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Understanding the major uncertainties in the nuclear symmetry energy at suprasaturation densities
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Within the interacting Fermi gas model for isospin asymmetric nuclear matter, effects of the in-medium
three-body interaction and the two-body short-range tensor force owing to the ρ meson exchange, as well as the
short-range nucleon correlation on the high-density behavior of the nuclear symmetry energy, are demonstrated
respectively in a transparent way. Possible physics origins of the extremely uncertain nuclear symmetry energy
at suprasaturation densities are discussed.
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I. INTRODUCTION

The density dependence of nuclear symmetry energy
Esym(ρ) is currently a key issue in both nuclear physics and
astrophysics (see, e.g., Refs. [1–11]). Despite much theoretical
and experimental effort, our current knowledge about the
Esym(ρ) is still rather poor, especially at suprasaturation
densities. Experimentally, some constraints on the Esym(ρ)
at subsaturation densities have been obtained recently from
analyzing nuclear reaction data (see, e.g., Refs. [12–14]). At
suprasaturation densities, however, the situation is much less
clear because of the very limited data available and the few
model analyses carried out so far, although some indications of
a supersoft Esym(ρ) at high densities have been obtained from
analyzing the π+/π− ratio in relativistic heavy-ion collisions
[15]. Theoretically, essentially all available many-body theo-
ries using various interactions have been used in calculating
the Esym(ρ). Unfortunately, the predictions at suprasaturation
densities are very diverse (for a recent review, see, e.g.,
Ref. [6]). Assuming all models are equally physical and
noting that there is no first principle guiding its high-density
limit, it is fair to state that the Esym(ρ) at suprasaturation
densities is currently still completely undetermined. So, why
is the Esym(ρ) so uncertain at suprasaturation densities? This
is obviously an important question that should be addressed
soon, especially because several dedicated experiments have
now been planned to investigate the high-density behavior of
the Esym(ρ) at the CSR in China [16], GSI in Germany [17],
MSU in the United States [18], and RIKEN in Japan [19].
Identifying the causes for the uncertain high-density Esym(ρ)
may help experimentalists to decide what experiments to
do and what observables to measure. Though we cannot
fully answer this question, we identify several important
factors and demonstrate their effects on the high-density
behavior of the Esym(ρ) using probably the simplest many-
body theory available, namely, the interacting Fermi gas
model for isospin asymmetric nuclear matter (e.g., Ref. [20]).
There are many long-standing physical issues on how to
treat quantum many-body problems at high densities; the
various techniques used in different many-body theories may
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be among the possible origins of the very uncertain Esym(ρ)
at suprasaturation densities. Nevertheless, it is still very useful
to examine effects of some common ingredients used in most
many-body theories, such as the three-body and tensor forces,
in the simplest model possible. While the interacting Fermi
gas model cannot be expected to describe all properties of
infinite nuclear matter and finite nuclei as accurately as those
more advanced microscopic many-body theories, it does give
an analytical expression for the Esym(ρ) in terms of the
isospin-dependent strong nucleon-nucleon (NN ) interaction
in a physically very transparent way [21]. Most importantly, the
key underlying physics responsible for the uncertain Esym(ρ) at
suprasaturation densities can be clearly revealed. In particular,
effects of the spin-isospin-dependent effective three-body
force, the density dependence of the in-medium short-range
tensor forces, and the short-range nucleon correlation can be
demonstrated clearly. The results are expected to be useful
for not only understanding predictions of the various many-
body theories but also ultimately determining the Esym(ρ) at
suprasaturation densities.

II. SYMMETRY ENERGY WITHIN THE INTERACTING
FERMI GAS MODEL

According to the well-known Lane potential [22], the
single-nucleon potential Un/p can be well approximated by

Un/p(ρ, k) ≈ U0(ρ, k) ± Usym(ρ, k)δ, (1)

where the U0(ρ, k) and Usym(ρ, k) are, respectively, the
isoscalar and isovector (symmetry) nucleon potentials. Within
the interacting Fermi gas model for isospin asymmetric nuclear
matter [20], the nuclear symmetry energy can be explicitly
expressed as (for detailed derivation of this formula, please
see Ref. [21] and references therein)

Esym(ρ) = Ekin
sym + Epot1

sym + Epot2
sym

= 1

6

∂t
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∣∣∣∣
kF

· kF + 1

6
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∂k

∣∣∣∣
kF

· kF + 1

2
Usym(ρ, kF ),

(2)

where t(k) = h̄2k2/2m is the kinetic energy, m is the average
nucleon mass, and kF = (3π2ρ/2)1/3 (Thomas-Fermi approx-
imation [23]) is the nucleon Fermi momentum in symmetric
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nuclear matter at density ρ. We notice here that Eq. (2) is
identical to the one derived earlier by Brueckner et al. [24,25]
using K matrices within the Brueckner theory. From Eq. (2),
it is seen that the symmetry energy Esym(ρ) is only dependent
on the single-particle kinetic and potential energies at the
Fermi momentum kF . The first part Ekin

sym = h̄2

6m
( 3π2

2 )
2
3 ρ

2
3 is

the trivial kinetic contribution owing to the different Fermi
momenta of neutrons and protons; E

pot1
sym = 1

6
∂U0
∂k

|kF
· kF is

attributable to the momentum dependence of the isoscalar
potential and also to the fact that neutrons and protons have
different Fermi momenta, while the E

pot2
sym = 1

2Usym(ρ, kF ) is
attributable to the explicit isospin dependence of the nuclear
strong interaction. The U0(ρ0, k) at normal nuclear density ρ0

is relatively well determined from the nucleon optical potential
obtained from the Dirac phenomenological model analysis
of nucleon-nucleus scattering data [26]. Moreover, interesting
information about the U0(ρ, k) at abnormal densities in a broad
momentum range has been obtained from transport model
analysis of nuclear collective flow in heavy-ion reactions [27].
For the momentum-dependent part of the isoscalar potential
U0(k, ρ), we use here the well-known Gale-Bertsch-Das Gupta
(GBD) parametrization [28],

UGBD(ρ, k) = −75ρ/ρ0

1 + [k/(�kF )]2
, (3)

where � = 1.5. The E
pot1
sym is then given by

Epot1
sym = 75ρ/ρ0

1/(3�2)

[1 + (1/�2)]2
. (4)

The GBD potential describes reasonably well the nucleon-
nucleus optical potential and has been widely used in transport
model simulations of heavy-ion reactions [29]. Similar to the
Ekin

sym, the E
pot1
sym always increases with density. However, the

Usym(ρ, k) is very poorly known, especially at high densities
or momenta [6]. To reveal the fundamental physics responsible
for the uncertain high-density behavior of the Esym(ρ), we
denote uT 0 = u′

np as the n-p interaction in momentum-space in
the isosinglet (T = 0) channel, while uT 1 = unn = upp = unp

is the nuclear strong interaction in the isotriplet (T = 1)
channel. In the latter, the charge independence of strong
interaction has been assumed. Then the single-nucleon mean-
field potentials are [30,31]

Un(ρ, k) = unn

ρn

ρ
+ unp
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ρ
+ uT 1

ρp

2ρ
+ uT 0

ρp
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(5)

Therefore,

U0(ρ, k) = 1

2
(Un + Up) = 1

4
(3uT 1 + uT 0),

(6)

Usym(ρ, k) = 1

2δ
(Un − Up) = 1

4
(uT 1 − uT 0).

Thus, the Usym(ρ, k) measures the explicit isospin dependence
of the nuclear strong interaction; namely, if the n-p interactions
were the same in the isosinglet and isotriplet channels, then

the Usym(ρ, k) would vanish. Currently, the calculation of
Usym(ρ, k) is rather model dependent [31,32]. In fact, its
value can be either positive or negative at high densities
or momenta [33–35], leading to the dramatically different
predictions on the high-density behavior of the Esym(ρ). In
coordinate space, in terms of the two-body NN interactions
VT 0(rij ) and VT 1(rij ) for the isosinglet T = 0 and isotriplet
T = 1 channels, respectively, we have [20]

Epot2
sym = 1

2Usym(ρ, kF ) = 1
4 (ṼT 1 − ṼT 0), (7)

where

ṼT 0 = 1

2
ρ

∫
VT 0(rij ) d3rij , ṼT 1 = 1

2
ρ

∫
VT 1(rij ) d3rij .

(8)

It is clear that E
pot2
sym is determined by the competition between

the ṼT 1 and the ṼT 0 and thus by the isospin dependence of
the in-medium NN interactions. The latter is largely unknown
and is actually a major thrust of research at various radioactive
beam facilities around the world. In fact, how the nuclear
medium may modify the bare NN interaction and properties
of hadrons has long been one of the most critical issues in
nuclear physics. For instance, it is very difficult to obtain the
empirical saturation properties of symmetric nuclear matter
by using the bare NN interactions within nonrelativistic
many-body theories. Various in-medium effects, such as the
many-body force [36,37], the relativistic effect relating the
in-medium interactions to free space NN scattering [38,39],
or the in-medium tensor force owing to both the π meson
and ρ meson exchanges [40–42], have to be considered to
obtain a reasonably good description of saturation properties
of symmetric nuclear matter. How these effects manifest
themselves in dense neutron-rich matter may affect the high-
density behavior of the nuclear symmetry energy.

III. EFFECTS OF THE SPIN-ISOSPIN-DEPENDENT
THREE-BODY FORCE

In this section, we examine effects of the spin-isospin-
dependent three-body force on the symmetry energy at
suprasaturation densities. As it has been shown repeatedly
in the literature (see, e.g., Refs. [36,43–45]) that a zero-range
three-body force can be reduced to an effective two-body force,

Vd = t0(1 + x0Pσ )ραδ(r), (9)

where t0, α, and x0 are parameters and Pσ is the spin-exchange
operator. Depending on how many and which properties of
finite nuclei and nuclear matter are used in reducing the
three-body force, various values have been used for both the
x0 and t0 parameters. Moreover, the density-dependence ρα

is often used to mimic additional in-medium effects such as
the many-body force. For instance, in relativistic approaches,
the dressing of the in-medium spinors will also introduce
a density-dependence to the interaction, which can lead to
similar effects as the many-body force. The parameter α can
thus take on any value between 0 and 1. The parameter x0

controls the relative contributions to the three-body force from
the isosinglet and isotriplet NN interactions. The three-body
term has been included in many effective interactions, such as

064612-2



UNDERSTANDING THE MAJOR UNCERTAINTIES IN THE . . . PHYSICAL REVIEW C 81, 064612 (2010)

the Skyrme and Gogny interactions, in both phenomenological
(e.g., Refs. [46,47]) and microscopic (see, e.g., Ref. [48])
many-body theories for isospin asymmetric nuclear matter.
Noticing that the potential energies owing to the three-body
force in the T = 1 and T = 0 channels are, respectively (for
details, see Table II and the corresponding equation EST in
Ref. [45]),

V T 1
d = 1 − x0

2

3t0

8
ρα+1, V T 0

d = 1 + x0

2

3t0

8
ρα+1, (10)

one sees immediately that the terms containing x0 cancel out in
calculating the equation of state (EOS) of symmetric nuclear
matter. In fact, among the normally 13 parameters used in the
Hartree-Fock calculations with the Gogny force, x0 is the only
one having this special feature. To evaluate quantitatively the
symmetry energy, we use the Gogny central force [45],

Vc(r) =
∑
i=1,2

(Wi + BiPσ − HiPτ − MiPσPτ )ie
−r2/µ2

i , (11)

where Pτ is the spin exchange operator and the values of
the parameters W , B, H , M , and µ are taken directly from
Ref. [45]. It is necessary to stress here that because we are
aiming at a qualitative understanding of why the symmetry
energy is so uncertain at suprasaturation densities, the model
parameters are not retuned self-consistently to reproduce any
existing constraint on the symmetry energy at and/or below
the normal nuclear-matter density ρ0. The resulting E

pot2
sym is

Epot2
sym = −

∑
i=1,2

(
Hi

4
+ Mi

8

)
π

3
2 µ3

i ρ − (1 + 2x0)
t0

8
ρα+1.

(12)

Shown in Fig. 1 are the symmetry energy functions obtained
with different values for the x0 and α parameters. It is clearly
seen that for a given value of the α parameter, the x0 controls the
high-density behavior of the symmetry energy. By varying the
x0, one can easily cover the whole range of symmetry energy
calculated within the Hartree-Fock approach using more than
100 Skyrme and Gogny forces [47] without changing anything
in the EOS of symmetric nuclear matter. In particular, with
x0 = 1 and α = 1/3 as in the original Gogny force [45], only
the (S = 1, T = 0) spin-isospin n-p interaction contributes to

FIG. 1. (Color online) The symmetry energy obtained with
different spin and density dependencies in the three-body force.

the three-body force and the symmetry energy; the Esym(ρ)
drops quickly to zero above certain suprasaturation densities.
We regard this kind of Esym(ρ) as being supersoft. Overall,
depending on the value of the parameter x0, the symmetry
energy can be either stiff and keeps increasing with density or
becomes supersoft above certain suprasaturation densities.

In the 2003 survey by J. R. Stone et al. [47] of 87 Skyrme
interactions, the x0 (x3 in the notation of Ref. [47]) ranges
between −1.56 and 1.92. As a special example, we notice
that B. A. Brown used x0 between 0.03 and 0.9 with the
SKX [49]. The values of x0 used in Fig. 1 are thus within
the uncertainty range of x0 found in the literature. Moreover,
we notice that the result here is consistent with the earlier
finding that the EOS of pure neutron matter is very sensitive
to the x0 parameter [49,50]. To the best of our knowledge, it
is currently not clear how to fix the x0 alone experimentally.
Nevertheless, it is worth noting that the cross section of pn

charge exchange reactions and the symmetry potential Usym

extracted from the isospin dependence of the nucleon optical
potentials are all directly related to the spin-isospin-dependent
nuclear interaction. They may thus be used to constrain the
value of x0. Moreover, the density dependence of the nuclear
symmetry energy itself can be used to constrain the x0 should
it be determined experimentally in the future. However, as we
discuss in the next section, the in-medium tensor force may
have similar effects on these observables.

IV. EFFECTS OF THE IN-MEDIUM SHORT-RANGE
TENSOR FORCE AND NUCLEON CORRELATION

Studies based on microscopic many-body theories indicate
consistently that the symmetry energy is dominated by the
isosinglet (S = 1, T = 0) channel [30,51], while measured
properties of deuterons indicate unambiguously that a tensor
force is at work in the (S = 1, T = 0) channel. It is also
well known that the π and ρ meson exchanges contribute to
the intermediate-range attractive and the short-range repulsive
tensor forces, respectively, according to [40]

V π
T (r) = f 2

Nπ
mπ

4π
τ1 · τ2(−S12)

[
e−mπ r

(mπr)3
+ e−mπ r

(mπr)2
+ e−mπ r

3mπr

]
and

V
ρ

T (r) =
f 2

Nρ
mρ

4π
τ1 · τ2(S12)

[
e−mρr

(mρr)3
+ e−mρr

(mρr)2
+ e−mρr

3mρr

]
,

(13)

where f 2
Nπ

/4π = 0.08 and f 2
Nρ

/m2
ρ � 2f 2

Nπ
/m2

π . The S12 =
6(�S · �r)2/r2 − 2�S2 = 4S2P2[cos(θ )] is the tensor operator. We
notice that some effective interactions, such as the Paris force
[52], only consider the tensor force owing to the π exchange
and has a short-range cut-off. As shown in Fig. 3 of Ref. [53],
the short-range behavior of the tensor forces used in popular
effective interactions differ dramatically. Moreover, different
short-range cutoffs are normally introduced, for example, in
studying the single-particle energy levels in rare isotopes
[53,54]. Unfortunately, the different behaviors of the tensor
force at short distance being cut out, thus not probed from
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FIG. 2. (Color online) The radial part of the tensor force VT =
V

ρ

T (r) + V π
T (r) at ρ = 0, ρ0, 2ρ0, and 3ρ0 with the BRS parameter

αBR = 0.2.

studying the energy levels of single particles, affect dra-
matically the high-density behavior of the symmetry energy.
Furthermore, in-medium properties of the ρ meson may affect
the strength of the short-range tensor force. Because the
symmetry energy is very sensitive to the competition between
the isosinglet (ṼT 0) and the isotriplet (ṼT 1) channels, the
contribution of the in-medium short-range tensor force that
exists only in the T = 0 channel may thus affect significantly
the high-density behavior of the Esym(ρ). To investigate
effects of the in-medium tensor force, we use the Brown-Rho
scaling (BRS) for the in-medium ρ meson mass according to
m


ρ/mρ = 1 − αBR · ρ/ρ0 [41]. Shown in Fig. 2 is the radial
part of the total tensor force VT = V

ρ

T (r) + V π
T (r) at ρ = 0, ρ0,

2ρ0, and 3ρ0, respectively, with the BRS parameter αBR = 0.2.
As one expects, the total tensor force becomes more repulsive
in denser matter when the ρ meson mass is reduced according
to the BRS. While the experimental evidence for the BRS
is still not very clear, we use it here as an effective way of
adjusting the in-medium strength of the tensor force. This is
useful for mimicking different ways of involving the tensor
force in many-body calculations in the literature.

Noticing that the tensor force gives no contribution at
the mean-field level to the potential energy with spherically
symmetric tensor correlations [55], we assume here that the
tensor force acting in the isosinglet n-p channels in nuclear
matter behaves in a similar way to deuterons; namely, the
tensor operator S12 is a constant of 2. Moreover, we introduce
a two-step tensor correlation function, that is, f (r) = 0, for
r < rc and f (r) = 1, for r � rc, where rc = η(3/4πρ)1/3 is
the “healing distance” or short-range cutoff. Thus, the tensor
contribution to the isospin T = 0 channel symmetry energy
is ṼT = ∫

f (r)[V ρ

T (rij ) + V π
T (rij )]d3rij . The parameter η is

used to effectively vary the short-range cutoff. The density
dependence in the rc reflects the design that the size of nucleons
shrinks as the density increases. With η = 2, the two nucleons
will always keep in touch on their surfaces while their sizes
decrease with increasing density.

Shown in Fig. 3 are the total symmetry energy functions
obtained using three typical values for the η parameter. With
η = 10, the rc is so large that the tensor contribution to the

FIG. 3. (Color online) The symmetry energy with different values
of the BRS parameter αBR = 0, 0.05, 0.10, 0.15, 0.20 using three
values for the correlation parameter η.

E
pot2
sym is completely cut off. The Esym(ρ) thus keeps increasing

with density owing to the Ekin
sym and the E

pot1
sym terms. With

smaller η values, the high-density behavior of the Esym(ρ)
is controlled by the BRS parameter αBR. Similar to varying
the x0 parameter in the three-body force, by varying the αBR

parameter the tensor force can lead to Esym(ρ) from stiff to
supersoft. A recent study indicates that a value of αBR ≈ 0.15
is required to reproduce the measured lifetime of 14C [56]. With
such an αBR, the symmetry energy can easily become supersoft
with η between 0.1 and 1. Results for the three typical cases
shown in Fig. 3 clearly indicate that the high-density behavior
of the symmetry energy is sensitive to both the short-range
in-medium tensor force and the NN correlation function. The
short-range repulsion generated by the ρ-meson exchange
plays the key role in determining the symmetry energy at
suprasaturation densities. In fact, the relationship between the
short-range repulsive tensor force in the isosinglet n-p channel
and the appearance of the supersoft symmetry energy was first
noticed by Pandharipande et al. within variational many-body
(VMB) theories [57,58]. Ultimately, because of the dominance
of the repulsive n-p interaction in isospin symmetric nuclear
matter at high densities, it is possible that pure neutron matter
is energetically favored, leading to the negative symmetry
energy at high densities. Of course, this can only occur if
the ρ tensor contribution is sufficiently strong owing to, for
example, its reduced mass in dense medium. It was also pointed
out that the fundamental reason for the completely different
high-density behaviors of the Esym predicted by the VMB and
the relativistic mean field (RMF) models is the lack of the
ρ tensor contribution to the energy in the RMF models [59].

To this end, it is interesting to note that the three-body
force and the tensor force can affect similarly the high-
density behavior of the symmetry energy. This is very similar
to the situation in describing the saturation properties of
symmetric nuclear matter. It has been shown that the saturation
properties can be equally well described by including either
the three-body force or the in-medium NN interactions
based on the BRS [42,48]. Nevertheless, as was pointed
out in Ref. [44], because the three-body force is essentially
a convolution of two-body forces, a consistent three-body
force should also include a tensor component. We have only
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studied here separately effects of the three-body force and
the two-body tensor force on the high-density behavior of
the symmetry energy. Effects including both the two- and the
three-body tensor forces simultaneously will be investigated
in a forthcoming work. In particular, by varying parameters
controlling both the three-body force and the tensor force
together, we shall demonstrate how large the parameter space
is in which the symmetry energy may become negative at
suprasaturation densities.

V. SUMMARY

In summary, the high-density behavior of the symmetry
energy Esym has long been regarded as the most uncertain
property of dense neutron-rich nuclear matter because even its
trend is still controversial. Within the interacting Fermi gas
model, the Esym can be expressed in terms of the isospin-
dependent NN strong interaction. The high-density behavior
of the Esym is determined by the competition between the in-
medium isosinglet and isotriplet nucleon-nucleon interactions.
Respective effects of the in-medium three-body interaction and
the short-range tensor force on the high-density behavior of
the Esym are examined separately. It is found that the strength

of the spin (isospin) dependence of the three-body force and
the in-medium ρ meson mass in the short-range tensor force
are the key parameters controlling the high-density behavior of
the Esym. These findings are useful for understanding why the
nuclear symmetry energy is very uncertain at suprasaturation
densities.

ACKNOWLEDGMENTS

We thank Lie-Wen Chen, Wei-Zhou Jiang, Che Ming Ko,
Hyun Kyu Lee, Rupert Machleidt, Mannque Rho, and Wei
Zuo for helpful discussions. One of us (B. A. Li) is also
grateful for the kind hospitality he received at the World Class
University program at Hanyang University in Seoul, Korea,
where he benefited from the stimulating discussions on the
main issues studied in this work. This work is supported by
US National Science Foundation Grant Nos. PHY-0652548
and PHY-0757839, the Research Corporation under Grant
No. 7123, Texas Coordinating Board of Higher Education
Grant No. 003565-0004-2007, the National Natural Science
Foundation of China (Grant Nos. 10735010, 10775068, and
10805026), and Research Fund of Doctoral Point Grant No.
20070284016.

[1] B. A. Li, C. M. Ko, and W. Bauer, Int. J. Mod. Phys. E 7, 147
(1998).

[2] B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000).
[3] Isospin Physics in Heavy Ion Collisions at Intermediate Ener-

gies, edited by Bao-An Li and W. Udo Schröder (Nova Science
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