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Anomalous soft photons in hadron production
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Anomalous soft photons in excess of what is expected from electromagnetic bremsstrahlung have been
observed in association with the production of hadrons, mostly mesons, in high-energy K+p, π+p, π−p, pp,
and e+e− collisions. We propose a model for the simultaneous production of anomalous soft photons and mesons
in quantum field theory, in which the meson production arises from the oscillation of color charge densities of
the quarks of the underlying vacuum in the flux tube. Because a quark carries both a color charge and an electric
charge, the oscillation of the color charge densities will be accompanied by the oscillation of electric charge
densities, which will in turn lead to the simultaneous production of soft photons during the meson production
process. How the production of these soft photons may explain the anomalous soft photon data is discussed.
Further experimental measurements to test the model are proposed.
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I. INTRODUCTION

Anomalous soft photons are soft photons in excess of
what is expected from electromagnetic bremsstrahlung. They
have been observed in conjunction with the production of
hadrons, mostly mesons, in K+p [1,2], π+p [2], π−p [3–5],
and pp collisions [6] and in high-energy e+-e− annihilations
in Z0 hadronic decay [7–9]. Recent DELPHI measurements
on the characteristics of the produced hadrons associated
with the anomalous soft photon production provide a wealth
of information on the production process [7–10]. The main
features of the anomalous soft photon phenomenon can be
summarized as follows.

(i) Anomalous soft photons are produced in association
with hadron production at high energies. They are
absent when there is no hadron production [10].

(ii) The anomalous soft photon yield is proportional to the
hadron yield.

(iii) The transverse momenta of the anomalous soft photons
are in the region of many tens of MeV/c.

(iv) The anomalous soft photon yield increases approxi-
mately linearly as the number of neutral or charged
produced particles increases, but the yield of anomalous
soft photons increases much faster with increasing
neutral particle multiplicity than with charged particle
multiplicity.

Previously, many different theoretical models have been
put forth to explain the anomalous soft photon phenomenon.
Reviews of the experimental results and theoretical models
have been presented [11,12]. There are models based on
the assumption of a cold quark gluon plasma [13], a boost-
invariant classical flux tube [14], gluon dominance [15],
the Unruh-Davies effect [16], synchrotron radiation in the
stochastic nonperturbative QCD vacuum [17], the classical
string fragmentation [18], a closed quark-antiquark loop [19],
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and the ADS/CFT Supersymmetric Yang-Mills theory [20].
These different proposed models are useful to indicate that,
to search for the source of the anomalous soft photons, it is
necessary to go beyond the electromagnetic bremsstrahlung
process. While the various models may explain some features
of the process, the fourth feature listed previously from
the recent DELPHI observations cannot be explained by all
existing models [8,9]; a complete understanding of the basic
origin of the anomalous soft photon is still lacking.

We would like to propose a model for the simultaneous
production of hadrons and anomalous soft photons in the q-q̄
string fragmentation in quantum field theory to explain the
anomalous soft photon phenomenon. As described by Casher,
Kogut, and Susskind [21], the production of mesons in such
a theory arises from the oscillation of color charge densities
of the quark vacuum in the flux tube when a quark and an
antiquark (or a diquark) pull away from each other at high
energies. These color charge density oscillations obey the
Klein-Gordon equation characterized by the mass of the meson
[21–31]. Because a quark carries both a color charge and an
electric charge, the underlying dynamical motion of the quarks
in the vacuum that generate color charge density oscillations
will also generate electric charge density oscillations in the
flux tube. These color charge density oscillations will lead to
the production of photons that are clearly additional to those
from the electromagnetic bremsstrahlung process. Thus the
oscillation of the quark densities in the vacuum will lead to
the simultaneous color and electric charge density oscillations
and will subsequently lead to simultaneous and proportional
production of mesons and anomalous photons, in agreement
with the first two features of the anomalous soft photon
phenomenon listed at the beginning of this section.

It is of interest to examine whether the model also leads
to results that will be consistent with the remaining features
of the anomalous soft photon production phenomenon. For
such a purpose, we need to know the properties of these
electric charge density oscillations of the quarks in the flux
tube. Will the electric charge density oscillations also obey
the Klein-Gordon equation characterized by a mass to give
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rise to stable photons in the flux tube environment? If these
photons are stable, what are the magnitudes of their masses
and how do the masses depend on the quantum numbers and
other physical properties? If they are produced, how are they
observed experimentally in four-dimensional space-time?

To answer these questions, we start with quarks interacting
with both QCD4 and QED4 interactions in four-dimensional
space-time in Sec. II. We specialize to the case of the flux
tube formation for high-energy particle production processes
under longitudinal dominance and transverse confinement.
The system can then be approximately compactified into a
QCD2 × QED2 system in two-dimensional space-time, with
the coupling constants in different space-time dimensions
related by the flux tube radius. In Sec. III, we examine the
non-Abelian bosonization of the QCD2 × QED2 system. We
find stable QCD2 and QED2 bosons for quarks with two flavors
arising from the density oscillations of the quarks in the flux
tube. These bosons can be identified as QCD2 mesons and
QED2 photons. The boson masses are then expressed as a
function of the coupling constants and the quark transverse
mass. In Sec. IV, we estimate the coupling constants and the
boson masses for the case of the Z0 hadronic decay. Because
QCD2 mesons and QED2 photons are stable in the flux
tube environment, we can infer from the quantum field theory
description of the particle production process in Ref. [21] that
these QCD2 mesons and QED2 photons will be produced
simultaneously in q-q̄ string fragmentation. The present model
for the production of anomalous soft photons can also be
conveniently called the QED2 photon model. In Sec. V, we
discuss the adiabatic decompactification of produced photons
and mesons from two-dimensional space-time to particles
in four-dimensional space-time. In Sec. VI, we investigate
how the QED2 model of photon production may explain the
experimental anomalous soft photon transverse momentum
distributions. In Sec. VII, we examine the rates of QED2 meson
and QED2 photon production and the correlation of the soft
photon yield with charge and neutral particle multiplicities.
In Sec. VIII, we suggest future experimental measurements
to test the QED2 photon model. In Sec. IX, we present our
conclusions and discussions.

II. FLUX TUBE ENVIRONMENT IN HIGH-ENERGY
PARTICLE PRODUCTION PROCESSES

We wish to investigate the process of soft photon production
in association with hadron production, in which the produced
hadrons consist mostly of mesons. In the quantum field theory
description of the meson production process as analogous to
the particle production process in quantum electrodynamics
in two dimensions (QED2), mesons that are stable within
the theory will be produced along the string, when a quark
and an antiquark at the two ends of the string pull apart
at high energies [21–25]. The rapidity distribution of these
produced mesons exhibits the property of boost invariance in
the limit of infinite energies [21,26,27]. For a finite energy
system, the boost-invariant solution turns naturally into a
rapidity plateau, whose width increases with energy as ln(

√
s)

[28,29].

The q-q̄ string is an idealization of a flux tube with a trans-
verse profile, which reveals itself as the transverse momentum
distribution of the produced particles [32]. Experimentally, the
presence of a flux tube is evidenced by the limiting average
transverse momentum and a rapidity plateau [18,21,26–32] as
in high-energy e+-e− annihilations [33–37] and pp collisions
[38].

To investigate the simultaneous production of QCD and
QED quanta in the flux tube fragmentation, we study quarks
interacting with both QCD and QED interactions, in circum-
stances leading to the formation of the flux tube. It becomes
convenient to consider the U(3) group, which breaks up into
the color SU(3) and the electromagnetic U(1) subgroups. The
SU(3) and U(1) subgroups differ in their coupling constants
and communicative properties. We introduce the generator t0

for the U(1) subgroup,

t0 = 1√
6

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , (1)

which adds on to the eight generators of the SU(3) subgroup,
{t1, . . . , t8}, to form the nine generators of the U(3) group.
They satisfy tr{tαtβ} = δαβ/2 for α, β = 0, 1, . . . , 8.

Limiting our consideration to quarks with two light flavors,
we examine the QCD4 × QED4 system in four-dimensional
space-time xµ, with µ = 0, 1, 2, and 3. The dynamical
variables are the quark fields, ψa

f , and the U(3) gauge fields,
Aν = Aα

ν tα , where a is the color index with a = 1, 2, and 3;
f is the flavor index with f = u and d; and α is the U(3)
generator index with α = 0, 1, . . . , 8. The coupling constants
gα

f depend on α and f and are given explicitly by

g{1,...,8}
u = g

{1,...,8}
d = gQCD4, for QCD, (2)

g0
u = −eu = −QueQED4

(3)
and g0

d = −ed = −QdeQED4, for QED,

with Qu = 2/3 and Qd = −1/3. We use the convention
of summation over repeated indices, but the summation
symbol and indices are occasionally written out explic-
itly to avoid ambiguities. For brevity of notations, the
indices a, f , and α in various quantities are implicitly
understood except when they are needed. For example,
the b-color component of (gAµψ)b written explicitly is∑

f =u,d

∑
α=0,...,8

∑
a=1,2,3 gα

f Aα
µ(τα)baψa

f .
The transverse confinement of the flux tube can be

represented by quarks moving in a transverse scalar field
m(r), where m(r) = S(r) + (current quark mass mq) and S(r)
is the confining scalar interaction arising from nonperturbative
QCD. The equation of motion of the quark field ψ is

{iD/ − m(r)}ψ = 0, (4)

where

iD/ = γ µ	µ = γ µ(pµ + gAµ). (5)

The equation of motion for the gauge field Aµ is

DµFµν = ∂µFµν − ig[Aµ, Fµν] = gjν, (6)
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where

Fµν = ∂µAν − ∂νAµ − ig[Aµ,Aν], (7)

Fµν = Fα
µνt

α, j ν = jναtα, (8)

jνα = 2trψ̄f γ νtαψf . (9)

Because of the commutative properties of the t0 generator, the
commutator terms in Eqs. (6) and (7) give zero contributions
for QED. This set of equations describes the coupling of the
QCD and QED gauge fields and the quark fields, including
those in the quark vacuum. The self-consistent coupling of
these fields leads to a problem of great complexity. Fortunately,
they can be simplified under the conditions of longitudinal
dominance and transverse confinement that exist in the particle
production environment at high energies [31].

This set of coupled equations in four-dimensional space-
time for QCD4 × QED4 with the U(3) interaction has the
same mathematical structure as our previous set for QCD4
with the SU(3) interaction [31]. Because the approximate
compactification depends on the separation of the transverse
and the longitudinal degrees of freedom and is indepen-
dent of the nature of the underlying gauge group, there
should be similar approximate compactification of QED4 ×
QED4 into QCD2 × QED2. We briefly summarize the salient
points leading to such an approximate compactification
[31].

In the problem of particle production at high energies
leading to the formation and fragmentation of the flux tube,
we can focus our attention on the self-consistent coupling of
the quarks and the gauge fields Aµ inside the tube. In these
high-energy processes, the momentum scales for longitudinal
dynamical motion of the leading q and q̄ as well as those
of quarks in the underlying vacuum are much greater than
the momentum scales for their transverse motion such that
|v3| � |v1|, |v2|, where v is a typical quark velocity. In the
Lorentz gauge, the associated gauge field Aµ is proportional
to (1, v). Under the dominance of the longitudinal motion over
the transverse motion in string fragmentation, |A0|, |A3| �
|A1|, |A2|. Hence, inside the flux tube A1 and A2 can be
approximately neglected in comparison with the magnitudes of
A0 or A3. It is further reasonable to assume that the gauge fields
A0 and A3 in the interior of the tube depend only weakly on
the transverse coordinates r = (x1, x2). It is then meaningful to
investigate these fields inside the tube by averaging them over
the transverse profile of the flux tube. After such an averaging,
A0 and A3 inside the tube can be considered as a function of
(x0, x3) only. As a consequence, the equation of motion (4)
for the quarks becomes

{γ 0	0 + γ 1p1 + γ 2p2 + γ 3	3 − m(r)}ψ = 0. (10)

We write the quark field ψ(x) in terms of the longitudinal
fields f± and transverse fields G1,2 with spinors ξi as
[28]

ψ(x) = [G1(r)ξ1 − G2(r)ξ2]f+(x0, x3)

+ [G1(r)ξ3 + G2(r)ξ4]f−(x0, x3), (11)

where

ξ1 =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠ , ξ2 =

⎛
⎜⎝

0
1
0
−1

⎞
⎟⎠ , ξ3 =

⎛
⎜⎝

1
0
−1
0

⎞
⎟⎠ ,

(12)

and ξ4 =

⎛
⎜⎝

0
1
0
1

⎞
⎟⎠ .

Working out the Dirac matrices in Eq. (4), we obtain the
following set of coupled equations of motion:[

(	0 − 	3)(	0 + 	3) − m2(r) − p2
T

]
G1f−

= −[(p1 − ip2)m(r)]G2f−, (13a)[
(	0 − 	3)(	0 + 	3) − m2(r) − p2

T

]
G2f−

= [(p1 + ip2)m(r)]G1f−, (13b)[
(	0 + 	3)(	0 − 	3) − m2(r) − p2

T

]
G1f+

= −[(p1 − ip2)m(r)]G2f+, (13c)[
(	0 + 	3)(	0 − 	3) − m2(r) − p2

T

]
G2f+

= [(p1 + ip2)m(r)]G1f+. (13d)

By the method of the separation of variables, we introduce
the eigenvalue (the quark transverse mass) mT for transverse
motion,[

p2
T + m2(r) − m2

T

]
G1(r) = [(p1 − ip2)m(r)]G2(r), (14a)[

p2
T + m2(r) − m2

T

]
G2(r) = −[(p1 + ip2)m(r)]G1(r),

(14b)

and obtain the coupled equations for longitudinal motion,[
(	0 − 	3)(	0 + 	3) − m2

T

]
f−(x0, x3) = 0, (15a)[

(	0 + 	3)(	0 − 	3) − m2
T

]
f+(x0, x3) = 0. (15b)

If we introduce the two-dimensional Dirac spinor ψ2D as

ψ2D =
(

f+
f−

)
, (16)

and the two-dimensional γ matrices as [39,40]

γ 0
2D =

(
0 1

1 0

)
, γ 3

2D =
(

0 −1

1 0

)
,

(17)

γ 0
2Dγ 3

2D = γ 5
2D =

(
1 0

0 −1

)
,

then Eqs. (15a) and (15b) can be rewritten as the Dirac equation{
γ 0

2D(p0 + gA0) + γ 3
2D(p3 + gA3) − mT

}
ψ2D = 0, (18)

which is the equation of motion for a quark in the two-
dimensional gauge fields A0 and A3, except that the coupling
constants g are those in four-dimensional space-time, g4D, and
the gauge fields A0(4D) and A3(4D) are those determined from a
four-dimensional current source jν

4D given by Eqs. (8) and (9)
involving four-dimensional quark fields ψ4D. It is necessary
to renormalize the coupling constants and use quantities
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determined from two-dimensional source currents and fields
to bring it to the proper two-dimensional space-time form.

Utilizing the result of Eq. (18) for the quark field and
using the quark wave function (11), the set of equations of
motion (4)–(9) along the longitudinal direction can be cast
into the forms of quarks and gauge fields interacting with the
QCD and QED in two-dimensional space-time of (x0, x3), by
transversely averaging Eq. (6) over the profile of the flux tube
and by relating the coupling constants with the renormalization
[31]

g2
2D = g2

4D〈(|G1(r)|2 + |G2(r)|2)〉
T
. (19)

Such a renormalization yields a two-dimensional coupling
constant, g2D, that possesses the dimension of a mass.

After the coupling constant renormalization, the equations
of motion for the quark and the gauge fields in the longi-
tudinal and time directions are as given in the same form
as Eqs. (4)–(9) in two-dimensional space-time xµ(µ = 0, 3)
with ψ4D replaced by ψ2D, γ matrices γ

µ

4D replaced by the
two-dimensional γ matrices γ

µ

2D, the quantity m(r) replaced
by the quark transverse mass mT , and the gauge fields Aµ(4D)

limited to µ = 0 and 3 and replaced by Aµ(2D) determined
from the Maxwell equation (6), DµF

µν

2D = g2Djν
2D, with two-

dimensional currents jν
2D that arise from ψ2D.

We can get an approximate relation between g2D and g4D by
considering the case of a uniform transverse flux tube profile
with a transverse radius RT ,

(|G1(r)|2 + |G2(r)|2) ∼ �(RT − |r|)/πR2
T . (20)

The coupling constants in two-dimensional space-time and
four-dimensional space-time are then related approximately
by [31]

g2
2D ∼ g2

4D

πR2
T

. (21)

Such a result is expected from dimensional analysis, where
the length scale in going from a tube to a string involves
only the flux tube radius. The aforementioned relationship
between the coupling constants in different space-time dimen-
sions is used later to estimate the boson masses.

III. BOSONIZATION OF QCD2 × QED2 FOR QUARKS
WITH TWO FLAVORS

Under the longitudinal dominance and transverse con-
finement, the QCD4 × QED4 system can be approximately
compactified as the QCD2 × QED2 system with a quark
transverse mass mT . The flux tube becomes the arena for the
quarks in the underlying vacuum to interact self-consistently
with the QCD and QED gauge fields. We shall henceforth
work with QCD2 × QED2 in two-dimensional space-time.
For brevity of notation, the two-dimensional designation of
various quantities will be understood in what follows. The
Lagrangian density for QCD2 × QED2 that corresponds to
the two-dimensional version of Eqs. (4)–(9) is

L = ψ̄[γ µ(i∂µ + gAµ) − mT ]ψ − 1
4FµνF

µν. (22)

As in Sec. II, the color index a, the flavor index f , and the
U(3) generator index α are implicitly understood, and the
summation convention is used.

We wish to search for bound states arising from the density
oscillations of the color and electric charges of the quarks
in QCD2 × QED2 in the strong coupling limit, in which the
strength of the QCD2 interaction is much greater than the
quark mass. The best method to search for bound states is by
bosonization in which bosons are bound and nearly free, with
residual sine-Gordon interactions that depend on the quark
mass [22,39–58].

The U(3) gauge interactions under consideration contains
the non-Abelian color SU(3) interactions. Consequently the
bosonization of the color degrees of freedom should be carried
out according to the method of non-Abelian bosonization,
which preserves the gauge group symmetry [39].

While we use non-Abelian bosonization for the U(3)
interactions, we shall use the Abelian bosonization for the
flavor degrees of freedom. This involves keeping the flavor
labels in the bosonization without using the flavor group
symmetry. Although the Abelian bosonization in the flavor
sector obscures the isospin symmetry in QCD, the QCD isospin
symmetry is still present. It can be recovered by complicated
nonlinear general isospin transformations [22,42].

As in any method of bosonization, the non-Abelian method
will succeed for systems that contain stable and bound boson
states with relatively weak residual interactions. Thus, not all
the degrees of freedom available to the bosonization technique
will lead to good boson states with these desirable properties.
For example, some of the bosonization degrees of freedom
in color SU(3) may correspond to bosonic excitations into
colored objects of two-fermion complexes and may not give
rise to stable bosons. It is important to judiciously search for
those boson degrees of freedom that will eventually lead to
stable and bound bosons.

Keeping this perspective in our mind, we can examine
the non-Abelian bosonization of the system under the U(3)
interactions. The non-Abelian bosonization program consists
of introducing boson fields to describe an element u of the
U(3) group and showing subsequently that these boson fields
lead to stable bosons with finite or zero masses.

In the non-Abelian bosonization, the current j± in the light-
cone coordinates, x± = (x0 ± x3)/

√
2, is bosonized as [39]

j+ = (i/2π )u−1(∂+u), (23a)

j− = −(i/2π )(∂−u)u−1. (23b)

An element of the U(1) subgroup of the U(3) group can be
represented by the boson field φ0:

u = exp{i2√
πφ0t0}. (24)

Such a bosonization poses no problem as it is an Abelian
subgroup. It will lead to a stable boson as in Schwinger’s
QED2.

To carry out the bosonization of the color SU(3) subgroup,
we need to introduce boson fields to describe an element u of
SU(3). There are eight tα generators that provide eight degrees
of freedom. We may naively think that for the non-Abelian
bosonization of SU(3) we should introduce eight boson fields
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φα to describe u by

u = exp

{
i2

√
π

8∑
α=1

φαtα

}
. (25)

However, a general variation of the element δu/δx± will lead
to quantities that in general do not commute with u and u−1,
resulting in j± currents in Eqs. (23) that are complicated
nonlinear admixtures of the boson fields φα . It will be difficult
to look for stable boson states with these currents.

We can guide us to a situation that has a greater chance of
finding stable bosons by examining the bosonization problem
from a different viewpoint. We can pick a unit generator
n = {n1, n2, . . . , n8} oriented in any direction of the eight-
dimensional α space and can describe an SU(3) group element
u by an amplitude φ and the unit vector n,

u = exp

{
i2

√
πφ

8∑
α=1

nαtα

}
. (26)

The boson field φ describes one degree of freedom, and
the direction cosines {nα, α = 1, . . . , 8} of the unit vector n
describe the other seven degrees of freedom. A variation of
the amplitude φ in u while keeping the unit vector orientation
fixed will lead to a variation of δu/δx± that will commute
with u and u−1 in the bosonization formula (23), as in the
case with an Abelian group element. It will lead to simple
currents and stable QCD2 bosons with well-defined masses,
which will need to be consistent with experimental QCD
meson data. However, a variation of δu/δx± in any of the
other seven orientation angles of the unit vector n will lead to
δu/δx± quantities along other tα directions. These variations
of δu/δx± will not in general commute with u or u−1. They will
lead to j± currents that are complicated nonlinear functions of
the eight degrees of freedom. We are therefore well advised to
search for stable bosons by varying only the amplitude of the
φ field, keeping the orientation of the unit vector fixed, and
forgoing the other seven orientation degrees of freedom.

As a unit vector n in any orientation can be rotated to the
first axis along the t1 direction by an orthogonal transformation
in the α space, we can consider the unit vector n to lie along the
t1 direction without a loss of generality. For the U(3) group,
the appropriate bosonization program that will eventually lead
to stable bosons is to limit the consideration to only the φ0 and
φ1 degrees of freedom. We are therefore justified to bosonize
an element u of the U(3) group as

u = exp

{
i2

√
π

1∑
α=0

φαtα

}
. (27)

From Eqs. (23a) and (23b), we obtain then

jf ± = ∓ 1√
π

1∑
α=0

(
∂±φα

f

)
tα, (28)

where we have written out the flavor index explicitly. The
gauge fields can be easily obtained by using the A− = 0 gauge

for which terms involving the commutators in Eqs. (6) and (7)
vanish. The Maxwell equation becomes

− ∂2
−A+ = −gj+ (29)

and the solution is

A+ = g

∂2−
j+. (30)

The interaction energy becomes

HI = 1

2

∫
dx−j+

f

g

∂2−
j+
f = 1

4π

∫
dx−

1∑
α=0

⎛
⎝∑

f =u,d

gα
f φα

f

⎞
⎠

2

.

(31)

The kinetic energy term of the Lagrangian density, ψ̄γ µi∂µψ ,
can be bosonized as [39]

LKE = 1

8π

∑
f =u,d

tr
(
∂µuf ∂µu−1

f

)
, (32)

because the Wess-Zumino term for u in the form of Eq. (27)
gives no contribution. Equation (27) then leads to

LKE = 1

4

∑
f =u,d

1∑
α=0

∂µφα
f ∂µφα

f . (33)

The mass term involves the scalar density ψ̄ψ , which can be
bosonized as

:ψ̄ψ : → − eγ

2π
µNµ

∑
f =u,d

tr

(
uf + u−1

f

2

)

= − eγ

2π
µNµ

∑
f =u,d

tr

[
cos

(
2
√

π

1∑
α=0

φα
f tα

)]
, (34)

where γ = 0.5772 is the Euler constant and Nµ is normal
ordering with respect to the mass scale µ for the problem in
question. It is easy to show that

tr

[
cos

(
2
√

π

1∑
α=0

φα
f tα

)]

= 2 cos
(
2
√

π/6φ0
f

)
cos
(
2
√

π/4φ1
f

)
. (35)

We do not examine the zero mode and the θ vacuum in
the present exploratory study. We obtain the Hamiltonian
density

H = 1

2
Nµ

1∑
α=0

⎧⎪⎨
⎪⎩
∑

f =u,d

[
1

2

(
	α

f

)2 + 1

2

(
∂1φ

α
f

)2]

+ 1

2π

⎛
⎝∑

f =u,d

gα
f φα

f

⎞
⎠

2
⎫⎪⎬
⎪⎭− eγ mT µ

2π
2Nµ

×
∑

f =u,d

cos
(
2
√

π/6φ0
f

)
cos
(
2
√

π/4φ1
f

)
. (36)

In the flavor sector, the up quark has isospin quan-
tum numbers (I, I3) = (1/2, 1/2) and the down quark has
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(I, I3) = (1/2,−1/2). The up and down quarks combine to
form the isoscalar (I, I3) = (0, 0) state and the isovector I = 1
states, which split into three components with I3 = (1, 0,−1).
Because the quark electric charge Qf depends on the flavor
quantum number, there is no isospin symmetry for QED2,
and the four states split apart. We focus our attention only
on the isoscalar (I, I3) = (0, 0) QED2 state and the isovector
(I, I3) = (1, 0) QED2 state. The other two (I, I3) = (1,±1)
QED2 states involve composite constituents with like electric
charges and are unlikely to be stable in the electromagnetic
sector. For brevity of nomenclature, we refer to the isovector
(I, I3) = (1, 0) photon simply as the isovector photon, with
the qualifying specification “I3 = 0” implicitly understood.

In QCD with two flavors, the isospin symmetry remains a
good symmetry, which is weakly broken by a small difference
between the up and down quark masses. Thus, the QCD
quark-antiquark meson states are specified by isospin quantum
numbers I with nearly degenerate 2I + 1 members of different
I3 components. The knowledge of the location of the (I, I3) =
(1, 0) QCD state allows us to infer the locations of the other
two QCD (I, I3) = (1,±1) states.

We can construct the φα
I fields for the isospin (I, I3 = 0)

states, for up and down quark fields moving in phase or out of
phase,

φα
I = 1√

2

[
φα

u + (−1)I φα
d

]
. (37)

We can also construct the corresponding isospin canonical
momenta

	α
I = 1√

2

[
	α

u + (−1)I	α
d

]
. (38)

The Hamiltonian density in terms of boson fields of different
isospin quantum numbers I and the same I3 = 0 is

H = 1

2
Nµ

{
1∑

α=0

1∑
I=0

[
1

2

(
	α

I

)2 + 1

2

(
∂1φ

α
I

)2]+ V
({

φα
I

})}
,

(39)

where V ({φα
I }) = Vint({φα

I }) + Vm({φα
I }) with the interaction

energy

Vint
({

φα
I

}) = 1

2

(
1∑

I=0

gα
u + (−1)I gα

d√
2π

φα
0

)2

(40)

and the quark mass term

Vm
({

φα
I

}) = −eγ mT µ

2π
2

{
1∏

I=0

cos

[√
2π

(
φ0

I√
6

+ φ1
I√
4

)]

+
1∏

I=0

cos

[√
2π

(
φ0

I√
6

− φ1
I√
4

)]}
. (41)

We can get the gross features of the system by expanding
the potential about the minimum located at φα

0 = 0 and φα
1 =

0. Evaluating the second derivatives of the potential at the
potential minimum, we obtain the mass square (Mα

I (2D))
2 of

stable boson quanta for α = 0 and 1,

(
Mα

I (2D)

)2 =
[

∂2

∂
(
φα

I

)2 V
({

φα
I

})]
φα

0 ,φα
1 =0

=
(

gα
u + (−1)I gα

d√
2π

)2

+ 2

3 − α
eγ mT µ. (42)

The Hamiltonian density (39) represents a QCD2 and QED2
system of isoscalar and isovector boson fields φα

I whose field
quanta acquire the mass Mα

I (2D), where α = 0 for QED2 and
α = 1 for QCD2. Because the boson field φα

I is related to the
gauge field A+ through Eqs. (29) and (31), the quanta of φα

I

are also the quanta of the gauge fields A+. The QCD2 bosons
and QED2 bosons can be appropriately called QCD2 mesons
and QED2 photons, respectively.

Because the right-hand side of Eq. (42) is a non-negative
quantity with (Mα

I (2D))
2 � 0, these QCD2 mesons and QED2

photons are stable bosons. They acquire a mass because a
gauge field oscillation leads to a quark density oscillation, and
through the Maxwell equation the quark density oscillation in
turn leads to a gauge field oscillation, which in turn modifies
the quark density oscillation. The self-consistency of gauge
field oscillations and the induced quark density oscillations
lead to an equation of motion for the gauge field oscillation in
the form of a Klein-Gordon equation characterized by a mass.

Our result of the boson masses in Eq. (42) represents
a QCD2 × QED2 generalization of the previous results in
Refs. [22,39,40,42–59], where QED2 and QCD2 have been
examined separately. In the massless quark limit, the QCD2
and QED2 boson masses are given by |gα

u + (−1)I gα
d |/√2π .

In this limit, the QCD2 masses are the same as what one
obtains by using QED2 and replacing the electric charges in
QED2 with the color charges in QCD as in Ref. [22]. This
equivalence of the Abelian QED2 solution and the non-Abelian
QCD2 solution in the massless limit arises because our
judicious search for stable QCD2 bosons in the non-Abelian
bosonization of SU(3) requires the variation of only the
amplitude φ while the orientation of n in Eq. (26) is held
fixed. The non-Abelian bosonization in QCD2 that results in
stable QCD mesons is in effect Abelian in nature. This explains
why previous Abelian QED2 results of boson masses [22] and
string fragmentation [21] can be applied to the non-Abelian
QCD problems by replacing the electric charges in QED2 with
the color charges in QCD.

Previously, Abelian-type solutions were obtained for mul-
tiflavor QCD2 mesons using non-Abelian bosonization for
both the color and the flavor degrees of freedom in the large
Nf limit [52]. The mass of the single massive boson in the
massless quark limit was found to be M(QCD2) = gQCD2

√
Nf /π

[52–55,60]. Our QCD2 × QED2 analysis here indicates that
Abelian-type solutions exist also for QCD2 mesons for quarks
with two flavors and is not limited to the large Nf limit. Our
mass of the QCD2 isoscalar meson in the massless quark
limit is M1

0(QCD2) = gQCD2

√
2/π , which matches the mass of

the massive boson of Refs. [52–55,60] for Nf = 2. Thus,
by using the non-Abelian bosonization in QCD2 but Abelian
bosonization in the flavor degrees of freedom in the present
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treatment, the solutions of Refs. [52–55] in the large Nf limit
can be extended down to Nf = 2.

In the massless quark limit (for mT µ = 0 in this case), the
QCD2 × QED2 bosons are free. With a finite value of mT µ,
they interact with a sine-Gordon residual interaction whose
strength depends on mT µ. The present treatment places the
QED2 mesons and the QCD2 photons on a parallel footing
and allows the mutual interaction between QCD2 mesons
and QED2 photons. To exhibit the mutual interaction, it is
instructive to expand the quark mass term in powers of φα

I . Up
to the fourth order in φα

I , we obtain

Vm
({

φα
I

})= 1

2

1∑
α=0

1∑
I=0

aα
I

(
φα

I

)2 + 1

4

1∑
α=0

1∑
I,I ′=0

bα
II ′
(
φα

I

)2(
φα

I ′
)2

+ 1

4

1∑
α=0

1∑
I=0

cII ′
(
φ0

I

)2(
φ1

I

)2
, (43)

where

aα
I = 2

3 − α
eγ mT µ, (44a)

bα
II ′ = − 2π

(3 − α)2
eγ mT µ, (44b)

cII ′ = −π

3
eγ mT µ. (44c)

Here the aα
I coefficients give the contribution to (Mα

I (2D))
2

from the quark mass term in Eq. (42). The bα
II ′ coefficients give

the interaction between bosons of the same type α, and cII ′

coefficients give the interaction between QCD2 mesons and
QED2 photons. The negative signs of the b and c coefficients
indicate that the interaction between the bosons are attractive
in nature.

Previously, Coleman obtained the correction to the QED2
boson masses arising from a nonzero quark mass, using the
method of renormal-ordering. The mass correction was also
obtained by examining QED2 on a circle [51], near-light-cone
coordinates [49], and mass-perturbation theory [50]. We do
not consider these refinements and content ourselves with the
estimate using the second derivatives of the potential V ({φα

I })
in the present exploratory study.

IV. QCD2 MESON AND QED2 PHOTON MASSES FOR
QUARKS WITH TWO FLAVORS

We consider first the boson masses in the massless quark
limit because they represent well-defined references. In this
limit, the boson masses depend only on the coupling constants
that acquire the dimension of a mass as a result of the
compactification. They depend on the flux tube radius as given
by Eq. (21) [30,31]. For QCD in the flux tube, the QCD2
coupling constant is given by

g2
QCD2 ∼ g2

QCD4

πR2
T

= g2
QCD4

4π

4

R2
T

= 4αs

R2
T

, (45)

where αs = g2
QCD4/4π is the strong interaction coupling

constant. Similarly, for QED2 in the flux tube, the QED2

coupling constant is given by

e2
QED2 ∼ e2

QED4

πR2
T

= e2
QED4

4π

4

R2
T

= 4α

R2
T

, (46)

where α = e2
QED4/4π = 1/137 is the fine structure constant.

The magnitude of the flux tube radius RT is revealed by
the root-mean-squared transverse momentum of produced
hadrons (mostly pions) as

RT ∼ 1√〈
p2

T

〉
π

, (47)

which empirically is slightly energy dependent [31]. We
focus our attention on the case of particle production in
high-energy e+-e− annihilations in the hadronic decay of Z0.
The measurement of the π0 spectra in Z0 hadronic decay gives√〈p2

T 〉π = 0.56 GeV in the reaction plane [61] and thus the
flux tube has a radius RT ∼ 0.35 fm. For the strong coupling
constant at this energy, we shall take αs = 0.316, which leads
from Eq. (45) to the string tension coefficient [30,31]

b = g2
QCD2

/
2 = 0.2 GeV2 (48)

and

gQCD2 = 0.632 GeV. (49)

From Eq. (46), the QED2 electromagnetic coupling constant
has the value

eQED2 ∼ 0.096 GeV. (50)

With these coupling constants (g1
u = g1

d = gQCD2, g0
u =

−QueQED2, and g0
d = −QdeQED2), the values of QCD2 and

QED2 boson masses in the massless quark limit are shown in
Table I. One observes that QCD2 for quarks with two flavors
gives a massless pion in the massless quark limit, in agreement
with the concept of the pion being a Goldstone boson in the
standard QCD theory. The isovector QCD2 meson lies lower
than the isoscalar QCD2 meson at 504 MeV, whereas the
ordering is opposite for the QED2 photons, with an isoscalar
QED2 photon at 12.8 MeV and an isovector QED2 photon at
38.4 MeV. These QED2 photons lie in the region of observed
anomalous soft photons.

Equation (42) indicates that the boson masses depend on
four mass scales: gQCD2, eQED2, mT , and µ. In addition to
the coupling constants we have just discussed, we need to
specify the values of the transverse mass mT and the mass
scale µ. The discussions in Sec. II indicate that because quarks
reside in the flux tube environment, they acquire a transverse
mass mT . The presence of the factor mT in Eq. (42) takes
into account the effects of nonperturbative chiral symmetry
breaking and transverse confinement that lead to the formation
of the flux tube. Because a pion is a quark-antiquark composite,
we can estimate the quark transverse mass mT from the pion
transverse momentum, mT ∼ √〈p2

T 〉π/2. For Z0 hadronic
decay,

√〈p2
T 〉π = 0.56 GeV and we have mT ∼ 0.4 GeV.

The boson masses depend also on the mass scale µ, which
arises from the bosonization of the scalar density ψ̄ψ as given
in Eq. (34). The scalar density ψ̄ψ diverges in perturbation
theory and has to be renormalized such that 〈ψ̄ψ〉 = 0 in
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TABLE I. QED2 and QCD2 boson masses obtained with RT = 0.35 fm and g2
QCD2 = 2b = 0.4 GeV2.

QCD2 QED2
Coupling constant gQCD2 = 632.5 MeV eQED2 = 96 MeV

Massless quarks Isoscalar boson mass M0(2D) 504.6 MeV 12.8 MeV
Isovector boson mass M1(2D) 0 38.4 MeV

mT = 400 MeV Isoscalar boson mass M0(2D) 734.6 MeV
µ = mT Isovector boson mass M1(2D) 533.8 MeV

mT = 400 MeV Isoscalar boson mass M0(2D) O(25.3 MeV)
µ = mq = O(1 MeV) Isovector boson mass M1(2D) O(44.1 MeV)

a free theory. It will need to be renormal-ordered again
in an interacting theory [22]. The scalar density and the
corresponding mass scale therefore depend on the interaction.
The dependence of the scalar density on the interaction is also
evidenced by the fact that the scalar density ψ̄ψ in Eq. (34) can
be expanded in terms of t0 and t1, each of which is the generator
of a different interaction associated with a different coupling
constant. For the strong interaction of QCD, confinement and
chiral symmetry breaking dominate and lead to a transverse
mass mT that is much greater than the current quark mass. It
is reasonable to take the mass scale µ in QCD to be the same
as the quark transverse mass mT characterizing the flux tube
transverse confinement and the presence of chiral symmetry
breaking. Meson masses in QCD2 calculated with the mass
scale µ = mT = 0.4 GeV are given in Table I. It gives a QCD2
isovector meson mass of 0.534 GeV and a QCD2 isoscalar
meson mass of 0.735 GeV in the flux tube.

For a theory with a relatively weak interaction such as QED,
the scalar density ψ̄ψ that diverges in perturbation theory has
to be renormalized in a nearly free field in which the quark
energy is just the current quark masses. The mass scale µ

for QED2 should therefore be the QED current quark mass
mq appropriate for a nearly free theory. The current quark
mass mq associated with perturbative QCD has the value
of 1.5–6 MeV [62]. The current quark mass associated with
perturbative QED is not known and presumably is of the same
order of an MeV. For lack of a more definitive determination,
we take µ = 1 MeV to calculate the orders of magnitude of the
QED2 photon masses. The values of the QED2 boson masses
obtained with µ = 1 MeV are given in Table I, which gives an
isoscalar photon of order 25 MeV and an isovector photon of
order 44 MeV. They fall within the same order of magnitude
of the transverse momenta of anomalous soft photons.

V. ADIABATIC DECOMPACTIFICATION OF BOSONS
FROM TWO-DIMENSIONAL TO FOUR-DIMENSIONAL

SPACE-TIME

We have thus found that in the system of quarks with two
flavors, the boson quanta of QCD2 and QED2 are stable with
masses that depend on the isospin quantum numbers. We can
therefore infer from the quantum field theory description of
particle production in Ref. [21] that these QCD2 mesons and
QED2 photons will be produced simultaneously in the same
process of q-q̄ string fragmentation when a quark pulls away
from an interacting antiquark at high energies.

After a particle is produced in two-dimensional space-time
how does it decompactify in the four-dimensional space-time?
An appropriate way to describe the decompactification is to
identify the mass of the particle in the two-dimensional theory
as the transverse mass of the particle in four-dimensional
space-time. This clearly works in the case of the quark.
In reverting back into the four-dimensional space-time, the
“quark mass” of mT in two-dimensional space-time reverts
back into the transverse mass of the quark in four-dimensional
space-time.

After a boson is produced and the system expands lon-
gitudinally, the interaction between the produced bosons
weakens. The produced boson will subsequently emerge
from the production region out to the non-interacting region
and will obey the mass shell condition. We can consider a
produced boson of mass Mα

I (2D) of isospin I and type α in
two-dimensional space-time. The kinematic variables of the
boson are E(2D) and pz(2D), which obey the mass shell condition
E2

(2D) = p2
z(2D) + (Mα

I (2D))
2. In the four-dimensional space-

time, kinematic variables of this particle are E(4D), pz(4D), and
pT (4D). The kinematic variables satisfy the mass shell condition
E2

(4D) = p2
z(4D) + p2

T (4D) + (Mα
I (4D))

2 , where Mα
I (4D) is the rest

mass of the particle in four-dimensional space-time.
In the emergence of the boson from two-dimensional

space-time to four-dimensional space-time, we envisage an
adiabatic transverse expansion from the two-dimensional flux
tube to four-dimensional space-time. The adiabatic transverse
expansion involves no change of the particle energy and parti-
cle longitudinal momentum so that E(2D) = E(4D) and pz(2D) =
pz(4D). Consequently, the mass shell conditions of the boson
give (Mα

I (2D))
2 = p2

T (4D) + (Mα
I (4D))

2 = (Mα
IT )2, with the boson

mass Mα
I (2D) in two-dimensional space-time turning into the

boson transverse mass Mα
IT in four-dimensional space-time.

We can test the consistency of such a correspondence for
the production of mesons. We consider the production of an
isovector meson, which is a pion. Experimentally, a pion is
produced with an average

√〈p2
T 〉

π
∼ 0.56 GeV [61] for the

Z0 hadronic decay. Thus, the experimental (average) isovector
meson (pion) transverse mass is

Mh
1T =

√
(0.14)2 + (0.56)2 GeV = 0.579 GeV. (51)

We consider next the production of an isoscalar meson,
which is the η meson with a rest mass of Mη = 0.547 GeV.
Experimentally, the observed average transverse momentum
of a meson increases with the meson mass. The average
transverse momentum of η has, however, not been measured.
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As the η meson has approximately the same mass as a kaon
whose average transverse momentum has been measured,
the average transverse momentum of the η meson should
be of the order of the kaon average transverse momentum
of
√〈p2

T 〉K ∼ 0.616 GeV [33]. Upon taking this estimate
to be the isoscalar meson average transverse momentum,
the experimental (extrapolated) isoscalar meson (η meson)
average transverse mass is

Mh
0T =

√
(0.547)2 + (0.616)2 GeV ∼ 0.824 GeV. (52)

We can compare the experimental average transverse masses
of isovector and isoscalar mesons in Eqs. (51) and (52)
with the theoretical QCD2 meson masses in two-dimensional
space-time in Table I, which gives Mπ(QCD2) = 0.534 GeV
and Mη(QCD2) = 0.735 GeV. We find that there is approximate
agreement of the experimental meson average transverse
masses in four-dimensional space-time with the QCD2 meson
masses in two-dimensional theory, within about 10–15%. This
approximate agreement lends support to the identification of
the mass of a stable boson in QCD2 × QED2 as the (average)
transverse mass of the boson in four-dimensional space-time.

In the case of QED photons, the rest mass of the photon is
zero in four-dimensional space-time. Hence, the QED2 photon
mass in two-dimensional space-time can be identified as the
photon transverse momentum in four-dimensional space-time.

VI. ANOMALOUS SOFT PHOTON TRANSVERSE
MOMENTUM DISTRIBUTION

We explore how the model of simultaneous meson and
photon production in the string fragmentation process may
explain the anomalous soft photon phenomenon. In e+-e−
annihilations or hadron-hadron collisions, q-q̄ strings or q-
(diquark) strings will be formed with a quark and an antiquark
(or a diquark) pulling apart at the two ends of each string.
As QCD2 mesons and QED2 photons are found to be stable
bosons in QCD2 × QED2, we can infer from the quantum field
theory of particle production as described by Casher, Kogut,
and Susskind [21] that QCD2 mesons and QED2 photons will
be produced simultaneously in the same process of q-q̄ string
fragmentation, when the quark pulls away from the antiquark
(or diquark) at high energies. The simultaneous production
from the same string explains why anomalous soft photons
are present only in association with hadron production and
why the number of produced mesons and QED2 photons are
proportional to each other, in agreement with the first two
features of the anomalous soft photon phenomenon listed
in the Introduction. In this section we examine whether the
QED2 photon model can explain the transverse momentum
distribution and in the next section we examine the correlation
of the soft photon yield with hadron production properties.

According to the Schwinger’s mechanism [63–66], the
probability of particle production is an exponential function of
the square of the transverse mass of the produced particle. For
massless photons, the photon transverse mass is the photon
transverse momentum. It is therefore reasonable to assume
the transverse momentum distribution of each photon com-
ponent to be a Gaussian with an average root-mean-squared
transverse momentum M

γ

IT given by the QED2 photon mass.

In the measurement of the soft photon transverse momentum
distribution in e+-e− annihilations, the determination of the
orientation of the jet axis has an uncertainty of �θ ∼
50 mrad, corresponding to a root-mean-square uncertainty
of �pT = Eγ �θ ∼ 10 MeV for the small pT region [7].
In the measurement of the transverse momentum distribution
in pp collisions, the uncertainty in angular measurements is
�θ ∼ 10 mrad, which corresponds to �pT ∼ 2 MeV for the
small pT region [6]. These uncertainties in the determination
of the angles need to be folded into theoretical calculations to
compare with experimental data. If one assumes a Gaussian
distribution of the transverse coordinates in the angular
determination, the folding of two Gaussian distributions leads
to a Gaussian distribution with a standard deviation square of
[(Mγ

IT )2 + (�pT )2]/2.
Based on our theoretical results in Table I, we expect that

there will be two components in the soft photon transverse mo-
mentum spectrum. We therefore parametrize the experimental
anomalous soft photon transverse momentum distribution
as the sum of the two normalized Gaussian components
of isoscalar and isovector photons, each of which has an
average root-mean-squared transverse momentum given by√

(Mγ

IT )2 + (�pT )2. We search for distributions characterized
by a transverse mass in the region of M

γ

0T ∼ 25 MeV for
the isoscalar photon component and around M

γ

1T ∼ 44 MeV
for the isovector photon component. However, upon a careful
examination of the transverse momentum distribution of the
anomalous soft photons in pp collisions [6], we find that, in
addition to these isoscalar and isovector photon components,
the pp data appear to contain an additional lower momentum
component characterized by a small mass M

γ

xT . We need to
parameterize it as arising from three contributions:

dNγ

dp2
T

=
∑
I=0,1

N
γ

I(
M

γ

IT

)2 + (�pt )2
exp

{
− p2

T(
M

γ

IT

)2 + (�pT )2

}

+ N
γ
x(

M
γ

xT

)2 + (�pt )2
exp

{
− p2

T(
M

γ

xT

)2 + (�pT )2

}
,

(53)

where the coefficients N
γ

i are the integrated numbers of QED2
photons of mass M

γ

iT produced per event.
The small transverse momentum uncertainties and the

extension of the experimental data down to small values
of pT in pp collisions make it useful to examine first the
transverse momentum distribution in pp collisions. In Fig. 1
we show the experimental normalized dNγ /dpT of anomalous
soft photons per pp collision event at 450 GeV/c from
Fig. 2(b) of Refs. [6,67], after subtracting the bremsstrahlung
contributions. The dNγ /dpT data for pp collisions in Fig. 1
can be explained by assuming three anomalous soft photon
contributions with the following parameters:

M
γ

0T = 17 MeV, M
γ

1T = 45 MeV, M
γ

xT = 5 MeV,

N
γ

0 = 0.040, N
γ

1 = 0.017, Nγ
x = 0.021. (54)

We examine next the anomalous soft photon transverse
momentum distribution in e+-e− annihilations [7]. With an
error of �pT as large as 10 MeV, the distribution cannot
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FIG. 1. (Color online) Comparison of normalized anomalous soft
photon dNγ /dpT per pp collision at 450 GeV/c after subtracting
the bremsstrahlung contributions [6,67] with calculated distributions
based on three components of anomalous soft photons at 17, 45, and
5 MeV. The solid curve is the total theoretical dNγ /dpT distribution,
and the other curves are the separate contributions from the three
different components.

be sensitive to the component at MxT ∼ 5 MeV. We show
in Fig. 2 the DELPHI experimental dNγ /dp2

T data from
Fig. 4(f) of Ref. [7], after subtracting the inner bremsstrahlung
contributions. The experimental data can be explained by
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FIG. 2. (Color online) Solid points give the DELPHI exper-
imental anomalous soft photon dNγ /dp2

T data in Z0 hadronic
decay in e+-e− annihilations, after subtracting the bremsstrahlung
contributions [7]. The solid curve is the total theoretical dNγ /dp2

T

with contributions from components at 13 and 55 MeV, whose
separate contributions are shown as the dashed and dashed-dot curves,
respectively. The dashed-dot-dot curve gives the distribution for the
lower momentum component at M

γ

xT = 5 MeV, which, however,
cannot be resolved in the present DELPHI measurements.

assuming the following set of parameters,

M
γ

0T = 13 MeV, M
γ

1T = 55 MeV,
(55)

N
γ

0 = 0.106, and N
γ

1 = 0.058.

There are no reliable data points at p2
T < 0.001 (GeV/c)2

to fix the M
γ

xT component with the present e+-e− data. For
illustrative purposes, we show the M

γ

xT component calculated
with M

γ

xT = 5 MeV and N
γ
x /N

γ

0 = 0.525 [as in Eq. (54)]
shown as the dashed-dot-dot curve in Fig. 2, to indicate that its
presence or absence has little effect on the theoretical results
above pT > 0.001 GeV2.

Our comparison of the anomalous soft photon transverse
momentum distributions reveals that it is necessary to examine
the transverse momentum distributions of both pp collisions
and e+-e− annihilations as complimentary data sets, as the
pp data have finer resolution and smaller errors in the
lower pT ∼ 15 MeV regions while the e+-e− data have less
fluctuations in the higher pT ∼ 50 MeV region. The combined
analysis indicates that the transverse momentum spectrum can
be qualitatively described by two components with transverse
masses of ∼15 MeV and ∼50 MeV, in approximate agreement
with the gross features of the theoretical QED2 photon model.
There is, however, an additional, lower momentum component
at ∼5 MeV that shows up in pp collisions, but cannot be
resolved in e+-e− annihilations. The origin of this low pT

component is not known and will be left for future studies.
Among many possibilities, it may be the manifestation of the
zero mode of QED2 photon production whose investigation
will be of great future interest.

VII. RATES OF MESON AND ANOMALOUS SOFT
PHOTON PRODUCTION

We shall now examine the remaining feature concerning
the rates of meson and anomalous soft photon production in
high-energy e+-e− annihilations to complete our comparison
of the QED2 model with experimental data. There are many
important physical quantities in the production processes. The
receding quark and antiquark generate a QCD field of strength
κh

qq̄ and a QED field of strength κ
γ
qq̄ between the quark and the

antiquark in the flux tube that will produce the QCD mesons
and the QED2 photons, respectively. Here, we have used the
superscript α = h for hadron quantities and α = γ for photon
quantities. Each of the field quanta is produced in a final state
possessing a transverse momentum, and thus the mass that
enters into the consideration of quanta production should be
the transverse mass Mα

IT = √(Mα
I (4D))

2 + p2
T , which can be

identified as the boson mass Mα
I (2D) in two-dimensional space-

time as discussed in Sec. V.
To obtain an estimate, we can rely on the Schwinger

mechanism of particle production in a strong field as a guide
[63–66]. The probability of particle production of a composite
particle of transverse mass Mα

IT depends on the exponential
factor of exp{−π (Mα

IT /2)2/κα
qq̄}, where the factor of 1/2 in

Mα
IT /2 is to denote the production of a pair of particles,

each of which has a mass Mα
IT /2, and the binding of one

particle of mass Mα
IT /2 with the neighboring particle of mass

Mα
IT /2 leads subsequently to a composite stable boson of mass
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Mα
IT /2 + Mα

IT /2. Furthermore, from dimensional analysis,
we can infer that the rate of production per space-time volume
element (dz dt) has the dimension κα

qq̄ . We therefore assume
that the rate of the production of the number of particles of type
α, isospin I , and mass Mα

IT due to the presence of the QCD
and QED fields between a receding quark q and an antiquark
q̄ is

dNα
I

dz dt
= A

∑
qq̄

Pqq̄κ
α
qq̄ exp

{
−π (Mα

IT /2)2

κα
qq̄

}
, α = γ, h,

(56)

where Pqq̄ is the probability for the quark-antiquark source
pair to be a uū or dd̄ pair, and A is a dimensionless constant.
In an e+-e− annihilation at high energies, there is an equal
probability for the quark-antiquark pair to be a uū or dd̄ pair,
and so Puū = Pdd̄ = 1/2.

For the production of QCD2 mesons, the color electric
field strength between the leading quark and antiquark is
independent of the quark flavor quantum number. It is given
by

κh
uū = κh

dd̄
= g2

QCD2

/
2 = b. (57)

For the production of QED2 photons, the electric field strength
between the leading quark q and antiquark q̄ is given in terms
of the electric charges of the quark and the antiquark as

κ
γ
qq̄ = |QqQq̄ |e2

QED2

/
2. (58)

Thus, we find that between a receding q and q̄, there is a
constant electric field with a strength

κ
γ
uū = 0.002048 GeV2, (59a)

κ
γ

dd̄
= 0.000512 GeV2. (59b)

The QCD field strength κh
qq̄ and the experimental meson

transverse masses as given in Eqs. (51) and (52) allow us to
determine from Eq. (56) the number of mesons (in a particular
I3 state) produced in a space-time volume of �z�t . Similarly,
the QED field strength κ

γ
qq̄ , the QED2 photon isoscalar photon

mass of M
γ

0T ∼ 15 MeV, and the isovector photon mass of
M

γ

1T ∼ 50 MeV from Eqs. (54) and (55) allow us to determine
the number of photons produced. We obtain

Nh
1 = A�z�t × 0.05368 GeV2, (60a)

Nh
0 = A�z�t × 0.01391 GeV2, (60b)

N
γ

1 = A�z�t × 0.0003980 GeV2, (60c)

N
γ

0 = A�z�t × 0.0011206 GeV2. (60d)

In these estimates, the number of produced particles of
different types and isospin quantum numbers is proportional
to the same space-time volume �z�t . This space-time volume
fluctuates in each Z0 hadronic decay event; the number of
mesons and photons of different isospin quantum numbers
will vary from event to event. However, because all these
particles in each event are produced simultaneously by the
fragmentation of the same q-q̄ string and the same space-time
volume, the ratio of different isospin spin quantum numbers
and types of particles can therefore be proportional on an

event-by-event basis. The results in Eq. (60) give

N
γ

0

N
γ

1

∼ 11

4
,

Nh
0

Nh
1

∼ 1

4
, (61)

which reveal that isoscalar photons are more preferentially
produced than isovector photons whereas isoscalar mesons
are much less likely produced than isovector meson (in a
particular I3 state). The theoretical ratio of N

γ

0 /N
γ

1 = 2.8
compares approximately well with the experimental ratio of
N

γ

0 /N
γ

1 ∼ 2.4 and 1.8 in Eqs. (54) and (55) extracted by fitting
the experimental transverse momentum distribution data of
Refs. [6] and [7]. Using these results, we can also construct
the ratio of ratios,

N
γ

0

Nh
0

:
N

γ

1

Nh
1

∼ 11

4
:

1

4
= 11 : 1, (62)

which states that the number of soft isoscalar photons associ-
ated with the isoscalar meson production are more numerous
than soft isovector photons associated with the isovector meson
production.

The DELPHI experimental measurements [8,9] provide
information on the ratios of anomalous soft photon production
with various produced neutral or charged meson multiplicities.
To compare with experimental data, we need to convert the
number of different species of mesons to the number of charged
and neutral mesons. Isovector mesons are pions that have two
charged states and one neutral state, and each isoscalar η meson
decays into 1.64 neutral particles (with 2 γ ’s counted as a
π0 as in Ref. [8]) and 0.57 charged particles. Thus, the total
meson particle number is Npar = (1.64 + 0.57)Nh

0 + 3Nh
1 .

From Eq. (60), the theoretical ratio of total soft photons to
total meson particles (charged and neutral) is

Nγ

Npar
∼ N

γ

0 + N
γ

1

2.21Nh
0 + 3Nh

1

= 7.91 × 10−3, (63)

which compares reasonably well with the experimental ratio
of Nγ /Npar ∼ 9.1 × 10−3.

In our QED2 photon model, production of mesons of
isospin quantum number I will be associated with the
production of QED2 photons of the same isospin quantum
number I . Thus, isoscalar QED2 photons will be associated
with isoscalar mesons while isovector QED2 photons will be
associated with isovector mesons.

From Eqs. (60d) and (60b), the theoretical ratio of the
number of produced isoscalar photon to the number of
produced isoscalar meson is

N
γ

0

Nh
0

= 80.6 × 10−3. (64)

As each isoscalar meson produces 1.641 neutral π0-like
particles and 0.57 charged particles, the isoscalar meson is
associated with the production of dominantly neutral mesons.
Because we consider the production of isoscalar mesons to be
associated only with the production of isoscalar photons, then
for the isoscalar mode of production, Nγ /Nneu ∼ N

γ

0 /Nneu

which leads to Nγ /Nneu ∼ N
γ

0 /(1.641Nh
0 ) after summing over

all charged particles. From Eq. (64), the theoretical ratio of soft
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TABLE II. Comparison of QED2 photon model description of
the anomalous soft photon production with quantities measured or
extracted from the pp collision [6] and DELPHI e+-e− annihilation
experimental data [7–9].

Quantities QED2 model Experimental
anomalous soft

photon data

Isoscalar photon mass M0 O(25 MeV) ∼15 MeV
Isosvector photon mass M1 O(44 MeV) ∼50 MeV
N

γ

0 /N
γ

1 11/4 1.8–2.4
Nγ /Npar 7.91 × 10−3 9.1 × 10−3

Nγ /Nneu 49.1 × 10−3 37.7 × 10−3

Nγ /Nch 3.71 × 10−3 6.9 × 10−3

photon to neutral particle number is

Nγ

Nneu
∼ N

γ

0

1.641Nh
0

= 49.1 × 10−3, (65)

which comes close to the experimental ratio of Nγ /Nneu ∼
37.7 × 10−3.

From Eqs. (60c) and (60a), the theoretical ratio of the
number of produced isovector photons to the number of
produced isoscalar mesons in a particular I3 state is

N
γ

1

Nh
1

= 7.41 × 10−3. (66)

The isovector meson is threefold degenerate with two charged
particles and one neutral particle. Thus, the production of
an isovector meson is associated with the production of
dominantly charged particles. In the QED2 photon model,
the sources of isospin current disturbances that produce the
mesons and photons are the same. Therefore, the production
of isovector mesons is associated only with the production
of isovector photons. Consequently, we have Nγ /Nch ∼
N

γ

1 /Nch, which leads to Nγ /Nch ∼ N
γ

1 /(2Nh
1 ) after summing

over all neutral particles. Equation (66) then leads to

Nγ

Nch
∼ N

γ

1(
2Nh

1

) = 3.71 × 10−3, (67)

which is slightly less than the experimental ratio Nγ /Nch ∼
6.9 × 10−3, but is within the same order of magnitude.

As a summary, we give the comparisons of various
quantities obtained in the QED2 model with the DELPHI
data [7–9] in Table II. We conclude from the comparison
that the gross features of the DELPHI data are approximately
consistent with the QED2 photon model.

VIII. FURTHER EXPERIMENTAL TESTS OF THE QED2
PHOTON MODEL

While the QED2 photon model appears to explain quali-
tatively the main features of the experimental anomalous soft
photon data, it is desirable to carry out further experimental
measurements to test the model.

(i) It will be of interest to measure the transverse mo-
mentum distribution of the soft photons with a finer

pT resolution and greater precision for a given narrow
range of photon rapidities. Qualitatively, we expect the
production of photons with two different average trans-
verse momenta, one at ∼15 MeV for the production
of the isoscalar photon and one at ∼50 MeV for the
production of the isovector photon.

(ii) It will be necessary to confirm the presence of the
low momentum component at M

γ

xT = 5 MeV in high-
energy e+-e− annihilation experiments. As the origin
and the properties of such a low pT component is still
unknown, additional experimental information on this
source of anomalous soft photons will improve our
understanding of such a component.

(iii) It will be of interest to measure the transverse momen-
tum distribution by selecting events with predominantly
neutral particles and events with predominantly charged
particles. The former events will likely arise from the
production of isoscalar mesons and QED2 isoscalar
photons, with an average photon transverse momentum
of ∼15 MeV, while the latter will arise from the
production of isovector mesons and the isovector
photons, with an average photon transverse momentum
of ∼50 MeV.

(iv) The rapidity distribution of the produced photons
should exhibit the plateau structure, as expected of
similar distributions in meson production. A measure-
ment of the rapidity distribution will provide useful
additional information on the dynamics of soft photon
production.

(v) Measurements of the properties of associated hadrons
similar to those of the DELPHI Collaboration should
be carried out with hadron-hadron collisions at high
energies where anomalous soft photon production has
been reported [1–6].

IX. CONCLUSIONS AND DISCUSSIONS

A color flux tube is formed when a quark and an antiquark
(or a diquark) pull apart from each other at high energies. The
motion of the quarks in the underlying vacuum of the flux tube
generates color charge oscillations that lead to the production
of mesons. As a quark carries both a color charge and an
electric charge, the color charge oscillations of the quarks in
the vacuum are accompanied by electric charge oscillations,
which will in turn lead to the simultaneous production of soft
photons during the meson production process.

To study these density oscillations, we start with quarks
interacting with both QCD and QED interactions in four-
dimensional space-time in the U(3) group, which breaks into
the color SU(3) and the QED U(1) subgroups. Specializing to
particle production at high energies, we find that the dominance
of the longitudinal motion and transverse confinement lead to
the compactification from QED4 × QED4 in four-dimensional
space-time to QCD2 × QED2 in two-dimensional space-time,
with the formation of the flux tube. In the flux tube, the
self-consistent coupling of quarks and gauge fields lead
to color charge and electric charge oscillations that give
rise to stable QCD2 bosons and QED2 bosons. The boson
masses depend on the gauge field coupling constants. The
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presence of the flavor degrees of freedom leads to isospin
dependence of the boson masses, with the isovector meson
mass being smaller than the isoscalar meson mass, but the mass
ordering is reversed for the isoscalar photon and the isovector
photon.

Because QCD2 and QED2 bosons are stable in the flux
tube environment, we can infer from the quantum field theory
description of particle production in Ref. [21] that these QCD2
mesons and QED2 photons will be produced simultaneously in
q-q̄ string fragmentation. Under the condition of adiabaticity
with no change of the particle energy and longitudinal momen-
tum after the produced particle emerges from the production
region, the boson mass in two-dimensional space-time turns
into the boson transverse mass in four-dimensional space-time.

The QED2 photon model can explain various features of
the anomalous soft photon phenomenon. Because both color
charge oscillations and electric charge oscillations arise from
the same density oscillations of the quarks in the vacuum,
both QCD2 meson and QED2 photon will be simultaneously
produced by the fragmentation of the q-q̄ string. These features
are in agreement with those observed in DELPHI experiments
[8–10]. The transverse momentum distributions of anomalous
soft photons in pp collisions [6] and e+-e− annihilations [7]
can be described by a component with M

γ

0T ∼ 15 MeV and a
component at M

γ

1T ∼ 50 MeV in approximate agreement with
theoretical estimates of the order of the isoscalar and isovector
QED2 photon masses.

In the QED2 model, there are important and nontrivial
isospin dependencies in the rate of photon and hadron
productions that are consistent with recent DELPHI data. The
model predicts that the isoscalar photon mass is lower than
the isovector photon mass. Consequently, the production of
isoscalar photons is more likely than isovector photons. In
contrast, the QCD isoscalar meson mass is greater than the
isovector mass, the production of isoscalar mesons is less
likely than that of isovector mesons. Thus, the ratio N

γ

0 /Nh
0

can be much greater than the ratio N
γ

1 /Nh
1 . The production

of isoscalar hadrons is associated with the production of
isoscalar photons and leads predominately to neutral particles
while the production of isovector hadrons is associated with
the production of isovector photons and leads predominantly
to charged particles. As a consequence, the ratio Nγ /Nneu

is much greater than the ratio Nγ /Nch, as observed by the
DELPHI Collaboration [8,9].

Although the QED2 photon model appears to be promising,
it is desirable to carry out additional experimental measure-
ments to test the model. We suggest the search for the two
components of transverse momentum distributions by making
appropriate cuts in soft photon rapidities and selecting different
regions of neutral and charge multiplicities where different
isospin photon components are expected. The identification
of the two components of different soft photon transverse

momenta will be a crucial test of the QED2 photon model
in the QCD string fragmentation process.

Our examination of the transverse momentum distribution
of anomalous soft photons in pp collisions in Ref. [6] reveal
the presence of an additional component characterized by
a transverse mass of M

γ

xT = 5 MeV. What is the nature
of this component? Is it related to the zero mode of den-
sity oscillations? How does the zero mode manifest itself
experimentally? The experimental investigation of the low
transverse momentum component of photon production and
the theoretical investigation of the zero mode of QED2 photon
production will be of great future interest.

There are puzzling elements of the QED2 photon model
that call for future theoretical and experimental resolution.
As it now stands, the theoretical determination of the QED2
photon masses is rather uncertain because the mass scale µ

in the bosonization of the scalar density is unknown. The
QED2 photon mass scale as extracted from experimental data
requires an electromagnetic current quark mass smaller than
the current quark mass as determined from perturbative QCD.
Whether or not such a smaller value of the mass scale µ for
the anomalous soft photon production is justified will require
further theoretical and experimental investigations.

Another puzzling and unresolved question is the more
detail description of the evolution from a QED2 photon to
a QED4 photon. We have used the concept of adiabaticity
so that the photon preserves its energy and longitudinal
momentum, only to develop a transverse momentum to balance
the mass shell condition. Such a description appears to
give a qualitative description of the transverse momenta and
production probabilities of the soft photons. However, there is
no additional content in the dynamics of the evolution in our
hypothesis. A more detail dynamics of the evolution of QED2
to QED4 will be of great interest.

Finally, if the model is proved to be successful in explaining
the anomalous soft photon data, it may be useful to explore
whether one can study this nonperturbative problem in the
full four-dimensional space-time without resorting to the
intermediate stage of going through the two-dimensional
space-time, where nonperturbative physics can be carried out
more readily. The success of a completely four-dimensional
description will provide new insight into the nonperturbative
behavior of particle production in strong fields.
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