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Comparison of different proximity potentials for asymmetric colliding nuclei
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Using the different versions of phenomenological proximity potential as well as other parametrizations within
the proximity concept, we perform a detailed comparative study of fusion barriers for asymmetric colliding
nuclei with asymmetry parameter as high as 0.23. In all, 12 different proximity potentials are robust against the
experimental data of 60 reactions. Our detailed study reveals that the surface energy coefficient as well as radius
of the colliding nuclei depend significantly on the asymmetry parameter. All models are able to explain the fusion
barrier heights within ±10% on the average. The potentials due to Bass 80, AW 95, and Denisov DP explain
nicely the fusion cross sections at above- as well as below-barrier energies.
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I. INTRODUCTION

The fusion of colliding nuclei with neutron-rich/-deficient
content and at the extreme of isospin plane has attracted a
large number of studies in recent years [1–11]. This renewed
interest is due to the availability of radioactive-ion beams that
can produce nuclei at the extreme of isospin [1,10,11]. Further,
this field has also been enriched with several new phenomena
that put a stringent test on theoretical models derived to study
the fusion phenomenon in heavy-ion reactions.

As is evident from the literature, no experiment can extract
information about the fusion barriers directly. All experiments
measure the fusion differential cross sections [1–3] and then
with the help of theoretical model, one extracts the fusion
barriers. Theoretical models are very helpful in understanding
the nuclear interactions at a microscopic level. A vast number
of theoretical models and potentials have become available in
recent years that can explain one or the other features of fusion
dynamics [12–26].

In the galaxy of different theoretical models, proximity
potential [13] enjoys very popular status. This phenomeno-
logical potential is a benchmark and backbone for all micro-
scopic/macroscopic fusion models. It is almost mandatory to
compare the potential and parametrize it within the proximity
concept for wider acceptability. In recent years, several re-
finements and modifications have been proposed over original
proximity potential [14,15]. Further, with the passage of time,
different versions of the same model are also available [12].
Many of these modifications are based on the isospin effects
either through the surface energy coefficients or via nuclear
radius. It would be of interest to test these potentials in the
isospin plane and to see how these different potentials will
perform when asymmetry in the neutron/proton content is
very large.

Recently, we carried out a detailed comparative systematic
study of different fusion models for symmetric colliding
nuclei [12]. Here we plan to extend this study for those
colliding nuclei that have larger neutron/proton content.
In this study, we shall compare as many as 12 proximity
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potentials with different versions. This will include four
versions of proximity potential: three versions of potential due
to Bass and Winther each and the latest potential due to Ngô
and a modified version of the Denisov potential. Section II
deals with formalism in detail, Sec. III contains the results,
and a summary is presented in Sec. IV.

II. FORMALISM

In this section, we present the details of various proximity
potentials used for the calculation of fusion barriers. When
two surfaces approach each other within a distance of 2–3 fm,
additional force due to the proximity of the surface is labeled as
proximity potential. Various versions of these potentials take
care of different aspects including the isospin dependence. In
the following, we discuss each of them in detail.

A. Proximity 1977 (Prox 77)

The basis of proximity potential is the theorem that states
that “the force between two gently curved surfaces in close
proximity is proportional to the interaction potential per unit
area between the two flat surfaces.” According to the original
version of proximity potential 1977 [13], the interaction
potential VN (r) between two surfaces can be written as:

VN (r) = 4πγ bR�

(
r − C1 − C2

b

)
MeV. (1)

In this, the mean curvature radius, R, has the form

R = C1C2

C1 + C2
, (2)

quite similar to the one used for reduced mass. Here

Ci = Ri

[
1 −

(
b

Ri

)2

+ · · · · · ·
]

, (3)

Ri , the effective sharp radius, reads as

Ri = 1.28A
1/3
i − 0.76 + 0.8A

−1/3
i fm (i = 1, 2). (4)

In Eq. (1), �(ξ = r−C1−C2
b

) is a universal function that depends
on the separation between the surfaces of two colliding nuclei
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only. As we see, both these factors do not depend on the isospin
content. However, γ , the surface energy coefficient, depends
on the neutron/proton excess as

γ = γ0

[
1 − ks

(
N − Z

N + Z

)2
]

, (5)

where N and Z are the total number of neutrons and
protons. In the present version, γ0 and ks were taken to be
0.9517 MeV/fm2 and 1.7826, respectively. Note that for
the symmetric colliding pair, i.e., (N = Z), γ = γ0 =
0.9517 MeV/fm2. If the (N−Z

N+Z
) ratio is 0.5, γ reduces

to 0.5276 MeV/fm2. Defining asymmetry parameter As =
[N1+N2−(Z1+Z2)
N1+N2+(Z1+Z2) ], one notices drastic reduction in the magni-

tude of the potential with asymmetry of the colliding pair.
Interestingly, most of the modified proximity type potentials
use different values of the parameter γ [14,15].

The universal function �(ξ ) was parameterized with the
following form:

� (ξ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
2 (ξ − 2.54)2 − 0.0852 (ξ − 2.54)3 ,

for ξ � 1.2511,

−3.437 exp (−ξ/0.75) ,

for ξ � 1.2511.

(6)

The surface width b has been evaluated close to unity. Using the
above form, one can calculate the nuclear part of the interaction
potential VN (r). This model is referred to as Prox 77 and the
corresponding potential as V Prox77

N (r).

B. Proximity 1988 (Prox 88)

Later on, using the more refined mass formula due to Möller
and Nix [27], the value of coefficients γ0 and ks were modified
yielding the values = 1.2496 MeV/fm2 and 2.3, respectively.
Reisdorf [14] labeled this modified version as “Proximity
1988.” Note that this set of coefficients give stronger attraction
compared to the above set. Even a more recent compilation by
Möller and Nix [28] yields similar results. We labeled this
potential Prox 88.

C. Proximity 2000 (Prox 00)

Recently, Myers and Świątecki [15] modified Eq. (1)
by using up-to-date knowledge of nuclear radii and surface
tension coefficients using their droplet model concept. The
prime aim behind this attempt was to remove descripency of
the order of 4% reported between the results of Prox 77 and
experimental data [15]. Using the droplet model [29], matter
radius Ci was calculated as

Ci = ci + Ni

Ai

ti (i = 1, 2), (7)

where ci denotes the half-density radii of the charge distribu-
tion and ti is the neutron skin of the nucleus. To calculate ci ,
these authors [15] used two-parameter Fermi function values
given in Ref. [30] and the remaining cases were handled with
the help of parametrization of charge distribution described

below. The nuclear charge radius (denoted as R00 in Ref. [31]),
is given by the relation:

R00i =
√

5

3
〈r2〉1/2

= 1.240A
1/3
i

{
1 + 1.646

Ai

− 0.191

(
Ai − 2Zi

Ai

)}
fm

(i = 1, 2), (8)

where 〈r2〉 represents the mean-square nuclear charge radius.
According to Ref. [31], Eq. (8) was valid for the even-even
nuclei with 8 � Z < 38 only. For nuclei with Z � 38, the
above equation was modified by Pomorski et al. [31] as

R00i = 1.256A
1/3
i

{
1 − 0.202

(
Ai − 2Zi

Ai

)}
fm

(9)
(i = 1, 2).

These expressions give good estimate of the measured mean-
square nuclear charge radius 〈r2〉. In the present model, authors
used only Eq. (8). The half-density radius, ci , was obtained
from the relation:

ci = R00i

(
1 − 7

2

b2

R2
00i

− 49

8

b4

R4
00i

+ · · · · · ·
)

(i = 1, 2).

(10)

Using the droplet model [29], neutron skin ti reads as

ti = 3

2
r0

(
JIi − 1

12c1ZiA
−1/3
i

Q + 9
4JA

−1/3
i

)
(i = 1, 2). (11)

Here r0 is 1.14 fm, the value of nuclear symmetric energy coef-
ficient J = 32.65 MeV, and c1 = 3e2/5r0 = 0.757895 MeV.
The neutron skin stiffness coefficient Q was taken to be
35.4 MeV. The nuclear surface energy coefficient γ in terms
of neutron skin was given as

γ = 1

4πr2
0

[
18.63(MeV) − Q

(
t2
1 + t2

2

)
2r2

0

]
, (12)

where t1 and t2 were calculated using Eq. (11). The universal
function �(ξ ) was reported as

�(ξ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−0.1353 +
5∑

n=0
[cn/(n + 1)] (2.5 − ξ )n+1 ,

for 0 < ξ � 2.5,

−0.09551 exp [(2.75 − ξ )/0.7176] ,

for ξ � 2.5.

(13)

The values of different constants cn were c0 = −0.1886, c1 =
−0.2628, c2 = −0.15216, c3 = −0.04562, c4 = 0.069136,
and c5 = −0.011454. For ξ > 2.74, the above exponential
expression is the exact representation of the Thomas-Fermi
extension of the proximity potential. This potential is labeled
Prox 00.
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D. Modified Proximity 2000 (Prox 00DP)

Recently, Royer and Rousseau [22] modified Eq. (8) with
slightly different constants as

R00i = 1.2332A
1/3
i

[
1 + 2.348443

Ai

− 0.151541

(
Ai − 2Zi

Ai

)]
fm (i = 1, 2). (14)

It is obtained by analyzing as many as 2027 masses with
N, Z � 8 and a mass uncertainty �150 keV. Further, the
accuracy of the above formula is mainly improved by adding
the Coulomb diffuseness correction or the charge exchange
correction to the mass formulas [22]. We implement this radius
in the proximity 2000 version instead of the form given in the
proximity 2000. This new version of the proximity potential
is labeled Prox 00DP [12].

E. Bass 1973 (Bass 73)

This model is based on the assumption of liquid-drop model
[16]. Here change in the surface energy of two fragments due
to their mutual separation is represented by exponential factor.
By multiply with geometrical arguments, one can obtained the
nuclear part of the interaction potential as

VN (r)Bass73 = − d

R12
asA

1/3
1 A

1/3
2 exp

(
− r − R12

d

)
MeV, (15)

with R12 = r0(A1/3
1 + A

1/3
2 ), d = 1.35 fm, and as =

17.0 MeV. The cut-off distance R12 is chosen to yield
saturation density in the overlap region and ro = 1.07 fm
corresponding half of the maximum density for individual
nucleus. We labeled this potential Bass 73.

F. Bass 1977 (Bass 77)

In this model, nucleus-nucleus potential is derived from the
information based on the experimental fusion cross sections
by using the liquid drop model and general geometrical
arguments. The nuclear part of the potential (for spherical
nuclei with frozen densities) can be written as [17]

VN (r)Bass77 = −4πγ
R1R2

R1 + R2
f (r − R1 − R2)

= − R1R2

R1 + R2
�(r − R1 − R2) MeV, (16)

with

df

ds
= −1, for s = 0. (17)

Note that f (s = r − R1 − R2) and �(s = r − R1 − R2) are
the universal functions. Here radius Ri is written as

Ri = 1.16A
1/3
i − 1.39A

−1/3
i fm (i = 1, 2). (18)

The form of the universal function � (s) reads as

�(s) =
[
A exp

(
s

d1

)
+ B exp

(
s

d2

)]−1

, (19)

with A = 0.0300 MeV−1 fm, B = 0.0061 MeV−1 fm, d1 =
3.30 fm, and d2 = 0.65 fm. Note that where b = 1, ξ and s turn
out to be the same quantities. This model was very successful
in explaining the barrier heights, positions, and cross sections
over a wide range of incident energies and masses of colliding
nuclei. We labeled this potential Bass 77.

G. Bass 1980 (Bass 80)

The above potential form was further improved by Bass
[14]. Here � (s = r − R1 − R2) is now given as:

�(s) =
[
0.033 exp

( s

3.5

)
+ 0.007 exp

( s

0.65

)]−1
, (20)

with central radius, Ri , as

Ri = Rs

(
1 − 0.98

R2
s

)
(i = 1, 2), (21)

where Rs is same as given by Eq. (4). We labeled this potential
Bass 80.

H. Christensen and Winther 1976 (CW 76)

Christensen and Winther [18] derived the nucleus-nucleus
interaction potential by analyzing the heavy-ion elastic-
scattering data, based on the semiclassical arguments and the
recognition that optical-model analysis of elastic scattering
determines the real part of the interaction potential only in
the vicinity of a characteristic distance. The nuclear part of the
empirical potential due to Christensen and Winther is written as

V CW76
N (r) = −50

R1R2

R1 + R2
�(r − R1 − R2) MeV. (22)

This form of the geometrical factor is similar to that of Bass77
with different radius parameters

Ri = 1.233A
1/3
i − 0.978A

−1/3
i fm (i = 1, 2). (23)

The universal function �(s = r − R1 − R2) has the following
form

�(s) = exp

(
− r − R1 − R2

0.63

)
. (24)

This model was tested for more than 60 reactions and we
labeled it CW 76.

I. Broglia and Winther 1991 (BW 91)

A refined version of the above potential was derived by
Broglia and Winther [14] by taking Woods-Saxon parametriza-
tion with subsidiary condition of being compatible with the
value of the maximum nuclear force predicted by the proximity
potential Prox 77. This refined potential resulted in

V BW91
N (r) = − V0

1 + exp
(

r−R0
0.63

) MeV; (25)

with V0 = 16π
R1R2

R1 + R2
γ a, (26)

here a = 0.63 fm and

R0 = R1 + R2 + 0.29. (27)
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Here radius Ri has the form

Ri = 1.233A
1/3
i − 0.98A

−1/3
i fm (i = 1, 2). (28)

The form of the surface energy coefficient γ is quite similar to
the one used in Prox 77 with slight difference

γ = γo

[
1 − ks

(
Np − Zp

Ap

) (
Nt − Zt

At

)]
, (29)

where γ0 = 0.95 MeV/fm2 and ks = 1.8. Note that the second
term used in this potential gives different results when the
projectile is symmetric (N = Z) and the target is asymmetric
(N > Z). This form will also give different results for larger
mass asymmetry ηA. Note that the radius used in this potential
has same form like that of Bass with different constants. We
labeled this potential BW 91.

J. Aage Winther (AW 95)

Winther adjusted the parameters of the above potential
through an extensive comparison with experimental data for
heavy-ion elastic scattering. This refined adjustment to slight
different values of “a” and Ri as [19]

a =
[

1

1.17
(
1 + 0.53

(
A

−1/3
1 + A

−1/3
2

))
]

fm (30)

and

Ri = 1.20A
1/3
i − 0.09 fm (i = 1, 2). (31)

Here, R0 = R1 + R2 only. We labeled this potential as AW 95.

K. Ngô 1980 (Ngô 80)

In earlier attempts, based on the microscopic picture of
a nucleus and on the idea of energy-density formalism, the
potential from Ngô and collaborators enjoys special status
[25]. In this model, calculations of the ion-ion potential are
performed within the framework of energy-density formalism
due to Bruckener et al., using a sudden approximation [32].
The need for Hartree-Fock densities as input in this model
limited its scope. This not only made calculations tedious but
also hindered its application to heavier nuclei. The above-
stated parametrization was improved by H. Ngô and Ch. Ngô
[21] by using a Fermi-density distribution for nuclear densities
as

ρn,p(r) = ρn,p(0)

1 + exp[(r − Cn,p)/0.55]
, (32)

where C represents the central radius of the distribution and is
defined in Prox 77 [see Eq. (3) with b = 1 fm]. Here ρn,p(0)
is given by

ρn(0) = 3

4π

N

A

1

r3
0n

; ρp(0) = 3

4π

Z

A

1

r3
0p

. (33)

Ngô parameterized the nucleus-nucleus interaction potential
in the spirit of proximity concept. The interaction potential
can be divided into the geometrical factor and a universal
function. The nuclear part of the parameterized potential is

written as [21]

V
Ngo80
N (r) = R� (r − C1 − C2) MeV, (34)

where R is defined by Eq. (2). Now the nuclear radius Ri reads
as

Ri = NRni
+ ZRpi

Ai

(i = 1, 2). (35)

The equivalent sharp radius for protons and neutrons are given
as

Rpi
= r0pi

A
1/3
i ; Rni

= r0ni
A

1/3
i , (36)

with

r0pi
= 1.128 fm; r0ni

= 1.1375 + 1.875 × 10−4Ai fm. (37)

The above different radius formulas for the neutrons and
protons take isotopic dependence into account. The universal
function �(s = r − C1 − C2) (in MeV/fm) is noted by

� (s) =
{

−33 + 5.4 (s − s0)2 , for s < s0,

−33 exp
[−1

5 (s − s0)2
]
, for s � s0,

(38)

and s0 = −1.6 fm. We labeled this potential Ngô 80.

L. New Denisov Potential (Denisov DP)

Denisov [20] performed numerical calculations and
parametrized the potential based on 7140 pair within semimi-
croscopic approximation. In total, 119 spherical or near
spherical nuclei along the β-stability line from 16O to 212Po
were taken. The potential is evaluated for any nucleus-nucleus
combinations at 15 distances between ions around the touching
point. By using this database, a simple analytical expression
for the nuclear part of the interaction potential VN (r) between
two spherical nuclei is presented as

VN (r) = −1.989843
R1R2

R1 + R2
�(r − R1 − R2 − 2.65)

×
[

1 + 0.003525139

(
A1

A2
+ A2

A1

)3/2

− 0.4113263(I1 + I2)

]
, (39)

with

Ii = Ni − Zi

Ai

(i = 1, 2). (40)

The effective nuclear radius Ri is given as

Ri = Rip

(
1 − 3.413817

R2
ip

)

+ 1.284589

(
Ii − 0.4Ai

Ai + 200

)
(i = 1, 2), (41)

where, proton radius Rip is given by Eq. (8) and
� (s = r − R1 − R2 − 2.65) is given by the following
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complex form:

�(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − s/0.7881663 + 1.229218s2

−0.2234277s3 − 0.1038769s4

− R1R2
R1+R2

(0.1844935s2 + 0.07570101s3)

+ (I1 + I2) (0.04470645s2 + 0.03346870s3),

for − 5.65 � s � 0,[
1 − s2

[
0.05410106 R1R2

R1+R2
exp

(− s
1.760580

)
−0.5395420(I1 + I2) exp

(− s
2.424408

)]]
× exp

(− s
0.7881663

)
,

for s � 0.

(42)

Here Ai , Ni , Zi , Ri , and Rip are, respectively, the mass
number, the number of neutrons, the number of protons, the
effective nuclear radius, and the proton radius of the target
and projectile. The above form of the universal function
not only depends on the separation distance s but also has
complex dependence on the mass as well as on the relative
neutron excess content. The above parametrization is derived
for different combinations of nuclei between 16O and 212Po.

As stated in subsection II D, a new radius formula
has become available recently [22]. We here extend the
above potential due to Denisov to include this radius in its
parametrization. This modified new version of the potential is
labeled as Denisov DP [12]. Note that this new implementation
was reported to yield very close agreement (within 1%) with
experimental data for symmetric colliding pairs [12].

If one looks on the different versions of potentials (Bass 73,
Bass 77, Bass 80, and CW 76), one notices that although the
form of the radius is different, it is still isospin independent.
Further, the corresponding universal functions are also isospin
independent. The newer versions of Winther (BW 91 and AW
95) have incorporated a γ similar to the one used in the Prox 77
potential with a slightly different form. Here isospin content
is calculated separately for the target/projectile. The latest
version of Ngô (Ngô 80) has some isospin dependence in the
radius parameter. In most of the above-mentioned potentials,
modifications are made either through the surface energy coef-
ficients or via nuclear radii. Both of these technical parameters
can have sizable effects on the outcome of a reaction [33].

Using the above sets of models, the nuclear part of the
interaction potential is calculated. By adding the Coulomb
potential to a nuclear part, one can compute the total potential
VT (r) for spherical colliding pairs as

VT (r) = VN (r) + VC(r), (43)

= VN (r) + Z1Z2e
2

r
. (44)

Since the fusion happens at a distance larger than the touching
configuration of colliding pair, the above form of the Coulomb
potential is justified. One can extract the barrier height V theor

B

and barrier position Rtheor
B using the following conditions

dVT (r)

dr

∣∣∣∣
r=Rtheor

B

= 0; and
d2VT (r)

dr2

∣∣∣∣
r=Rtheor

B

� 0. (45)

0.0 0.1 0.2 0.3 0.4 0.5
0.4

0.6

0.8

1.0

1.2

1.4

A
s
=(N-Z)/(N+Z)

A
1

= 40
A

2
= 40

Prox 77
Prox 88
Prox 00
AW 95

γ
(M

eV
fm

-2
)

FIG. 1. (Color online) The variation of the surface energy
coefficient γ (MeV fm−2) with asymmetry parameter As . We display
the results using γ from Prox 77, Prox 88, Prox 00, and AW 95 for
masses of reacting partner A1 = A2 = 40 units.

The knowledge of the shape of the potential as well as barrier
position and height allows one to calculate the fusion cross
section at a microscopic level. To study the fusion cross
sections, we shall use the model given by Wong [34]. In this
formalism, the cross section for complete fusion is given by

σfus = π

k2

lmax∑
l=0

(2l + 1) Tl(Ec.m.), (46)

0.0 0.1 0.2 0.3 0.4 0.5
3.0

3.5

4.0

4.5

5.0

Bass 77
AW 95
Ngô 80
Prox 77
Prox 00
Prox 00DP

A
s
=(N-Z)/(N+Z)

A
1

= 40
A

2
= 40

R
(f

m
)

FIG. 2. (Color online) Same as Fig. 1 but for various radii used
in the literature.
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Prox 77

A
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A
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2
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)
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-40

-30

-20

-10
AW 95

0.0 0.1 0.2 0.3 0.4
-40

-30

-20

-10
Prox 00DP

0.0 0.1 0.2 0.3 0.4

Denisov DP

0.0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

FIG. 3. (Color online) The strength of the nuclear potential VN

(MeV) calculated at a distance equal to C1 + C2 + 1 fm as a function
of asymmetry parameter As for the reacting partners having masses
A1 = A2 = 40 and A1 = A2 = 80 units. Here Ci denotes the central
radius [12]. The dotted lines denote the value of the potential at
As = 0.0 (for A1 = A2 = 40 only) using proximity potentials.

where k =
√

2µE

h̄2 and µ is the reduced mass. The center-of-
mass energy is denoted by Ec.m.. In the above formula, lmax

corresponds to the largest partial wave for which a pocket
still exists in the interaction potential and Tl (Ec.m.) is the
energy-dependent barrier penetration factor and is given by

Tl(Ec.m.) =
{

1 + exp

[
2π

h̄ωl

(
V theor

Bl
− Ec.m.

)]}−1

, (47)

where h̄ωl is the curvature of the inverted parabola. If we
assume that the barrier position and width are independent of
l, the fusion cross section reduces to

σfus(mb) = 10Rtheor2

B h̄ω0

2Ec.m.

ln

{
1 + exp

[
2π

h̄ω0

(
Ec.m. − V theor

B

)]}
.

(48)

For Ec.m. � V theor
B , the above formula reduces to well-known

sharp cut-off formula

σfus(mb) = 10πRtheor2

B

(
1 − V theor

B

Ec.m.

)
, (49)
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FIG. 4. The theoretical fusion barrier heights VB (MeV) and
positions RB (fm) are displayed as a function of experimentally
extracted values. The shaded area represents the region within which
all 12 proximity potentials are able to reproduce experimental data.

whereas for Ec.m. � V theor
B , the above formula reduces to

σfus(mb) = 10Rtheor2

B h̄ω0

2Ec.m.

exp

[
2π

h̄ω0

(
Ec.m. − V theor

B

)]
. (50)

We used Eq. (48) to calculate the fusion cross sections.
From the above brief discussion, it is clear that the main

stress is made on the surface energy coefficients γ and nuclear
radii to incorporate the isospin dependence in the nuclear
potential. Definitely, the response of the isospin-dependent
potentials will be different for asymmetric nuclei compared
to symmetric nuclei. At intermediate energies, a strong effect
was reported for the asymmetric reactions as well as for the
mass dependence of the reaction [35].

III. RESULT AND DISCUSSION

The present study is conducted using a variety of the
above-mentioned potentials. In total, 60 asymmetric reactions
with compound mass between 29 and 294 (that have been
experimentally explored) are taken for the present study. All
nuclei considered here are assumed to be spherical in nature;
however, deformation as well as orientation of the nuclei
also affect the fusion barriers [26]. For uniform comparison
of different models, we consider all colliding nuclei to be
spherical. The lightest reaction taken is that of 12C+17O,
whereas heaviest one is of 86Kr+208Pb. The asymmetry As

of the colliding nuclei varies between 0.02 and 0.23. The
other form of the asymmetry used in the literature is the
mass asymmetry ηA [23,24]. In the present analysis, ηA varies
between 0.0 and 0.97. Note that the nonzero value of As will
involve complex interplay of the isospin degree of freedom
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FIG. 5. The percentage difference 
VB (%) of theoretical fusion
barrier heights over experimental one as a function of asymmetry
parameter As . Here only 60 reactions covering the whole mass and
asymmetry range are taken. The shaded area is marked only for those
potentials where the deviation is within ±5%.

which has strong role at intermediate energies as well. The
variation of η alters the physical outcome of a reaction with
η ≈ 0.0 leading to high dense matter and maximum collision
volume, whereas a larger value of η ≈ 1.0 will not be able to
compress the matter to higher density [35].

As stated above, the isospin dependence of the different
potentials enters via surface energy coefficient γ . In Fig. 1,
we display the variation of γ (in MeV fm−2) with asymmetry
parameter As . Here we compare three versions of the surface
energy coefficient γ used in Prox 77, Prox 88, and Prox 00
potentials along with the relation suggested in AW 95 potential.
For the present analysis, the mass of the reacting partner is
kept fixed equal to A1 = A2 = 40. The As was increased
by increasing the neutrons and decreasing the protons. For
example, 40

20Ca20+40
20Ca20 has As = 0.0. For As = 0.2, we

chose the reaction of 40
16S24+40

16S24, whereas for As = 0.4, the
reaction was 40

12Mg28+40
12Mg28. In all cases, the mass of the

reacting partner is kept fixed, whereas the ratio As is varied by
converting the proton into neutrons. At the end of this series,
we have the reaction of 40

10Ne30+40
10Ne30 having As = 0.5. From

the figure, we see that the surface energy coefficient γ used in
the latest proximity potentials Prox 00/ Prox 00DP as well as in
original version Prox 77 is less sensitive toward the asymmetry
and isospin dependence, whereas the one used in the Prox 88
potential has a stronger dependence on the asymmetry of the
reacting nuclei. The coefficient γ of AW 95 yields same results
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FIG. 6. Same as Fig. 5 but for percentage difference 
RB (%).

like Prox 77. Since nuclear potential VN (r) depends directly
on γ , one can conclude that the potentials calculated within
Prox 88 and Prox 77 will be far less attractive for larger
asymmetries compared to the one generated using Prox 00.
When colliding nuclei are symmetric (N = Z; As = 0.0),
such dependence does not play a role. In many studies [23],
one finds that neutron excess leads to more attraction. In these
studies, the total mass of the colliding pair is not fixed and, as
a result, this dependence is more of mass dependence than of
isospin dependence.

In Fig. 2, we display the dependence of different nuclear
radii on the asymmetry parameter As . As noted above, this
parameter also plays significant role in nuclear potential and
finally in the barrier calculations. We show the dependence
of different forms of nuclear radii used in various potentials
on the asymmetry parameter. We see that the radius used in
the Prox 77 (also in Prox 88) as well as in Bass versions (i.e.,
Bass 73, Bass 77, and Bass 80) and all versions from Winther
(CW 76, BW 91, and AW 95) are independent of the
asymmetry content, whereas the one used in the Prox 00, Prox
00DP (and Denisov DP), and Ngô 80 versions depends on the
asymmetry content of the colliding pairs.

From Figs. 1 and 2, we see that both these parameters
can lead to significant change in the nuclear potential and
ultimately in the fusion barriers even if the universal function
�(s) is kept the same. In Fig. 3, we display the nuclear part of
the interaction potential VN (r) at a distance of C1 + C2 + 1 fm
for the same sets of the reactions as depicted in Figs. 1 and 2.
In addition, a series of heavier reacting partners with mass
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A1 = A2 = 80 is also taken. We display four versions of
proximity potential, three versions from Bass and Winther and
one each of the latest versions of Ngô and Denisov. We see a
systematic decrease in the attractive strength of the potentials
with asymmetry content As . The decrease is stronger for the
Prox 88 version compared to Prox 77, Prox 00, and Prox 00DP.
The Bass 73, Bass 77, and Bass 80 versions of the potential are
independent of the asymmetry content. One also notices a very
weak dependence in the Ngô 80 potential. Two of the three
versions of the Winther potential have significant dependence
on the asymmetry of the reaction. The Winther 1976 potential,
however, does not show such dependence due to the absence

of γ term in the potential. The Denisov DP potential also
shows a linear decrease in the strength of the potential with
asymmetry content. These variations are stronger for heavier
colliding nuclei. This figure shows true isospin dependence of
the nuclear potential as the mass of the colliding nuclei is kept
fixed. All those potentials that do not depend on the asymmetry
parameter As will not show any change in the structure.

We now shift from the systematic study to the study
involving real nuclei. As stated above, here 60 reactions with
As between 0.02 and 0.23 and ηA between 0.0 and 0.97 are
taken. For all these reactions, experimental fusion barriers are
known [2–11,36–58]. In Fig. 4, we display the fusion barrier

TABLE I. The fusion barrier heights VB (in MeV) and positions RB (in fm) using different proximity potentials for 60 asymmetric systems.
The corresponding experimental values are also listed.

Reaction Prox 77 Prox 88 Prox 00 Prox 00DP Empirical Ref.

VB RB VB RB VB RB VB RB VB RB

7Li+27Al 6.52 7.78 6.34 8.03 6.80 7.45 6.34 8.08 7.38 7.36 [36]
12C+17O 8.22 7.56 7.98 7.81 8.46 7.39 7.93 7.92 8.20 7.76 [37]
11B+27Al 10.68 7.94 10.39 8.19 11.09 7.64 10.62 8.05 11.20 7.69 [36]
6Li+59Co 12.64 8.41 12.31 8.66 12.58 8.49 11.78 9.14 12.00 7.60 [38]
4He+164Dy 17.71 9.90 17.36 10.15 17.36 10.20 16.01 11.09 17.14 10.32 [39]
4He+209Bi 21.30 10.44 20.89 10.64 20.63 10.81 19.20 11.70 20.98 10.04

±0.05 ±0.01 [40]
26Mg+30Si 25.61 8.64 24.97 8.89 25.05 8.86 24.71 9.01 24.80 9.05 [41]
6He+238U 22.06 11.22 21.69 11.42 22.56 10.97 21.21 11.74 20.28 12.50 [42]
6Li+144Sm 25.26 9.80 24.72 10.05 25.18 9.85 23.69 10.53 24.65 10.20 [43]
14N+59Co 28.19 8.83 27.50 9.08 28.13 8.87 27.37 9.16 26.13 9.60 [44]
7Li+159Tb 25.50 10.20 25.00 10.45 26.76 10.15 24.32 10.77 23.81 11.03 [39]
24Mg+35Cl 31.18 8.60 30.39 8.85 30.36 8.90 30.04 8.98 30.70 8.84 [5]
16O+58Ni 33.32 8.85 32.51 9.10 33.52 8.82 32.72 9.09 31.67 9.30 [45]
18O+64Ni 32.08 9.25 31.35 9.50 32.32 9.20 31.58 9.42 32.50 9.04 [3]
12C+92Zr 33.88 9.38 33.12 9.63 33.98 9.37 32.78 9.79 32.31 9.68 [45]
6Li+208Pb 31.17 10.57 30.59 10.77 31.11 10.60 29.49 11.25 30.10 11.00 [46]
16O+72Ge 36.79 9.22 35.94 9.42 36.80 9.23 35.96 9.45 35.40 9.70 [2]
36S+48Ca 44.63 9.51 43.65 9.76 44.67 9.55 43.70 9.78 43.30 [11]
10Be+209Bi 40.50 11.02 39.78 11.22 40.59 10.99 39.11 11.44 37.60 13.50 [47]
19F+93Nb 50.34 9.74 49.24 9.99 49.27 10.02 49.27 10.02 46.60 9.20

±0.10 ±0.10 [48]
12C+152Sm 48.37 10.28 47.41 10.48 48.98 10.17 47.60 10.49 46.39 10.77 [39]
16O+116Sn 53.56 9.94 52.43 10.19 53.48 10.01 52.35 10.23 50.94 10.36 [49]
18O+124Sn 51.99 10.27 50.97 10.52 51.89 10.33 50.81 10.55 49.30 10.98 [50]
48Ca+48Ca 53.96 9.89 52.84 10.09 53.93 9.89 52.86 10.11 51.70 10.38 [9]
27Al+70Ge 57.62 9.59 56.34 9.84 57.74 9.58 57.74 9.58 55.10 10.20 [4]
40Ca+48Ti 61.67 9.46 60.27 9.71 60.71 9.64 60.71 9.64 58.17 9.97

±0.62 ±0.07 [7]
35Cl+54Fe 62.04 9.46 60.62 9.71 60.85 9.66 60.27 9.79 58.59 10.14 [51]
37Cl+64Ni 64.41 9.82 63.03 10.07 64.02 9.91 63.37 10.05 60.60 10.59 [6]
46Ti+46Ti 67.15 9.56 65.64 9.81 66.34 9.70 65.38 9.87 63.30 10.27 [52]
12C+204Pb 60.73 10.84 59.61 11.09 60.96 10.85 59.08 11.22 57.55 11.34 [45]
16O+144Sm 64.16 10.31 62.86 10.56 64.01 10.38 62.47 10.63 61.03 10.85 [45]
40Ar+58Ni 68.84 9.72 67.33 9.97 67.93 9.92 67.93 9.92 66.32 10.16 [39]
37Cl+73Ge 72.43 10.00 70.91 10.25 71.88 10.11 70.74 10.30 69.20 10.60 [53]
28Si+92Zr 74.52 10.00 72.95 10.25 72.72 10.30 72.35 10.34 70.93 10.19 [45]
16O+186W 73.09 10.86 71.74 11.06 71.39 11.18 70.03 11.40 68.87 11.12 [45]
48Ti+58Ni 82.70 9.89 80.91 10.14 81.34 10.13 81.34 10.13 78.80 9.80

±0.30 ±0.30 [8]
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TABLE I. (Continued.)

Reaction Prox 77 Prox 88 Prox 00 Prox 00DP Empirical Ref.

VB RB VB RB VB RB VB RB VB RB

32S+89Y 82.52 10.06 80.78 10.31 81.38 10.23 80.62 10.36 77.77 10.30 [45]
36S+90Zr 82.99 10.30 81.30 10.55 82.35 10.41 81.10 10.60 79.00 10.64 [54]
16O+208Pb 79.38 11.09 77.96 11.29 79.30 11.13 77.78 11.35 74.90 11.76 [46]
35Cl+92Zr 88.58 10.25 86.75 10.50 87.64 10.39 86.41 10.56 82.94 10.20 [45]
28Si+120Sn 89.43 10.49 87.65 10.69 88.12 10.65 88.12 10.65 85.89 11.04 [55]
19F+197Au 85.70 11.15 84.16 11.35 85.33 11.20 85.33 11.20 81.61 11.32 [45]
16O+238U 86.86 11.39 85.37 11.59 87.46 11.30 85.81 11.56 80.81 11.45 [45]
35Cl+106Pd 99.86 10.48 97.85 10.68 98.75 10.62 97.45 10.74 94.30 11.27 [56]
58Ni+60Ni 102.83 10.16 100.67 10.41 102.07 10.26 102.07 10.26 96.00 10.26 [45]
32S+116Sn 101.78 10.49 99.75 10.74 100.65 10.64 99.73 10.76 97.36 10.80 [49]
40Ca+90Zr 103.60 10.30 101.46 10.55 102.57 10.43 102.10 10.48 96.88 10.53 [45]
48Ca+96Zr 99.33 10.80 97.46 11.00 98.73 10.90 97.28 11.04 95.90 11.21 [10]
28Si+144Sm 108.00 10.78 105.90 10.98 105.40 11.04 105.03 11.13 103.89 10.93 [45]
50Ti+93Nb 112.74 10.71 110.54 10.96 111.25 10.87 110.38 10.99 106.90 [57]
40Ca+124Sn 123.11 10.90 120.78 11.10 121.55 11.01 121.55 11.01 112.93 10.08 [45]
28Si+208Pb 133.90 11.56 131.59 11.76 131.10 11.79 131.10 11.79 128.07 11.45 [45]
40Ar+165Ho 141.27 11.49 138.78 11.69 138.61 11.71 138.61 11.71 141.38 11.48 [39]
32S+232Th 163.08 11.92 160.39 12.12 162.32 11.94 160.97 12.02 155.73 11.18 [45]
40Ca+192Os 174.70 11.71 171.71 11.96 173.90 11.74 173.07 11.79 168.07 11.05 [45]
48Ti+208Pb 200.34 12.18 197.08 12.38 197.08 12.34 197.08 12.34 190.10 [58]
56Fe+208Pb 233.61 12.33 229.84 12.58 229.74 12.45 229.74 12.45 223.00 [58]
64Ni+208Pb 247.56 12.56 243.66 12.76 245.68 12.53 245.68 12.53 236.00 [58]
70Zn+208Pb 262.60 12.71 258.53 12.91 259.01 12.76 259.01 12.76 250.60 [58]
86Kr+208Pb 308.05 12.99 303.40 13.24 306.16 12.92 304.56 12.98 299.20 [58]

TABLE II. Fusion barrier heights VB (in MeV) and positions RB (in fm) are displayed using other different proximity potentials for 60
asymmetric systems. The limited numbers of reactions in certain cases are due to the restriction posed in different potentials.

Reaction Bass 80 Ngo 8̂0 AW 95 Denisov DP

VB RB VB RB VB RB VB RB

7Li+27Al 6.20 8.35 – – 6.31 8.27 – –
12C+17O 7.79 8.13 – – 7.89 8.10 – –
11B+27Al 10.13 8.50 – – 10.24 8.49 – –
6Li+59Co 12.00 8.97 – – 12.14 8.97 – –
4He+164Dy 16.87 10.51 – – 17.12 10.44 – –
4He+209Bi 20.30 11.00 – – 20.62 10.95 – –
26Mg+30Si 24.33 9.20 25.65 8.76 24.42 9.20 23.84 9.29
6He+238U 21.10 11.83 – – 21.60 11.59 – –
6Li+144Sm 24.08 10.36 – – 24.34 10.34 – –
14N+59Co 26.79 9.40 – – 26.90 9.43 – –
7Li+159Tb 24.33 10.76 – – 24.67 10.72 – –
24Mg+35Cl 29.61 9.16 31.19 8.72 29.67 9.21 29.21 9.23
16O+58Ni 31.69 9.41 33.42 8.94 31.78 9.44 31.14 9.50
18O+64Ni 30.53 9.81 32.18 9.33 30.70 9.76 29.91 9.93
12C+92Zr 32.26 9.94 – – 32.43 9.93 – –
6Li+208Pb 29.72 11.14 – – 30.08 11.11 – –
16O+72Ge 35.02 9.73 36.92 9.29 35.14 9.79 34.46 9.83
36S+48Ca 42.48 10.07 44.69 9.59 42.69 10.04 42.11 10.09
10Be+209Bi 38.70 11.59 – – 39.29 11.48 – –
19F+93Nb 48.01 10.25 50.57 9.78 48.24 10.26 47.56 10.32
12C+152Sm 46.13 10.79 – – 46.45 10.82 – –
16O+116Sn 51.11 10.45 53.85 9.97 51.36 10.50 50.61 10.55
18O+124Sn 49.57 10.83 52.18 10.34 49.98 10.80 49.04 10.93

064609-9



ISHWAR DUTT AND RAJEEV K. PURI PHYSICAL REVIEW C 81, 064609 (2010)

TABLE II. (Continued.)

Reaction Bass 80 Ngo 8̂0 AW 95 Denisov DP

VB RB VB RB VB RB VB RB

48Ca+48Ca 51.39 10.40 54.06 9.94 51.74 10.39 51.13 10.42
27Al+70Ge 54.97 10.11 57.86 9.60 55.13 10.12 54.77 10.09
40Ca+48Ti 58.83 9.97 61.90 9.47 58.91 9.99 58.76 9.93
35Cl+54Fe 59.18 9.92 62.28 9.47 59.28 9.98 59.11 9.92
37Cl+64Ni 61.47 10.33 64.67 9.87 61.71 10.37 61.37 10.33
46Ti+46Ti 64.10 10.07 67.45 9.56 64.21 10.07 64.09 10.02
12C+204Pb 58.04 11.40 57.86 9.60 58.53 11.38 55.13 10.12
16O+144Sm 61.34 10.82 64.59 10.31 61.68 10.83 60.85 10.88
40Ar+58Ni 65.75 10.23 69.19 9.71 65.91 10.22 65.71 10.20
37Cl+73Ge 69.19 10.51 72.81 9.98 69.48 10.48 69.21 10.49
28Si+92Zr 71.21 10.51 74.96 9.97 71.44 10.53 71.32 10.45
16O+186W 69.86 11.37 73.44 10.85 70.36 11.34 69.47 11.45
48Ti+58Ni 79.08 10.35 83.24 9.87 79.28 10.43 79.28 10.35
32S+89Y 78.91 10.52 83.07 10.03 79.15 10.59 79.18 10.50
36S+90Zr 79.40 10.76 83.56 10.26 79.82 10.76 79.54 10.73
16O+208Pb 75.92 11.60 79.76 11.07 76.52 11.60 75.55 11.66
35Cl+92Zr 84.76 10.71 89.22 10.16 85.09 10.71 85.11 10.65
28Si+120Sn 85.56 10.95 90.04 10.39 85.94 10.93 85.98 10.86
19F+197Au 82.04 11.66 86.19 11.07 82.76 11.60 81.92 11.67
16O+238U 83.12 11.90 87.20 11.37 83.85 11.88 82.77 11.98
35Cl+106Pd 95.67 10.89 100.71 10.38 96.09 10.92 96.24 10.81
58Ni+60Ni 98.53 10.56 103.77 10.02 98.80 10.61 99.09 10.53
32S+116Sn 97.53 10.95 102.68 10.39 97.93 10.98 98.18 10.85
40Ca+90Zr 99.28 10.71 104.55 10.15 99.58 10.75 99.93 10.66
48Ca+96Zr 95.05 11.26 100.03 10.74 95.87 11.23 95.61 11.19
28Si+144Sm 103.60 11.19 109.04 10.61 104.12 11.20 104.31 11.12
50Ti+93Nb 108.10 11.17 113.83 10.59 108.77 11.13 108.87 11.06
40Ca+124Sn 118.07 11.31 124.29 10.73 118.66 11.31 119.36 11.14
28Si+208Pb 128.56 11.97 135.03 11.37 129.53 11.92 130.06 11.79
40Ar+165Ho 135.70 11.90 142.75 11.29 136.97 11.86 137.38 11.73
32S+232Th 156.86 12.28 164.65 11.67 158.17 12.25 − −
40Ca+192Os 168.22 12.07 176.93 11.45 169.44 12.05 171.15 11.82
48Ti+208Pb 193.15 12.49 203.09 11.86 195.26 12.44 196.99 12.15
56Fe+208Pb 225.72 12.59 237.53 11.89 228.16 12.52 230.95 12.18
64Ni+208Pb 239.28 12.81 251.83 12.10 242.40 12.68 245.24 12.31
70Zn+208Pb 253.99 12.92 267.37 12.20 257.54 12.78 260.75 12.37
86Kr+208Pb 298.65 13.15 − − 303.25 12.98 308.13 12.32

heights VB and barrier positions RB versus experimental values
for the above-mentioned reactions involving 12 different
potentials. For the clarity of the figure, only 60 asymmetric
reactions studied experimentally and covering the whole range
of the mass and asymmetry are displayed. We see no clear
difference with fusion barrier heights and positions. The fusion
barrier heights can be reproduced within ±10% in all cases on
the average. Due to the large uncertainty in the fusion barrier
positions, no definite trend and conclusion can be drawn as is
observed for the symmetric colliding nuclei [12]. To further
understand the role of isospin content, we display, in Fig. 5,
the percentage difference of the fusion barrier heights 
VB(%)
defined as


VB(%) = V theor
B − V

expt
B

V
expt
B

× 100, (51)

verses asymmetry parameter As . In some cases, only the latest
versions of the potential are shown. Interestingly, we see that
Prox 77 and Ngô 80 fail to reproduce the barrier heights satis-
factorily, whereas Prox 88, Bass 80, AW 95, Prox 00DP, and
Denisov DP do a far better job compared to other potentials.
We do not see any systematic deviation/improvement in the
fusion barrier heights with the asymmetry of the colliding
nuclei. We see that the potentials Prox 88, Bass 80, AW 95,
and Denisov DP can reproduce the empirical barrier heights
within ±5% (see the shaded regions in Fig. 5), whereas others
need ±10% to produce the same result.

The comparison of the fusion barrier positions outcome is
shown in Fig. 6. We see that due to large uncertainty in the
measurements of fusion barrier positions, a large deviation
is seen and all the models are able to reproduce the results
within ±10%. The precise values of the fusion barrier heights
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FIG. 7. (Color online) The fusion cross sections σfus (mb) as
a function of center-of-mass energy Ec.m. (MeV). For clarity, only
latest versions of different proximity potentials are shown. The
experimental data are taken from Stefanini 2006 [10], Newton 2001
[59], and Morton 1999 [60].

VB (in MeV) and positions RB (in fm) are shown in Tables I
and II for 60 asymmetric colliding nuclei involving significant
variations of asymmetry As as well as mass asymmetry ηA. The
experimental (or empirical) barriers displayed in Tables I and II
and in Figs. 4–6 are obtained by fitting the cross sections in the
approach, when shapes of both colliding nuclei are spherical.
A large number of experimental data are available for different
reactions; however, we restrict ourselves to the latest one only.

In Figs. 7 and 8, we display the fusion cross sections σfus

(in mb) as a function of center-of-mass energy Ec.m. for the
reactions of 48Ca+96Zr [10], 28Si+92Zr [59], 12C+92Zr [59],
16O+208Pb [60] (in Fig. 7) and 16O+50Ti [61], 16O+112Sn
[49], 16O+116Sn [49], and 16O+120Sn [55] (in Fig. 8). Here
the latest versions of proximity parametrizations along with
original proximity potential and its modifications are shown
for clarity. As we see, Bass 80, Denisov DP, and AW 95 do a
better job for all the systems, whereas Prox 77 and Ngô 80 fail
to come closer to the experimental data. The above results are
in agreement with the one obtained for symmetric colliding
nuclei [12].
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FIG. 8. (Color online) Same as Fig. 7 but for different systems
explained in the text. The experimental data are taken from Neto
1990 [61], Tripathi 2001 [49], and Baby 2000 [55].

IV. SUMMARY

We performed a systematic study of the role of isospin
dependence on fusion barriers by employing as many as 12
different proximity-based potentials. Some of the potentials
have isospin dependence via the surface energy coefficient
as well as via nuclear radius. We noted that the nuclear part
of the potential becomes more shallow with asymmetry of
the reaction. On the other hand, a detailed comparison of
different potentials does not show any preference for the
isospin-dependent potential. Our comparison for 60 reactions
reveals that all models can explain the fusion barrier heights
within ±10%. The potentials from Prox 88, Bass 80, AW 95,
and Denisov DP perform better than others. The fusion cross
sections are nicely explained by Bass 80, AW 95, and Denisov
DP potentials at below as well as above barrier energies.
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