energy and momentum conservation
for resonance decay, etc.), these are not destroyed and are still
present in C. In other words, this method does not require the
simplifying assumption of Eq. (21). In this work we use this
method to calculate model correlation functions. Its practical
implementation is described in Sec. V.

C. Correlation function and asymmetry signal

Equation (15) essentially defines the correlation function
as a pair wave function averaged over the source. Using the
simplified wave function containing only the Coulomb part,
one can write

C(k∗) = AC(η)[1 + 2
〈
r∗(1 + cos θ∗)

〉
/ac + · · ·], (23)

where averaging is done over pairs. In this example we
illustrate the origins of the asymmetry effect by considering
same-sign pion-kaon pairs. In this case, ac is positive, AC is
negative, and r∗(1 + cos θ∗) is by definition always positive.
For a point source (r∗ = 0) the overall correlation effect
R = |C − 1| would be maximum and equal to 1 − AC . For
our pairs AC − 1 is negative, while 2〈r∗(1 + cos θ∗)〉/ac is
positive, so the two compete with each other. As the size of the
system grows, so does the average r∗, and the correlation effect
R decreases. Therefore, the correlation function is sensitive to
the source size, so we expect to be able to measure the size of
the system. One has to remember that as the size grows, the
correlation function gets less and less sensitive to the system
size; therefore, the analysis is able to accurately measure only
sizes that are not too large. To determine whether “too large” is
larger than the maximum expected system size at the RHIC is
one of the objectives of this paper. Figure 10 shows an example
of how a nonidentical particle correlation function (in this
case same-sign pion–kaon) depends on the size of the system.
One can see that for a reasonable system size (comparable
to the maximum femtoscopic sizes obtained in the central
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FIG. 10. (Color online) An example of the nonidentical-particle
correlation function dependence on the size of the system. Solid lines
represent same-sign pion-kaon correlation functions for a Gaussian
source with σ from 7.0 fm (lowest) to 13 fm (highest) and a shift of
−5 fm. The Gamow factor is shown as the dashed line for comparison.

Au + Au collisions at the RHIC), there is a noticeable and
monotonic dependence on the size, indicating that a qualitative
femtoscopic analysis should be possible.

As mentioned in the previous paragraph, the two-particle
emission function can yield a nonzero mean value of the
separation vector 〈r∗〉. We now discuss how it can be observed
in the data. From Eq. (23) the correlation function depends
on the angle θ∗, between relative momentum k∗ and relative
position r∗. When the two are aligned (cos θ∗ > 0), the
correlation effect is smaller than when they are antialigned
(cos θ∗ < 0). The former configuration means that the particles
of the pair, when born, immediately start to fly away from each
other, so their effective interaction time is shorter. In the latter
case, when they start to fly toward each other, they pass close
to each other and only later fly away. Angle θ∗ is not accessible
experimentally, but it does influence R.

Particles’ momenta, measured experimentally, can be used
to calculate the relative momentum k∗ and the pair total
momentum K , corresponding to the velocity v. The angle
between the two is ψ . One divides the observed pairs into
two groups, one having k∗ and v aligned (cos ψ > 0) and the
other having k∗ and v antialigned (cos ψ < 0), and creates
two correlation functions, C+ and C−. If, in the pair sample
used to calculate the C+, we have a majority of pairs that
also have cos θ∗ > 0 (and in the C− sample the majority of
pairs have cos θ∗ < 0), then C+ and C− would differ. In this
particular case, C+ would show a smaller correlation effect
and C− a larger one. When plotting a “double-ratio” C+/C−,
one would see a signal deviating from unity. For same-sign
pairs it would go above unity, while for opposite-sign pairs it
would go below unity.

If we see a nonzero double-ratio, it means that cos θ∗ is
somehow correlated with cos ψ . They are connected via a
third angle of interest: the angle φ between the pair velocity v

and the pair relative position r∗. When we consider only the
projections of all these angles on the transverse plane, we have
trivially

ψ = θ∗ + φ. (24)

For the average cosines of these angles, we can write

〈cos ψ〉 = 〈cos θ∗ cos φ〉. (25)

By definition, for C+ the left-hand side of Eq. (25) is positive.
We assumed that C+ shows a larger correlation effect, so
〈cos θ∗〉 is negative. The only way that the equation can be
fulfilled is also to have cos φ < 0. In other words, it is required
that, on average, r∗ is antialigned with v. This is a crucial
point, so let us restate it. If we see a nonunity double-ratio,
we can conclude that the average relative position direction is
correlated with the pair velocity direction. That means that we
can access, via a rather straightforward procedure, the mean
of the two-particle separation distribution, which is allowed to
be nonzero for nondentical particles. The emission asymmetry
〈r∗〉 is a three-vector, while the preceding consideration only
mentions a single direction (the direction of the pair velocity v).
The argument is more general: we can replace v with any other
direction, defined in the PRF, and repeat the argument to obtain
the same conclusions. The simplest generalization, which
we have shown to have important physics motivation, is the
decomposition of v into components: the longitudinal “long”
(along the beam axis) and the transverse “out” (perpendicular
to the beam axis). By performing the asymmetry analysis
versus these two directions, we can obtain information about
the out asymmetry µout = 〈r∗

out〉 and the long asymmetry
µlong = 〈r∗

long〉. For completeness we also use the third direc-
tion, “sideward” or “side,” perpendicular to the other two to
study the side asymmetry µside = 〈r∗

side〉. Each of them carries
important physics information or is useful as an experimental
cross-check; the details are discussed in the following sections.

We discussed the possible physical origins of the emission-
point asymmetry and its significance in Sec. III. Now we
discuss the general properties of the double-ratio observable.
It is allowed to go both above and below unity, which means
either positive or negative emission asymmetry (the average
emission separation being aligned or antialigned with the
velocity direction). It can also be unity, meaning no emission
asymmetry. More detailed analysis also shows that, for a fixed
source size, introducing larger and larger emission asymmetry
produces larger and larger deviation from unity of the double-
ratio signal. This means that one can determine the existence
of emission asymmetry and also measure its magnitude. The
technical details of how it is done are presented in the next
section. The illustration of the double-ratio behavior, for a
fixed system size for a same-sign pion-kaon pair, is shown in
Fig. 11.

It is instructive to derive the equation for asymptotic
behavior of the double-ratio C+/C− at k∗ going to 0 [8,9].
We focus on the function F . In this limit, we neglect all
components with 1/aC or 1/k∗ in powers greater than 1. We
have

F = 1 + 2
r∗

aC

+ 2
k∗r∗

k∗aC

+O

[(
1

aC

)2
]

+ O

[(
1

k∗

)2
]

+ · · · , (26)

which gives the correlation function:

C|k∗ = 〈ACF ∗F 〉 .= AC

(
1 + 2

〈r∗〉
aC

+ 2
〈k∗r∗〉
k∗aC

)
. (27)
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FIG. 11. An example of the nonidentical-particle “double-ratio”
dependence on the emission asymmetry. Solid lines represent same-
sign pion-kaon double-ratios for a Gaussian source with a σ of 10.0 fm
and an asymmetry of −12.0 fm (lowest) to −4 fm (highest). The
arrows point to the asymptotic values (see text for details).

One notes that

〈k∗r∗〉 = 〈k∗
outr

∗
out + k∗

Lr∗
L cos(θ∗ − ψ)〉 = k∗ cos ψ〈r∗

out〉.
(28)

We now consider C at a fixed k∗ and cos(ψ),

C(k∗, cos ψ) = AC

(
1 + 2

〈r∗〉
aC

+ 2 cos ψ
〈r∗

out〉
aC

)
, (29)

and using the uniformity of the cos ψ distribution for uncorre-
lated particles at small k∗, we have

C+
.= AC

∫ 1

0
C(cos ψ)d cos ψ = 1 + 2

〈r∗〉
aC

+ 〈r∗
out〉
aC

,

C−
.= AC

∫ 0

−1
C(cos ψ)d cos ψ = 1 + 2

〈r∗〉
aC

− 〈r∗
out〉
aC

,

C+
C−

|k→0
.= 1 + 2

〈r∗
out〉
aC

. (30)

These asymptotic values of the double-ratio are shown as
arrows in Fig. 11. The formula appears to give an easy way to
extract an emission asymmetry without the need for tedious
analysis. However, one must remember that in the experiment,
the lower the k∗, the higher the experimental uncertainty on the
data point. This is because of statistics, which falls as k∗2, and
because experimental effects like momentum resolution result
in the largest systematic uncertainty in these bins. Therefore,
one has to perform the full analysis of the double-ratio over a
broad range of k∗ to reliably extract the asymmetry.

From Eqs. (30) one concludes that if one restricts the
integrals in the definitions of C+(C−) to a cos(ψ) range
close to 1(−1), one will obtain an even larger asymmetry
signal. However, in the experiment, the price to pay is the
loss of statistics, and hence the significance of the signal.
It can be shown that to maximize the significance of the
signal, one should perform the integrals over the full range
of cos(ψ) (thus minimizing the statistical error) with the
weight cos(ψ) [79,80]. We come back to this crucial point
in Sec. V A, where we discuss the SH representation of the
correlation function, which happens to naturally introduce
similar weighting [80,81].

We finish this chapter by discussing the conventions used
in the analysis. It is important to define and consistently use
these conventions in all steps of the analysis. First, the order
of particles in the pair is important for the definition of k∗ and
r∗ because they are defined as the momentum and position
of the first particle in the pair. We adopt a convention that
the lighter particle in the pair is always taken to be first. If
both particles have an equal mass, the positively charged one
is taken as first. The second convention is the definition of
the double-ratio, which can be either C+/C− or C−/C+. We
choose the former definition. We also note that in the SH
representation, there is no need for such a convention. With
these definitions the following general rules hold. Same-charge
pairs have correlation functions going below unity; opposite-
charge pairs, above unity. This means that for a given source
size asymmetry, the double-ratio for same-sign pairs will be an
inverse of the opposite-sign double-ratio. Finally, with these
definitions, a double ratio below(above) unity means that the
lighter particle is emitted closer to the center of the system
and/or later than the heavier one for the same-sign(opposite-
sign) pair.

V. PRACTICAL IMPLEMENTATION OF THE FORMALISM

When using a model that produces individual particles (such
as THERMINATOR), the integration in Eq. (15) is performed via
the Monte Carlo method, iterating over particle pairs. In that
case, the procedure to construct the correlation function closely
resembles the experimental one. It enables the introduction of
some experimental effects, such as acceptance or momentum
resolution, in a straightforward way, as opposed to the purely
analytical models, where this is more difficult. Mathematically,
the procedure is a combination of Eqs. (12) and (15):

C(k∗) =
∫

A(k∗, r∗) |�(k∗, r∗)|2∫
B(k∗, r∗)

. (31)

Note that the A and B now depend on space-time coordinates
r∗ as well, because we are using model data in which the
emission points are known. Because we are dealing with pairs
of individual particles, we employ the Monte Carlo procedure,
which replaces the analytic integration by summing over pairs:

C(k∗) =
∑

Npairs δ(k∗
A − k∗) |�(k∗, r∗)|2∑

Dpairs δ(k∗
B − k∗)

, (32)

where the two sums are performed over two sets of pairs N and
D and the δ function ensures that only pairs with the correct
relative momentum are taken. Note that there are two possible
scenarios, both of which have slightly different interpretations
and uses. One can perform the calculation using the same pairs
for set N and D. Equation (32) is then exactly equivalent to
Eq. (15) but is done via Monte Carlo integration. Another
option is to take pairs from the same event as sample N

and pairs of particles from different events as sample D. In
that case, the correlation function C contains not only the
femtoscopic effect but also all other event-wide correlations
which are present in the model, projected to the two-particle
space. It is therefore very useful for experimentalists, who
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can study the differences between the two to estimate the
magnitude of the nonfemtoscopic effects. The two cases
have one more important difference. Usually the correlation
function is constructed as a ratio of two histograms: N , a
signal, which is filled with the weight |�|2 for every pair; and
D, the background, which is filled with unity for each pair.
The error bar on C = N/D has a different meaning in the
two cases. In the first one it is just the spread of the weight
in a given sample. In the second case it is a true error bar,
comparable to the experimental one, as samples N and D are
statistically independent. In this work we use the first way
to calculate the correlation function, as we are not interested
in nonfemtoscopic correlations but, rather, in physics effects
accessible via femtoscopy.

A. Correlation function representation

Femtoscopic correlation functions have been represented
in two main forms: as a one-dimensional (1D) histogram with
the magnitude of the relative momentum k∗ or q = 2k∗ on
the axis or as a three-dimensional (3D) histogram with k∗

out,
k∗

side, and k∗
long on the axes. For identical pion correlations it is

also useful to use a 3D histogram with the relative momentum
components qout, qside, and qlong calculated in an LCMS. Note
that out, side, and long decomposition is possible also for pairs
of nonidentical particles; one has to use the generalized four-
momentum variable q̃ instead of q: q̃ = q − P (qP )/P 2. The
first form requires minimal statistics but allows determination
only of the 1D overall source size. The second one allows for
the determination of sizes in all three directions but requires
significant statistics. Up to now, the nonidentical correlation
function was represented as a set of two 1D histograms, one
for C+ and one for C−, with respect to the out direction. This
allowed for the determination of 1D source size and a study
of the double-ratio to access asymmetries. However, if one
wanted to study double-ratios for other directions (side and
long), one would need to create separate sets of correlation
functions.

Recently, a more advanced way of representing the cor-
relation function, SH, was proposed [82]. It has several
important advantages. It encodes the full 3D information on
the correlation in a set of 1D plots. Generally, this does not
need to be an advantage, because a perfect representation of
all the features of any 3D function requires an infinite set of
l, m components (meaning: infinite set of 1D histograms). But
it so happens that the intrinsic symmetries of a pair distri-
bution in the femtoscopic analysis result in most of the l, m

components vanishing. It has also been shown that, of those
that do not vanish, only those with small l contain important
information, which means that one can safely truncate the
decomposition at a rather small l without the fear of losing any
physics information. It is as if the SH have been specifically
designed to efficiently represent a femtoscopic correlation
function.

The SH representation has the advantages of both the
1D correlation function (because it requires less statistics)
and a 3D one (because it encodes the important part of
the 3D information). However, first attempts to apply the
decomposition methods, which were developed for identical
particles, to nonidentical-particle correlations were not suc-

cessful. Essentially, one had to first construct the numerator
and denominator as 3D histograms (usually in |q|, cos θq ,
and φ), then divide them and decompose the resulting 3D
correlation function, negating the low-statistics advantage of
the 1D representation. The decomposition procedure also
relied heavily on the symmetries present for identical correla-
tions. This presented a problem for nonidentical correlations,
because their primary goal is to study the emission asymmetry.
This breaks one of the symmetries present in identical analysis.
Also, the single-particle acceptance of some experiments
produced “acceptance holes,” that is, regions of empty bins
in the 3D function. Also, statistics for nonidentical pairs were
significantly lower than for pion-pion correlations, so filling
all the bins in a 3D correlation function with a significant
number of pairs became a challenge. To solve these problems,
a new technique to represent the correlation function in SH was
developed [83]. Both the numerator and the denominator are
stored directly in SH (not as 3D histograms), and a procedure
to calculate the correlation function directly from them (again,
not involving any 3D histogram) has been presented [83]. An
additional benefit of the method is that the covariances between
all l, m components are explicitly taken into account. Unless
otherwise noted, all further correlation functions presented
in this work are represented using this method. We also
recommend that experimental groups use this method.

As was the case for identical-particle femtoscopy, the
SH representation turned out to have specific synergies
with the nonidentical femtoscopic correlation analysis. The
important femtoscopic information is contained in only two
l, m components, while the other two can be used as additional
cross-checks of experimental procedures. If one wishes to
analyze the full 3D information, one needs to analyze only two
more l, m components: the rest can be essentially neglected,
as they should be consistent with 0 or they will not contain
additional useful information.

We now investigate the important components of the SH
decomposition and their sensitivity to femtoscopic informa-
tion. We perform a simple calculation in which we assume the
source to be a 3D Gaussian in an LCMS, having three different
sizes R in three directions (out, side, and long). It also has a
nonzero mean value µout in the out direction:

S(r) = exp

(
− (rout − µout)2

R2
out

− rside
2

R2
side

− rlong
2

R2
long

)
. (33)

With this source function we perform the integration, Eq. (15),
to calculate the correlation function and present it in the
SH representation. We expect that the main femtoscopic
information is contained in the following components: C0

0 ,
	C1

1 , 	C2
0 , and 	C2

2 .
To study the sensitivity to the source size, we increase the

overall size but keep the radius ratios the same. The results are
plotted in Fig. 12. All components show some sensitivity, but
C0

0 is affected the most.
In the next step (shown in Fig. 13) we keep the source

size the same, while we increase the emission asymmetry
(µout). The main sensitivity is in the 	C1

1 component.
More importantly, no asymmetry results in vanishing 	C1

1 ,
while increasing the asymmetry increases the signal in
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FIG. 12. (Color online) SH components of the correlation func-
tion for Rout = 8 fm, Rside = Rlong = 4 fm, and µout = −4 fm [(blue)
circles], Rout = 10 fm, Rside = Rlong = 5 fm, and µout = −5 fm [(red)
triangles], and Rout = 12 fm, Rside = Rlong = 6 fm, and µout = −6 fm
[(green) squares].

	C1
1 monotonically, approximately linearly. 	C1

1 is function-
ally equivalent to the out double-ratio. Obtaining quantitative
as well as qualitative information about the asymmetry should
be possible from the analysis of it (in correlation with at least
C0

0 , where sensitivity is also seen, but to a lesser degree). In
addition, from Eq. (30), we concluded that to maximize the
significance of the asymmetry signal, one should integrate
the correlation function with a weight equal to cos(ψ) [79].
Remarkably, the definition of 	C1

1 is essentially

	C1
1 (q) = N

∫
C(q, cos(θq), φq) sin(θq) cos(φq)d�q, (34)
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FIG. 13. (Color online) SH components of the correlation func-
tion for Rout = 10 fm, Rside = Rlong = 6 fm. Emission asymmetry
µout is changed from 0 fm [(blue) circles] to −2 fm [(red) upward
triangles], −4 fm [(green) squares], −6 fm [(yellow) downward
triangles], and, finally, −8 fm [(violet) stars].
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FIG. 14. (Color online) SH components of the correlation func-
tion for Rout = 10 fm, Rside = 4 fm, µout = −4 fm. Rlong is changed
from 4 fm [(blue) circles] to 6 fm [(red) upward triangles], 8 fm
[(green) squares], and, finally, 10 fm [(yellow) downward triangles].

where N is the normalization factor, while θq and φq are the
longitudinal and transverse components of the ψ angle. The
	C1

1 component happens to be the optimal way to maximize
the transverse components of the asymmetry signal, owing to
its cos(φq) weight, while the 	C0

1 maximizes the longitudinal
asymmetry signal, owing to its cos(θq) weight:

	C0
1 (q) = N

∫
C(q, cos(θq), φq) cos(θq) d�q. (35)

Once again, it appears as if the SH were specifically designed
for the femtoscopic correlation function representation.

Next, in Fig. 14 we keep the transverse source size and
the asymmetry the same, while we change the Rlong radius.
Obviously we see a change in the C0

0 , which reflects the
growth of the overall system size. But the most sensitive
component is 	C0

2 , which carries information about the ratio
of the transverse to the longitudinal radii, owing to its cos2(θq)
weighting.

Finally (see Fig. 15), we keep the sum of the transverse radii
the same, but we change their ratio. The 	C2

2 component, with
its cos2(φq) weighting, is the most sensitive to these changes,
while the others remain practically constant.

The preceding calculations show that by analyzing just two
components of the SH decomposition (C0

0 and 	C1
1 ), one

can already perform a meaningful femtoscopic analysis and
determine the overall source size and emission asymmetry.
Adding just two more components (	C0

2 and 	C2
2 ), one can

also determine source radii in all three directions, which would
normally require a full analysis of a 3D correlation function.
A full 3D analysis does require larger statistics than a 1D
size + asymmetry one, as the sensitivity to the observables
in the l = 2 components is smaller than in the l = 0 and
l = 1 ones. One should stress that in the SH representation
one is dealing with 200 data points (50 points per histogram,
4 components), versus the 625 000 bins in the 3D histogram
representation. The huge savings in computation time and
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FIG. 15. (Color online) SH components of the correlation func-
tion for Rlong = 8 fm, µout = −4 fm. The transverse radius sum is kept
constant: Rout = 7 fm, Rside = 8 fm [(blue) circles]; Rout = 8 fm,
Rside = 7 fm [(red) upward triangles]; Rout = 9 fm, Rside = 6 fm
[(green) squares]; Rout = 10 fm, Rside = 5 fm [(yellow) downward
triangles]; and Rout = 11 fm, Rside = 4 fm [(violet) stars].

method complexity do not compromise the physics: one is
able to obtain essentially the same femtoscopic information
(three sizes and emission asymmetry). This means that the
3D representation is a particularly inefficient way of storing
the femtoscopic information, while the SH one seems to be
perfectly tailored for that task. We add that in all theoretical
calculations that we have done, all the other components
either were required to vanish from symmetry relations,
were consistent with 0, or contained femtoscopic information
that was already accessible via the four main components.
In experiments, one should, in addition, look at the 	C0

1
(equivalent to the long double-ratio) and 
C1

1 (equivalent
to the side double-ratio). The former is expected to show 0
asymmetry, and the latter is required to vanish for symmetry
reasons, but their deviations from 0 may signal experimental
reconstruction problems.

B. Extracting qualitative information

In the previous paragraph the sensitivity of the nonidentical
particle correlation function to the source size and asymmetry
was illustrated. Dependencies in Figs. 12–15 show that source
size parameters influence all SH components at the same
time, and it is not possible to analyze them separately. In
identical-particle femtoscopy, obtaining Gaussian source size
parameters is straightforward: the integral in Eq. (15) can
be performed analytically if one assumes that S(r) is a 3D
Gaussian and does not depend on the pair momentum K
(although the pair’s transverse momentum KT dependence can
be recovered by KT binning; rapidity binning is also possible).
To take the Coulomb interaction into account, an approximate
wave function is used in which the Coulomb part is factorized
out and replaced with an averaged function that only depends
on the magnitude of k∗. This procedure [84] enables one to

write a simple analytic formula, which can be directly fitted to
the 3D correlation function and provides femtoscopic radii.

In nonidentical-particle femtoscopy the Coulomb interac-
tion is the source of the correlation, so it cannot be factorized
out. Performing the integral in Eq. (15) analytically becomes
impossible, especially when one needs to consider the strong
interaction as well. The procedure must be carried out numer-
ically. One starts with the same assumption as for identical-
particle femtoscopy. The source is a 3D Gaussian, Eq. (33),
where the additional modification allowing for a nonzero shift
in the out direction is introduced. One then assumes a certain
set of source parameters (Rout, Rside, Rlong, µout) and calculates
the corresponding correlation function, according to Eq. (15)
and using the corresponding wave function, Eq. (16). As the
source function is assumed to be momentum independent,
one needs an input momentum distribution [the assumption of
momentum independence of the source function is not required
provided that the selected (pT , y) is sufficiently narrow]. This
can be achieved by, for example, taking particles’ momenta
from real pairs from data and assigning the separation r∗
randomly generated from Eq. (33). The resulting “model”
correlation function is compared to the “measured” one via
a χ2 test. The procedure is repeated for several sets of source
parameters to find the one that fits the “data” best. This set
is taken as the result of the fit. The procedure can be refined
by ensuring that the model calculation is done for points that
form a regular “mesh” in the parameters’ space. In the simplest
one-parameter fit, one obtains the fit value and error from
the location of theχ2 minimum on the parabola. When two
independent parameters are fitted (the most common case for
nonidentical correlations, where we usually fit overall radius R

and emission asymmetry µ), one creates a 2D “mesh,” to which
one can fit a 2D parabola—obtaining the best-fit parameters
and their error bars, as well as the covariance between them.
An example of such an analysis is shown in Fig. 16. One can
also employ a minimization package (e.g., Minuit) to perform
the fitting process. The number of points in the coefficient
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FIG. 16. An example of the 2D χ 2 map obtained by fitting a
nonidentical-particle correlation function. The underlying colored
histogram represents the “mesh” obtained in the fitting procedure.
The lines represent a fitted 2D parabola. The filled circle represents
the minimum of the parabola: the best-fit value.
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function mesh can be kept at a minimum by using a simple
linear or quadratic interpolation between points [10,35].

For the results presented in this work we used the
software package CORRFIT to perform the numerical fitting
procedure just described. It was developed for the analysis
of nonidentical-particle correlations in the STAR experiment
[39,85]. It allows for significant flexibility when choosing
various parameters of the fitting process. For this work we have
made the following choices. (1) The input data were correlation
functions in SH representation. Only the C0

0 and 	C1
1 compo-

nents were fitted; the covariance between the two was taken
into account. (2) The particular form of the S from Eq. (33) was
taken, with the additional constraints that Rside was assumed
to be equal to Rout, while Rlong = 1.3Rout, following the
identical-particle 3D femtoscopic results for pions from the
RHIC [86]. Therefore, only two independent parameters were
fitted: Rout and µout. (3) The input momentum distributions
were taken from the STAR experiment, ensuring that the
momentum acceptance was the same. (4) The standard package
of R. Lednicky was used to calculate the pair weights [10,14].
The input theoretical correlation functions were calculated
taking into account Coulomb interaction only. In this case,
only the Coulomb part of the pair weight was calculated in
the fitting procedure. (5) One had the possibility to introduce
“pair purity” and momentum resolution corrections. Details
on the purity correction are discussed later in this section. The
momentum resolution correction was not necessary for model
studies shown in this paper.

C. Influence of pair purity

For femtoscopic analysis one of the main experimental
issues is the “purity” P of the analyzed pair sample, that is,
the fraction of pairs in the sample that should be treated as
“femtoscopically correlated.” There are several reasons why
a pair of particles should not be treated as correlated. From
the experimental side, it may happen that one (or both) of
the particles in the pair has been misidentified (this is why
P is traditionally called purity). Another common scenario
is when one of the particles is a product of a weak decay.
In that case, it is the “parent” particle that should be treated
as femtoscopically correlated, leading in some cases to rather
complicated cases of “residual correlations,” that is, feed-down
of the femtoscopic correlation between parent particles into
the daughters’ correlation function. Recently, such cases have
been studied in detail in baryon-baryon correlations [41,87].
However, in systems considered in this paper, containing a
meson, residual correlations are smeared away by the decay
momenta, so such pairs should be treated as “not femtoscop-
ically correlated.” These experimental components of P are
clearly experiment dependent and it is up to the experiment to
correct for such effects (or at least provide a realistic estimate
of P ). We do not address it further in this work.

However, another contribution to P remains, the estimate
of which is model dependent. If one of the particles in the pair
comes from a strongly decaying resonance that lives a very
long time, for example, the ω meson, we may need to treat it
as being not femtoscopically correlated. That is because the
source of the correlation, the pair wave function �, usually
peaks at low r∗ values, while at large values it produces no

correlation. This can be dealt with in two ways. The first is to
assume, in the data analysis, a source function that perfectly
describes such long-range r∗ tails. However, this is difficult
to do, and it is very dependent on the model used to model
such tails. The other solution is to treat the particles in the
tails as not femtoscopically correlated—in other words, to
provide a model estimate of the decrease in P coming from
long-lived resonances. This is usually done by assuming that a
source is a 3D sphere with a Gaussian profile and counting any
pair that is outside this sphere as noncorrelated. We note that
“non-Gaussian effects” have been seen in the identical-particle
correlations in all RHIC experiments [86,88]. They have been
attributed, at least in part, to long-lived resonances [53],
and recently, new techniques have been proposed to analyze
them in detail [89]. Such analyses are not yet possible in
nonidentical-particle analysis, so we limit ourselves to the
simple model estimation of P .

We characterize the overall purity of a pair sample by a
percentage of pure pairs P . It can be (and in the experiment
it usually is) a function of k∗. Assuming that the “nonpure”
pairs are not correlated, the correlation function can be trivially
corrected for purity:

Ccorrected(k∗) = (Cmeasured(k∗) − 1)/P (k∗) + 1. (36)

Employing formula (36) requires a precise knowledge of
the fraction of correlated pairs P in the measured sample.
Any uncertainty in its value will be a source of systematic
error. In contrast to identical-particle femtoscopy, P cannot
be easily inferred from the fit, independently of the source
parameters σ and µ. By inspecting Fig. 10 and Eq. (36), one
concludes that lowering the purity influences the correlation
function in a way that is similar to the changes introduced
by varying the source size. One can obtain a satisfactory fit
to the correlation function by adjusting either one of these
parameters, so treating them both as free makes them highly
correlated. While possible, the independent determination of
σ and P requires significant statistics and very good control
of the nonfemtoscopic background [10,35].

Usually, the practical solution is to come up with the
best estimate of P by other means (both experimental and
theoretical) and fix its value for the fitting. By performing the
procedure for several fixed values of P , within the reasonable
uncertainty range, one obtains the systematic error in the
fit values coming from the purity estimate. As an example,
in Fig. 17 we show how the fit values for the same input
correlation function change as one adjusts the fixed pair purity
P . Within the reasonable range of P variations of the order
of 20%, the dependence of σ and µ on P is monotonic and
noticeable. We expect that the purity estimate will be the major
source of the systematic error. We address the theoretical part
of the estimates of pair purity in Sec. VI B.

D. Influence of the momentum resolution

The momentum resolution will influence the femtoscopic
correlation function in a well-defined way. Because recon-
structed momenta will differ from the true ones, the correlation
effect (visible as either a “peak” or a “depression” at low k∗)
will be reduced. The Coulomb correlation is rather sharp at a
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FIG. 17. (Color online) Values of the correlation function fit—
size (a) and shift (b)—as a function of a predefined fraction of primary
pairs.

low relative momentum, so one expects the small k∗ points to
be influenced the most. The double-ratio will be affected as
well. One can study the influence of the momentum resolution
by performing a theoretical calculation in the following way.
One calculates C according to Eq. (32) but calculates two sets
of relative momenta k∗ for each pair. The first one, k∗

true, is used
to calculate �, and the second one, k∗

smeared, is used to determine
the correlation function bin in which the pair is stored. The
second set is calculated by smearing the particles’ momenta
with the parametrization of the momentum resolution obtained
from the experiment. By comparing the “unsmeared” and
“smeared” correlation functions, one can judge the importance
of the momentum resolution effect. One can also employ the
same technique when calculating the “theoretical” correlation
functions during the fitting procedure described in Sec. V B.
In this way the fitting procedure automatically corrects for
the momentum resolution. The precise determination of the
momentum resolution parameters is very dependent on the
experimental features. We do not discuss it further in this
work (see, e.g., Ref. [35]).

VI. SYSTEMATIC CHECKS OF THE METHOD

In the previous sections we have made qualitative claims
that analysis of the nonidentical-particle correlations should
enable estimation of the source size and emission asymmetry
for pions, kaons, and protons emitted in the heavy-ion
collision. In this section we aim to show the quantitative
checks of the method. We focus on answering two questions:
Can the method reliably and quantitatively recover the source
size and emission asymmetry? And if yes, what systematic
uncertainties in this estimation come from the method itself?

We emphasize that in this section we focus only on
the technical aspect of the nonidentical-particle correlations
method. So, the THERMINATOR calculations are used only as
“test samples.”

A. Details of the procedure

We chose the following procedure: we simulate heavy-ion
Au + Au collisions with the THERMINATOR model. We do it
for six centrality bins: 0–5%, 5%–10%, 10%–20%, 20%–
30%, 30%–40%, and 40%–50%. We calculate the full set of
nonidentical correlation functions: same- and opposite-sign
pion-kaon, same- and opposite-sign pion-proton, and same-
sign kaon-proton for these centralities, producing 6 × 5 = 30

independent correlation functions. Then we proceed to treat
these functions as if they were experimental ones: applying the
purity correction and fitting them with the CORRFIT software.
In the end we compare the input values from the model with
the fit results and see if they match.

We simulated 50 000 events for each centrality. The
parameters of the model were the same as those used in
Refs. [26] and [50], which are known to reproduce both
single-particle spectra and overall femtoscopic sizes from
identical-particle correlations. The correlation functions were
calculated by combining particles from these events into
pairs and employing Eq. (32). The SH representation of the
correlation function was used. Then each function was fitted
with the CORRFIT program, assuming that the two-particle
source is a 3D Gaussian in an LCMS, according to Eq. (33).
The sideward and longitudinal sizes of the source were fixed
to be equal to Rout and 1.3Rout, respectively, according to the
results obtained for identical pions. In this way the fitting
procedure had only two parameters: overall size Rout and
emission asymmetry µout. We note that while the full 3D
analysis, with Rside and Rlong as independent free parameters
of the fit, is possible in principle, we do not discuss it in this
paper, as we consider it less interesting: it would provide 3D
information about the source, but with a much lower precision
than the 3D identical pion analysis. Instead, we choose to focus
on asymmetry, which is a unique observable accessible only
via nonidentical particle femtoscopy.

B. Characterizing model input

Let us inspect a typical two-particle emission function SAB

coming from the THERMINATOR model, shown in Fig. 18. The
distributions in the out, side, and long directions show different
behavior. Only the side one is well described by a Gaussian;
attempts to fit the out and long distributions by Gaussians are
shown as dashed lines. The long-direction distribution can be
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FIG. 18. (Color online) Two-particle emission function for pion-
kaon pairs at centrality 10%–20%. (a) r∗

out; (b) r∗
side; (c) r∗

long; (d) rinv.
Lines are fits to the distributions; see text for details.
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described by an exponential hyperbola function:

fEH = exp

⎛
⎝−

√√√√ r∗
long

2

σ 2
long

+ α2

⎞
⎠ , (37)

where σ and α are parameters. For description of the out-
direction distribution, one needs an asymmetric exponential
hyperbola:

f as
EH = exp

(
−

√
(r∗

out − µout)2

σ 2
out

+ α2

)
(1 + ζ (r∗

out − µout)),

(38)

where σout, µout, αout, and ζ are parameters. We have confirmed
that these functional forms are general; that is, one is able
to fit them to the emission functions at all centralities and
for all pair types. In contrast, the fitting procedure that we
described in the previous section assumes a proper Gaussian
source distribution. Therefore, one needs to find a suitable
variable that will enable comparison between the model input,
which is non-Gaussian, and the fit output, which is postulated
to be a Gaussian. In principle, one can think of removing the
Gaussian assumption and actually using the functional forms
mentioned previously for the fitting. This is certainly possible,
from the point of view of both the technique and the software
tools. However, it poses two potential problems. First, while
the functional forms are able to fit the THERMINATOR data
very well, there is no reason to assume that this will be the
case for other models. So, by choosing these particular forms,
one would introduce a strong model dependence. Moreover, it
is not known how the parameters of these functions could
be compared to the Gaussian radii from identical-particle
femtoscopy. In this work we access the overall directionally
averaged size of the system only, so the details of the source
function dependence in the three directions separately will be
lost. In this work we decided to use the Gaussian assumption,
having in mind that it may introduce systematic effects, when
comparing the fit values to input two-particle distributions.

We are then presented with the following situation: the
“experimental” fit procedure produces the direction-averaged
source size R and the emission asymmetry in the out direction
µout. In contrast, to fully describe the theoretical model input,
one needs the following parameters: σout, αout, ζ , µout, σside,
σlong, and αlong. To compare the two, one needs to find common
variables that can be compared and that will tell whether our
experimental fit reproduces the “model input.”

In traditional HBT, one compares 1D femtoscopic radii,
defined as the σ of a 1D Gaussian approximation of the
single-particle emission function (usually in the PRF). We
wish to define an analogous variable for nonidentical study,
but defined in an LCMS to facilitate the comparisons to
the 3D identical-particle interferometry results. The task is
complicated by the fact that neither the model input nor the
experimental fit produces a source that is a perfect Gaussian.
Nevertheless, one can plot the source distribution dN/dr in
both cases. Then one fits the distribution with the Gaussian

formula, multiplied by the proper Jacobian:

fG(r) ≈ exp

(
− r2

2RL
av

)
r2. (39)

As discussed later, one must restrict the range of this fit to low-r
values, as these are the ones that contribute to the femtoscopic
effect. The contributions from the large-r part of the source
must be dealt with separately. Figure 18(d) shows an example
of the model rinv distribution; the line is a fit according to
Eq. (39), done in the range of 0–20 fm. Because both the rout

and the rlong distributions are manifestly non-Gaussian, so is
the rinv distribution.4 Therefore, the fitted R

input
av characterizes

only the general size of the system. The same fitting procedure
can be applied to the rinv distribution produced by the
experimental fit, producing the Rfit

av “experimental” value. For a
more detailed discussion of the approximate relations between
1D and 3D source size parameters and the relations between
values in the PRF and those in the LCMS, as well as a more
detailed description of estimating Rav, we refer the reader to
the Appendix.

One also needs to define what the “emission asymmetry”
µout means in the case of the model. One can come up with
several definitions: (a) the “mean” of the r∗

out distribution,
(b) the “mean” of the r∗

out distribution, but taking into account
only parts of the distribution near the peak (neglecting the
long-range tail), and (c) the position of the maximum in the
r∗

out distribution. All three are correlated, but definition a shows
a high sensitivity to long-range tails and therefore is not well
defined. Of the other two, definition b should be exactly the
same as 〈r∗

out〉, which is the value used in the theoretical
formalism, while the relation of definition c to 〈r∗

out〉 is less
straightforward. So, we chose to use definition b.

In Fig. 19 a comparison between “input” and “fitted” radii
is shown, for all considered pairs, for both primordial and all
particles. A clear correlation is seen between the two. However,
most of the results do not lie on the “perfect” x = y line.
Within each pair system the correlation is clear and monotonic.
Moreover, the deviations from the perfect curve seem to be a
systematic shift, similar for all points of the same pair type.
The shift from perfect values for a given pair type is seen both
for the Rinv and the µout variables.

One obvious candidate for the explanation of this shift is the
pair purity P . The fit procedure assumes that all the pairs in the
source come from the region with a Gaussian density profile.
In contrast, a realistic model, such as THERMINATOR, clearly
shows that there are significant non-Gaussian long-range tails
in the separation distributions; this is illustrated in Fig. 20.
One can perform a simple calculation. Take the model radius
RL

av obtained from fitting the model separation distribution
with Eq. (39); by integrating this distribution, one obtains the
number of pairs NG within the Gaussian core of the source. NG

is then the area below the fit curve in Fig. 20(d). This can be
compared to the total number of pairs NA obtained by simply
counting the number of model pairs or, in other words, the area

4It can be shown that rinv distribution is a Gaussian only if all three
rout, rside and rlong are Gaussians and additionally all three have the
same width.
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FIG. 19. (Color online) Correlation of input values obtained from
the model and fit values. (a) Overall system size; (b) emission
asymmetry in the out direction. Open represent calculations for
primary particles only; filled symbols, for all particles. Circles (violet)
are same-sign pion-kaon pairs; upward triangles (red), opposite-
sign pion-kaon pairs; squares (green), same-sign pion-proton pairs;
downward triangles, opposite-sign pion-proton pairs; stars (blue),
same-sign kaon-proton pairs.

below the points in Fig. 20(d). The value fFC = NG/NA is the
number of “femtoscopically correlated” pairs and should be
simply treated as purity in the sense discussed in Sec. V C.
One needs to correct for these “non-Gaussian” effects. To do
that, one calculates fFC and then treats it as a fixed parameter
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FIG. 20. (Color online) An illustration of the long-range tails
produced by THERMINATOR. Points: separation distributions for pion-
kaon pairs: (a) rout, (b) rside, (c) rlong, and (d) rinv. Lines are fits to
the region near the peak, using the functional forms: f as

EH for out,
Gaussian for side, fEH for long, and fG for inv.

TABLE V. Estimate of the theoretical purity P for all pair types,
versus centrality. See text for details.

P , at c (%)

0–5 5–10 10–20 20–30 30–40 4–50

πK 0.83 0.82 0.80 0.76 0.73 0.70
πp 0.80 0.79 0.77 0.75 0.73 0.71
Kp 0.96 0.95 0.95 0.94 0.93 0.93

in the fitting process. Note that the fFC estimation procedure,
by design, takes into account two effects, which cannot be
easily disentangled: the pairs in the long-range tails and the
fact that the shape of the core system is not a Gaussian in a
1D representation. We have performed the estimation based
on the input model pair separation distributions and find that
fFC depends on both the pair type and centrality. The exact
values are listed in Table V. These values are obviously model
dependent and are strongly influenced by the size of the long-
range tails in the separation distributions. It is well known that
the source of such tails is, to a large degree, particles coming
from strongly decaying resonances. It is therefore important
to use a model like THERMINATOR, which fully includes all
known resonance propagation and decay, to determine purity.
A clear trend exists for all pair types: the fFC get smaller as
collisions get more peripheral. The long-range resonance tails
and non-Gaussian effects get relatively more important as one
moves away from central collisions.

The experimental fits have been redone, this time with the
purity fixed to the listed fFC values. The results are shown
in Fig. 21. All results now lie close to the perfect x = y line
within the statistical error. This shows that, having in mind the
caveat mentioned previously, the analysis technique is able
to produce reliable results, and the results of the experimental
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FIG. 21. (Color online) Same as Fig. 19, but the fit procedure was
done with adjusted purity values (see text for details).
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FIG. 22. (Color online) Fitted parameters for all pair types, versus
centrality. (a) System size (σ ); (b) emission asymmetry (µ). Colors
and symbols are the same as in Fig. 19. The bands represent the change
in the fit parameters as the fixed purity P is changed by ±0.05 for
pion-kaon and pion-proton pairs and by ±0.03 for kaon-proton pairs.

fitting procedure do indeed provide valuable information about
the particle-emitting source. In particular, both the direction-
averaged size of the source and the emission asymmetry can
be reliably recovered.

The inherent uncertainty in the determination of fFC is the
source of the systematic error introduced by the method itself.
In Fig. 22 we show how the fit value changes when the purity
is varied within a reasonable range (±0.05 for pion-kaon and
pion-proton and ±0.03 for kaon-proton). This results in the
following systematic uncertainties in the obtained values: for
same-sign pion-kaon, 7% on σ and 7% on µ; for opposite-sign
pion-kaon, 7% on σ and 4% on µ; for same-sign pion-proton,
8% on σ and 6% on µ; for opposite-sign pion-proton, 7% on
σ and 4% on µ; and for same-sign kaon-proton, 5% on σ and
4% on µ.

We note that the fFC estimation presented here is specific
to THERMINATOR and represents the uncertainty within this
model itself. In addition, the absolute value as well as an
estimated uncertainty of fFC can be different in other models,
for example, in rescattering codes. The total systematic
uncertainty of the experimental measurement should take this
model dependence into account. In addition, the experimental
purity, that is, the efficiency of particle identification, will also
contribute to the same uncertainty.

VII. RESULTS OF “EXPERIMENTAL-LIKE” ANALYSIS

In Sec. V we described, in detail, the experimental
procedure to analyze nonidentical-particle correlations. For
the model analysis of the THERMINATOR output, we used the
complete two-particle method for calculating the correlation
function and obtained the pion-kaon, pion-proton, and kaon-
proton correlation functions. They are, from the point of view
of a formalism and our analysis methods, identical to the
correlation functions that one might obtain in the experiment.
We calculated sets of 1D histograms that correspond to
these functions represented in SH. We neglected the strong
interaction component of the pair wave function for simplicity
and speed of calculation. Then we switched this effect off
in the fitting procedure as well. Obviously, when fitting
the true experimental functions, one will use the full pair
wave-function calculation. The strong interaction effect is
known to be small compared to the Coulomb for the pairs
of interest, so we do not expect any systematic effect on
the fit values coming from this simplification. In addition, in

the real experimental correlation function, one expects some
nonfemtoscopic effects in addition to the pure femtoscopic
one. These need to be dealt with on a case-by-case basis, as
they will strongly depend on experimental conditions. For this
discussion we assume that any such effects can be identified
and that the experimental correlation function can be properly
corrected, so that only the femtoscopic effect remains.

We proceeded to treat the calculated correlation functions
as if they were coming from the experiment. No other informa-
tion, except for the pair purities, is used in the procedure. For
purity correction we used the values listed in Table V, as we
would have done in the real data analysis. The goal of the ex-
ercise is to confirm that the obtained “experimental fit values”
actually correspond to the true values, shown in the previous
section and obtained directly from the emission functions. The
example correlation functions together with the fitted “model”
ones are shown in Fig. 23. For pion-kaon and pion-proton pairs,
one can see a positive correlation effect for opposite-sign pairs
and a negative one for same-sign pairs. The 	C1

1 components
also show a mirror effect. For kaon-proton pairs the correlation
effect starts at a larger k∗ (is wider) and is more pronounced,
as expected from the lower Bohr radius for this pair. The lines
show the functions fitted with the CORRFIT program.

The fitting described in Sec. IV assumes that the source
is a 3D Gaussian in an LCMS. The direct output of the
fitting procedure is the size of the system in the out direction
σf and the emission asymmetry µf in that direction. From
these values one can calculate, via the relations specified
in the Appendix, all the other source size characteristics. In
the fitting procedure each pair is treated individually, so its
velocity is known. One can therefore directly determine the
direction-averaged source size in the PRF: there is no need
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FIG. 23. (Color online) Example of the correlation functions
calculated with the THERMINATOR + LHYQUID model for central
Au + Au collisions. (a, c, e) C0

0 components; (b, d, f) 	C1
1 . Filled

circles are same-sign pion-kaon pairs; open circles, opposite-sign
pion-kaon pairs; filled squares, same-sign pion-proton pairs; open
squares, opposite-sign pion-proton pairs; triangles, same-sign kaon-
proton pairs. Lines show the best-fit “model” correlation functions.
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FIG. 24. (Color online) Source parameters in the PRF for pion-
kaon pairs obtained from the “experimental” fitting procedure.
(a) Source size; (b) emission asymmetry. Circles represent same-sign
pairs; triangles, opposite-sign pairs. The star is a STAR measurement
[39] at

√
sNN = 130 GeV; the line represents statistical + systematic

error (see text for details).

to use the averaged pair velocity in transformation from the
LCMS to the PRF, as in Eq. (A15). In Figs. 24–26 we plot
this directionally averaged radius in the PRF, R∗

av. One must
choose one of the three equivalent values, σf , RL

av, and R∗
av,

for presentation of the results. When we present the results of
our calculations, we choose R∗

av, as it is more natural than σf
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FIG. 25. (Color online) Source parameters in PRF for pion-proton
pairs obtained from the “experimental” fitting procedure. (a) Source
size; (b): emission asymmetry. Squares represent same-sign pairs;
triangles, opposite-sign pairs.
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FIG. 26. (Color online) Source parameters in the PRF for kaon-
proton pairs obtained from the “experimental” fitting procedure.
(a) Source size; (b) emission asymmetry.

(which requires the knowledge of other direction multipliers
to be meaningful) and describes the emission function in
the PRF, so there is no need for the assumptions required
in the LCMS-to-PRF transformation. In contrast, the 3D
identical-particle femtoscopy analysis produces source sizes
directly in the LCMS, so if we want to compare to these
results, we will use RL

av.
In Fig. 24 we show the experimental-like fit results R∗

av
for pion-kaon pairs. This should be compared to the “true”
values in Fig. 6. The correlation between “true” and “fitted”
values is also shown directly in Fig. 21. We can see that even
with all the assumptions and simplifications that are used in
the fitting procedure, one is able to recover the true system
size. The accuracy for same-sign pion-kaon function is 8%;
for opposite signs it is 5%, with the largest deviation of 10%.
These are comparable to the statistical error of the fit. For the
asymmetry, the “input” and “fit” values were identical within
10%. All results were in agreement within the statistical error
of the fit.

A single measurement is available for the pion-kaon system
at the RHIC, made by STAR at

√
sNN = 130 GeV [39]. To

compare it with the values presented in Fig. 24, we needed to
account for two effects. The measurement was corrected for
a fraction of nonprimary particles (particles not coming from
the primary vertex), which is an experimental correction. But it
was not corrected for noncorrelated primary pairs, a correction
that we have described in this work. Taking the dependency
in Fig. 17 as a guideline and the purity estimate of 0.85 for a
pion-kaon pair in central Au + Au, we have scaled the reported
system size and asymmetry accordingly. Moreover, the fitting
performed in Eq. [39] assumed a specific shape (size equal
in the out, side, and long directions in the PRF), from which
we recalculated R∗

av, to be compared with results in this work.
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FIG. 27. (Color online) Comparison of overall size obtained from
the nonidentical-particle calculation with the RHIC data for central
Au + Au collisions at 200 GeV/c. Filled circles represent (from left
to right) single-particle pion, kaon, and proton radii inferred from
nonidentical simulations (centrality 5%–10%); open triangles are
pion radii from STAR [90] (centrality 0–5%); open squares are pion
radii from PHENIX [91] (centrality 0–30%); and open diamonds are
proton results from STAR [87] (centrality 0–10%).

The measurement was done at a colliding energy different
from the one considered in this work, so we plot the result at
a corresponding Npart. One can see that the system size is in
perfect agreement with the model predictions in this work; the
asymmetry seems to be slightly smaller than the prediction,
but in agreement within the statistical + systematic error.

In Fig. 25 the same results are shown for pion-proton
pairs. The accuracy of the system size determination is 5%,
comparable to the statistical fit error. The asymmetry is
reproduced with poorer quality, with discrepancies of up to
12%, comparable to the statistical error.

In Fig. 26 the results are shown for kaon-proton pairs.
The system size determination is good: 3%, better than
the statistical fit error. The asymmetry is reproduced with
discrepancies of up to 15%; however, because the absolute
values are small (compared to the pion-kaon and pion-proton
case), the absolute value of the difference is comparable to the
systematic error of the fit. We conclude that the system size
and the emission asymmetry can be reliably recovered, with
the systematic error owing to the procedure itself less than
10%. However, one must correctly determine the systematic
error owing to the pair purity estimation as well. We note that
tests of the method have been performed for the THERMINATOR

model only, so they are not necessarily general. However, the
tests were done for many centralities (system sizes) and pair
types, and the method was found to work in all cases, so we
have some confidence that it should work for other models as
well. One possibility for further studies is to perform similar
tests with a model that introduces particle rescatterings.

One would also like to compare the results of nonidentical-
particle correlations with the wealth of data coming from
femtoscopic analysis at the RHIC. This presents a complica-
tion, as the identical-particle femtoscopy is usually presented
in 3D form as single-particle “HBT radii” Rout, Rside, and
Rlong, while for analysis in this work, we have the averaged
two-particle source size σf and emission asymmetry µ

f
out

only. From its definition we conclude that, for example, σ
f
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FIG. 28. (Color online) Single-particle source sizes inferred
from the nonidentical simulations versus centrality. Filled symbols
represent LCMS sizes; open symbols (shifted for clarity), for PRF
sizes. Circles denote pions; squares, kaons; stars, protons.

should correspond to the variance of convolution of two
Gaussians: one with variance of Rout for pions and the other
with variance of Rout for kaons at the same velocity. Both the
identical-particle R’s and the nonidentical σf are defined in the
LCMS. Again, we refer the reader to the Appendix for explicit
relations between the two. From the input data (either Rout,
Rside, and Rlong in the LCMS for identical particles or σf and
µf for nonidentical particles), we calculate the directionally
averaged source size RL

av. By comparing these values, defined
in the LCMS, as opposed to the Rinv defined in the PRF,
we avoid the unnecessary approximation coming from the
determination of the averaged pair velocity, needed for the
determination of 〈γ 〉. This comparison is made in Fig. 27,
where data from most central Au + Au collisions are shown.
The open symbols are experimental data for pions, kaons,
and protons. The filled symbols are single-particle source
sizes inferred from fits to the nonidentical-particle correlation
functions calculated with THERMINATOR. One can see a very
good agreement between the model prediction and the data.
All data points follow the “mT scaling” trend predicted by
hydrodynamics. A direct comparison of nonidentical-particle
sizes and asymmetries between model and data would be an
even better test. However, we stress that such comparisons
can only be made provided that other observables related to
source dynamics, such as, for example, particle spectra, elliptic
flow, and identical-particle femtoscopy, are reproduced in the
model. These tests have been performed for THERMINATOR in
earlier works [26,50].
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FIG. 29. (Color online) Emission asymmetry consistency cross-
check versus centrality. Filled circles represent all particles; open
circles (shifted for clarity), primordial particles only.
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We have calculated the single-particle source sizes for all
centralities and plotted them in Fig. 28. An ordering of source
sizes with particle mass is seen, as expected, as well as an
increase in the overall source size with Npart. Sizes for the PRF
are larger, as the out radius is scaled by the 〈γt 〉 factor.

As a final cross-check we show in Fig. 29 that the emission
asymmetries do add up to 0 within the systematic error of the
measurement.

VIII. CONCLUSIONS

The THERMINATOR + LHYQUID model has been briefly
introduced and shown to have a unique set of features: hydro-
dynamic expansion and inclusion of resonance propagation
and decay for all known particle types. Both features are
important for nonidentical-particle femtoscopy. Simulations
with this model provided predictions for emission asymmetries
between particles of different masses and validated the analysis
methods of nonidentical-particle femtoscopy.

We have emphasized the importance of the emission
asymmetry measurement and provided predictions for RHIC
energies. We showed that “emission asymmetry,” or the
nonzero difference in the mean emission points of particles
of the same velocity but different masses, is predicted to arise
in hydrodynamical calculations. It was shown to be intimately
related with the collective behavior of matter and to be a direct
consequence of the x-p correlations. It is the most direct
and unambiguous femtoscopic signal of such behavior and
provides an independent strong constraint on models aiming
to describe the space-time evolution of a heavy-ion collision.
Specific predictions, both qualitative and quantitative, have
been given for such asymmetries, for all the considered pair
types (pion-kaon, pion-proton, kaon-proton). It was shown
that the lighter particle is always emitted closer to the center
of the source, giving a negative emission asymmetry µout

in the out direction. Predictions of the size of the source,
including the dependence on centrality, have also been given,
which were cross-checked with the more precise results from
identical-particle femtoscopy.

The influence of strongly decaying resonances on emission
asymmetries has also been studied in detail. It was shown
that, because of a specific combination of decay kinematics
properties for particles of different masses, the emission
asymmetry produced by an earlier hydrodynamic stage is
further magnified. At the same time the resonance decay
process alone produces emission asymmetry an order of
magnitude smaller than the x-p correlation, so it cannot be
used as an alternative explanation of the phenomenon.

We have presented, in some detail, the theoretical basis and
some technical aspects of nonidentical-particle femtoscopy, to
be used in ultrarelativistic heavy-ion collisions. In particular,
it was shown how to access the “emission asymmetry,” a piece
of femtoscopic information that can only be accessed via this
type of analysis. It was pointed out that SH representation of
the correlation function has useful synergies with the analysis;
the use of this representation is strongly advocated. Important
corrections to the correlation function were identified, namely,
pair purity and momentum resolution, and experimentalist

recipes were given for applying them to real data. Extracting
femtoscopic information from the nonidentical-particle corre-
lation function requires a numerical fitting procedure. It was
described in detail and implemented as a computer code. It
was also shown that, after application of the proper purity
correction, the fit procedure was able to recover the “true”
model input values, which was an important validation of the
method.

An estimate of the “fraction of correlated pairs,” coming
from the significant non-Gaussian shape and long-range tails
in the pair separation distributions, has been obtained, based
on the THERMINATOR simulation. The value can be an input
to an experimental analysis of RHIC data, however, one must
keep in mind that it is model dependent. The systematic error
coming from this theoretical estimate was also given.

Finally, the “experimentalist” analysis procedure, described
in the paper, has been applied to the correlation functions
obtained from the model calculations. It was shown that the
method reliably recovers the input model values in realistic
conditions. Internal consistency cross-checks were proposed
and tested. A way to compare results of nonidentical- particle
femtoscopy and femtoscopic sizes from identical-particle
analysis has been presented; the THERMINATOR predictions
were shown to be in agreement with available identical-particle
HBT radius results from the RHIC.
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APPENDIX A: EMISSION FUNCTION MEASURES

In femtoscopy one considers pairs of particles. Of particular
interest are observables related to their relative separation
r . We refer the reader to the beginning of Sec. III for the
description of symbol conventions, the reference system, and
the relevant reference frames. The transition from the LCMS
to the PRF is simply the boost along the outward direction,
with the transverse velocity of the pair βt :

r∗
out = γt (rout − βt
t) ,

r∗
side = rside,

(A1)
r∗

long = rlong,


t∗ = γt (
t − βtrout) .

However, in our calculation we always use the equal-time ap-
proximation, which means that we neglect the time difference

t∗ in the PRF. From the components we also calculate the
length of the relative separation vector:

r∗ ≡ rinv =
√

r∗
out

2 + r∗
side

2 + r∗
long

2. (A2)

The two-particle emission function is, from a mathematical
point of view, any function of the separation four-vector,
S(
x), where 
x = {
t, r} can be expressed in any reference
frame. In femtoscopy we use specific functional forms of S,
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which are characterized by parameters. One must keep in
mind that even though the relation between relative separation
r values in the LCMS and those in the PRF is given by
a simple equation, Eq. (A1), the relations between source
function parameters (R’s and µ) in these reference frames
may not be as simple. Moreover, even if there exists a simple
parametrization of the source in 3D variables (rout, rside, rlong),
this does not mean that this source distribution expressed in the
magnitude of the relative separation r will also have a simple
parametric form. The aim of this Appendix is to derive relations
between commonly used source function parameters, defined
in various reference frames, as well as between 3D and 1D
representation parameters. Similar considerations for different
source parametrizations have been done in the past [92].

We must also repeat the description of Eq. (21), where we
state that the two-particle emission function SAB is (in the case
of independent emission) a convolution of two single-particle
emission functions. Let us emphasize this complication of
the femtoscopic measurement: we are interested in the single-
particle emission functions, as they directly characterize the
source. In contrast, femtoscopy provides information about the
two-particle (or relative) emission functions only. Moreover,
the convolution procedure of Eq. (21) is not reversible. It
means that, in a strict mathematical sense, one cannot recover
the full information about individual single-particle emission
functions by measuring only the separation distribution. Nev-
ertheless, in femtoscopic measurements, reasonable additional
assumptions can be made and we are able to recover some of
the information. In this Appendix we discuss how to extract
the single-particle emission function parameters from the
measured two-particle ones.

A. Traditional emission function parametrizations

We list here the traditional functional forms of the emission
function that are used in femtoscopy and list their parameters.
The easiest is the 1D “Rinv” parametrization:

SP
1D(r∗) ≡ dN

d3r
= exp

(
− r∗

out
2 + r∗

side
2 + r∗

long
2

4Rinv
2

)
,

(A3)

SP
1D(r∗) ≡ dN

dr∗ = r∗2 exp

(
− r∗2

4Rinv
2

)
.

Note that the formulas neglect the 
t∗ dependence, which
is possible thanks to the equal-time approximation in the
PRF, allowing one to neglect the 
t∗ dependence of |�|2.
The change from the 3D variables to the 1D one requires
the introduction of the proper Jacobian. Let us also explain
the factor of 4 before the “Gaussian σ” Rinv instead of the
usual 2. It is a particular property of a Gaussian distribution
that a convolution of two Gaussians is also a Gaussian, with
its σ being the quadratic sum of the σ ’s of the individual
distributions. The Rinv parametrization is used for identical
particles, for which Eq. (21) can be simplified by noting
that both emission functions are the same. If ones assumes
that a single-particle emission function is a Gaussian, then
the two-particle one is also a Gaussian with σ multiplied
by

√
2. Therefore, by fitting the two-particle distribution

with the functional form, Eq. (A3), one conveniently obtains

the single-particle σ : the Rinv. Therefore, the Rinv “HBT
radii” reported by experiments are the single-particle emission
function Gaussian widths, where the emission function is
assumed to be a 3D Gaussian in the PRF.

A more sophisticated emission function form, used by
all RHIC and SPS experiments to report identical pion
femtoscopy results, is

SL
3D(r) = exp

(
− rout

2

4RL
out

2 − rside
2

4RL
side

2 − rlong
2

4RL
long

2

)
. (A4)

We again note the factor of 4 before the σ ’s, making them
the single-particle widths. The important difference is that this
emission function has three independent widths, RL

out, RL
side,

and RL
long, and they are defined in the LCMS (hence the L

superscript), not in the PRF. Note that, unlike in the PRF, we
do not use the equal-time approximation in the LCMS. For
identical particles this is not a problem: only the Coulomb part
of the wave function depends on 
t , but it is factorized out
in the usual fitting procedures and replaced with the averaged
value. For nonidentical particles one can adopt one of two
approaches. One can continue to use Eq. (A5) to be consistent
with identical-particle femtoscopy, but in this case the 
t

spread will be absorbed into the three spatial radii. Or one
can add a fourth component with a time spread to Eq. (A5).
Because we aim to compare the results from nonidentical- and
identical-particle analysis, and as we are, in any case, only
able to recover the dimensionally averaged source size for
nonidentical particles, we choose the first solution.

For nonidentical particles we must make one additional
modification: the mean emission point should be allowed to
differ from 0, at least in the out direction. Moreover, the simple
connection between the single- and the two-particle sizes is
no longer possible, as the underlying single-particle emission
functions are now different:

S
L,N
3D (r) = exp

(
−

(
rout − µL

out

)2

2RL
out

2 − rside
2

2RL
side

2 − rlong
2

2RL
long

2

)
.

(A5)

We introduced an additional parameter—the mean of the
distribution in the out direction µL

out, and the source sizes are
now the two-particle ones.

To facilitate the comparison between 1D and 3D source
sizes in the LCMS, we also introduce the emission function
with one, directionally averaged, source size in the LCMS,
RL

av:

S
L,N
1D (r) = exp

(
−

(
rout − µL

out

)2 + rside
2 + rlong

2

2RL
av

2

)
. (A6)

B. Relating one-dimensional and three-dimensional source sizes

Nonidentical-particle femtoscopy has been, so far, limited
to measurement of the directionally averaged source size RL

av.
A question arises: What is the relation between RL

av and three-
dimensional source sizes Rout, Rside, and Rlong? Let us write
explicitly the form of the emission function in the magnitude
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of r:

SL
3D(r) =

∫
exp

(
− r2

out

2RL
out

2 − r2
side

2RL
side

2 − r2
long

2RL
long

2

)

× δ
(
r −

√
r2

out + r2
side + r2

long

)
droutdrsidedrlong.

(A7)

To find the 1D source size corresponding to the 3D ones, we
assume that the preceding distribution can be approximated by

SL
1D(r) = r2 exp

(
− r2

2RL
av

2

)
. (A8)

First, let us note that SL
3D simplifies exactly to SL

1D only in the
special case of RL

out = RL
side = RL

long, in which case RL
av = RL

out.
If this condition is not met, the SL

3D is not a Gaussian in r , and
the exact mathematical relation between the 1D and the 3D
sizes does not exist. Nevertheless, for realistic values of radii,
SL

3D is not very different from a Gaussian and can be well
approximated by SL

1D. One can find an effective approximate
relation between RL

av and (RL
out, R

L
side, RL

long) numerically in the
following way. One generates a significant sample of triplets
(rout, rside, rlong), where rout is randomly generated from a
Gaussian of width RL

out, rside with width RL
side, etc. Then one

constructs a distribution S(
√

r2
out + r2

side + r2
long), to which one

fits numerically the functional form, Eq. (A8). The result of
the fit, RL

av, is the approximate 1D source size that we seek.
We may also want to restrict the fit range to small values of r

to minimize the dependence on non-Gaussian features, which
will mostly affect the large-r region. We have performed such
calculations and concluded that the approximate relation is

RL
av =

√(
RL

out
2 + RL

side
2 + RL

long
2)/

3. (A9)

Note that the pair velocity does not enter into the derivation,
so it is equally valid for the LCMS and the PRF.

In addition, in nonidentical-particle femtoscopy one is able
to access the first moments of the source distribution. Then
S has the general form S(RL

out, R
L
side, R

L
long, µ

L
out, µ

L
side, µ

L
long).

Owing to symmetry relations, µL
side must vanish. For collider

experiments with symmetric rapidity acceptance, µL
long van-

ishes as well, which leaves one additional parameter, µL
out. By

performing a numerical procedure very similar to the one in
the previous paragraph (the only difference being that the rout

is now randomly generated from a Gaussian with the mean
of µL

out), we obtained an equivalent approximate effective
relation:

RL
av =

√(
RL

out
2 + RL

side
2 + RL

long
2)/

3 + 0.3µL
out

2
. (A10)

C. Relating single-particle and two-particle sizes

As already mentioned for identical particles, the relation
between two-particle and single-particle sizes is a trivial

√
2

factor if the assumption of a Gaussian emission function is
made. For nonidentical particle sizes such a simple connection
is not possible, and even an approximate one can only be
made after certain simplifications are done. Let us assume

that the two particle types, A and B, are emitted according to
the emission functions SA and SB , which are Gaussians. The
two-particle emission function is then

SAB(r) =
∫

exp

(
−

(
xA

out − µA
out

)2

2RA
out

2 − xA
side

2

2RA
side

2 − xA
long

2

2RA
long

2

)

× exp

(
−

(
xB

out − µB
out

)2

2RB
out

2 − xB
side

2

2RB
side

2 − xB
long

2

2RB
long

2

)

× δ
(
rout − xA

out + xB
out

)
dxA

outdxB
out

× δ
(
rside − xA

side + xB
side

)
dxA

sidedxB
side

× δ
(
rlong − xA

long + xB
long

)
dxA

longdxB
long. (A11)

Performing the integration and neglecting the unimportant
normalization constants, one obtains

SAB = exp

(
−

[
rout − (

µA
out − µB

out

)]2

2
(
RA

out
2 + RB

out
2)

)

× exp

(
− r2

side

2
(
RA

side
2 + RB

side
2)

)

× exp

(
r2

long

2
(
RA

long
2 + RB

long
2)

)
, (A12)

which immediately gives µAB
out = µA

out − µB
out and RAB

x =√
RA

x
2 + RB

x
2, as expected. Obviously, one cannot recover the

two single-particle source sizes from the one two-particle size.
However, in this work we have calculated three independent
two-particle sizes: for pion-kaon, pion-proton, and kaon-
proton systems. Therefore we have a set of three equations,
Eqs. (A12), with A and B being π and K in the first one, π and
p in the second one, and K and p in the third one, respectively.
This set of equations has three unknowns, the single-particle
source sizes, Rπ , RK , and Rp, so we can solve it to calculate
them.

The procedure has to be carried out in a few steps. We
start with the fit values σf . From this we calculate the
approximate overall averaged source size Rav

f , following our fit
assumptions: Rout = σf , Rside = σf , and Rlong = 1.3σf . With
these values we write the set of equations for the particle source
sizes:

σπK
f =

√
σπ

f
2 + σK

f

2
,

σ
πp

f =
√

σπ
f

2 + σ
p

f

2
, (A13)

σ
Kp

f =
√

σK
f

2 + σ
p

f 2,

and solve it, obtaining

σπ
f =

√(
σπK

f

2 + σ
πp

f

2 − σ
Kp

f

2)/
2,

σK
f =

√(
σπK

f

2 − σ
πp

f

2 + σ
Kp

f

2)/
2, (A14)

σ
p

f =
√(−σπK

f

2 + σ
πp

f

2 + σ
Kp

f

2)/
2.
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From these fit parameters one then calculates the directionally
averaged single-particle radius RL

av with Eq. (A9); σf is treated
as RL

out. These can be compared to the RL
av directionally

averaged radius in the LCMS, which can be calculated with
Eq. (A9) from the single-particle 3D HBT radii published by
the RHIC experiments.

D. Dealing with non-Gaussian source functions

Let us now consider a non-Gaussian source, as it is evident,
for example, from this work, that realistic models predict
that the emitting source will not have a perfect Gaussian
shape. However, the two-particle emission function, defined
as a convolution of two single-particle sources, is required
to be closer to Gaussian than the single-particle functions.
And the single-particle functions themselves, even though
non-Gaussian, are not very different: they usually have a large
peak and some long-range tails. From this we conclude that
even though we know that the two-particle source function is
not Gaussian, we may assume that it will have Gaussian-like
features: it will have a peak, and the distribution around that
peak can be reasonably approximated by a Gaussian. It will
also usually have long-range non-Gaussian tails. This means
that we can define two variables that can be used as measures
of the variance: either the RMS of the distribution or the σ of
a Gaussian fit to the peak structure in the emission function.
For the study of nonidentical-particle averaged sizes, σ is the
proper variable to use. This is because pair wave functions,
which are the source of femtoscopic correlation, contain strong
structures near 0 r∗, while at large r∗ they do not produce any
correlation. In contrast, the RMS of the distribution will be
very sensitive to the long-range tails, which is undesirable in
our case. Therefore we define that the “femtoscopic size” R

for a non-Gaussian emission function is simply the σ of a
Gaussian fitted to the two-particle emission function near its
peak.

E. Obtaining Rav from models

In models we know the emission function exactly. Therefore
we can infer Rav directly from it. We do this numerically, in
a manner very similar to the one demonstrated in previous
sections. First, we determine the probability distributions for
various components of r: fo(rout), fs(rside), and fl(rlong). For
the THERMINATOR calculation, discussed in this work, we have
found that fo has the form of Eq. (38), fs is Gaussian, and fl

has the form of Eq. (37). Now we proceed with the generation
of triplets, construction of the S(r), and numerical fitting to
obtain Rav. This Rav can then be directly compared to the Rav

obtained from the “experimental” fitting procedure described
above.

F. Relations between source sizes in a longitudinally comoving
system and the pair rest frame

We can write approximate relations between source sizes
in the two reference systems:

R∗
out = Rout 〈γt 〉 ,

R∗
side = Rside,

(A15)
R∗

long = Rlong,

µout = 〈γt 〉 µL
out.

Using Eqs. (A9) and and (A10), one can obtain the relations
for the averaged 1D radius R∗

av as well. One must also
independently determine the 〈γt 〉 for the pair sample used in a
given analysis.
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