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Spin and pseudospin symmetries in the antinucleon spectrum of nuclei
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Spin and pseudospin symmetries in the spectra of nucleons and antinucleons are studied in a relativistic
mean-field theory with scalar and vector Woods-Saxon potentials, in which the strength of the latter is allowed
to change. We observe that, for nucleons and antinucleons, the spin symmetry is of perturbative nature and
it is almost an exact symmetry in the physical region for antinucleons. The opposite situation is found in the
pseudospin symmetry case, which is better realized for nucleons than for antinucleons, but is of dynamical nature
and cannot be viewed in a perturbative way for either nucleons or antinucleons. This is shown by computation of
the spin-orbit and pseudospin-orbit couplings for selected spin and pseudospin partners in both spectra.
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I. INTRODUCTION

Spin and pseudospin symmetries of the Dirac equation
with scalar, S, and vector, V, potentials are observed, re-
spectively, when the difference, A =V — S, or the sum,
Y =V + S, is a constant. These constants are zero for bound
systems whose potentials go to zero at infinity. Generally,
in physical systems with this kind of potential neither of
these conditions is met exactly but, in some cases, one of
them can be approximately true. As Ginocchio pointed out,
these symmetries may explain degeneracies in some heavy
meson spectra (spin symmetry) or in single-particle energy
levels in nuclei (pseudospin symmetry), when these physical
systems are described by relativistic mean-field theories with
scalar and vector potentials [1]. In terms of the nonrelativistic
quantum numbers n, [, j (i.e., the quantum numbers of the
upper component of the Dirac spinor), exact spin symmetry
means that the doublets (n, [, j =1 —1/2)(n, 1, j =1+ 1/2)
are degenerate (no spin-orbit coupling), while in the case of
pseudospin symmetry the degeneracy refers to the doublets
n',14+2,j=1-1/2)(n,l, j =1+ 1/2). In the latter case,
a new principal quantum number 7i and a new orbital angular
momentum quantum number [ are defined, such that the
doublets are labeled by (71, [, j = [ & 1/2). While n, [ are the
common quantum numbers of the upper component of spin
symmetry doublets, 7, [ are the common quantum numbers of
the lower component of the spinor of the pseudospin symmetry
doublets. The relations among n’, 7i, and n may depend on the
shape of the central mean field and the symmetry conditions,
namely, whether it is a Woods-Saxon-like or a harmonic
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oscillator potential when there is pseudospin symmetry [2].
In the case of nuclei whose potentials are of the former type,
those relations are givenbyn' =n— 1,71 =n — 1.

The study of the antinucleon spectrum in nuclei is of
interest because of the conjectures about the existence of
antinucleon bound levels inside the nucleus based on the
relativistic description of nucleons. Naturally, this existence
is controversial simply because of the annihilation that can
occur between nucleons and antinucleons within nuclei [1].
Biirvenich et al. [3] have argued that, in a dense nuclear
environment, the existence of bound states for antinucleons
reduces the phase space available for such processes, and
therefore bound antinucleons may live long enough to be
observed experimentally. On the other hand, polarization
measurements of the scattering of antiprotons on carbon [4]
have indicated that the spin-orbit part of N N amplitudes is very
small. As noted by Ginocchio [1], this may indicate that for
the annihilation potential the vector part is similar to the scalar
part, thus not destroying the high degree of spin symmetry
that exists in antineutron spectra (see below). However, the
true impact of the annihilation potential on the spectrum and
even on the existence of antinucleon bound states in a nuclear
mean field is not fully known.

With this in mind, in this paper we are going to examine
in some detail the onset of spin and pseudospin symmetries
in antinucleon single-particle states and compare it to what
happens in the nucleon spectra. It has been shown [5-8]
that pseudospin and spin symmetries are connected by charge
conjugation since, under this operation, the sign of the vector
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potential V is changed while the sign of the scalar potential S
remains the same, thus converting A into —% and X into —A.
This was shown explicitly for harmonic oscillator potentials
[6]. Zhou et al. [5] have performed a realistic self-consistent
mean-field calculation for antinucleons, showing how the
shallow negative ¥ nucleon binding potential gives rise to
a deep negative —A antinucleon binding potential, thereby
holding many antinucleon single-particle states. One of the
consequences of the magnitude of these potentials is that spin
partners become almost degenerate, as was already noted by
Ginocchio in his first review paper [8]. Recently, it was shown
that spin symmetry is even higher for the anti-A spectrum in
a nucleus [9].

In this paper, we investigate charge-conjugation effects in
spin and pseudospin symmetries in nuclei, in a unified way, by
computing the energies of single-particle states of neutrons and
antineutrons using scalar and vector Woods-Saxon potentials.
The antineutron states are classified exactly in the same way
as the neutron states, namely, by the quantum numbers of
the corresponding spinor upper component, and the spin and
pseudospin partners obtained accordingly. In this study we
keep constant the range and diffusivity parameters that fit the
neutron spectrum of 208pp. used in previous works [10,11], as
well as the depth of the scalar potential, but vary the height of
the vector potential. From this systematic study, we can assess
the nature of the spin and pseudospin symmetries for nucleons
and antinucleons, namely, its perturbative or nonperturbative
nature. This is done by computing the contributions of
the spin-orbit and pseudospin-orbit couplings to the energy
splittings of spin and pseudospin partners, for both neutrons
and antineutrons. A comparison between the radial functions
of those partners is also made.

This paper is organized as follows. In Sec. II we present
the general features of charge- conjugated solutions of the
Dirac equation with spherical scalar and vector potentials and
discuss their quantum numbers and their relation to pseudospin
quantum numbers. In the subsequent section we present the
numerical solutions of the Dirac equation for both particles
and antiparticles in Woods-Saxon mean-field scalar and vector
potentials with parameters that best fit the single-particle states
of 2%8Pb, but allowing for a variable strength of the vector
potential. Finally, in Sec. IV, we draw the conclusions.

II. CHARGE CONJUGATION IN THE DIRAC
HAMILTONIAN WITH SCALAR AND VECTOR
RADIAL POTENTIALS

The Dirac Hamiltonian for a particle with mass m under
the action of external scalar, S, and vector, V, potentials reads
h=c=1)

H=a -p+B8m+S+V, (1)

where @ and B are the Dirac matrices. The time-independent
Dirac equation for fermions, with energy E, is

Hvy = Evy. (2

The charge-conjugation operator is given by C =iy’ K,
where K is the complex conjugation operator [12]. When C

PHYSICAL REVIEW C 81, 064324 (2010)

is applied to both sides of Eq. (2), one obtains the conjugate
Dirac equation

chc = -k 1ﬂcv (3)

where the conjugated spinor is given by . = iy? ¢* and the
conjugate Hamiltonian is

Ho=a -p+pm+S) -V, “4)

and E. is the total energy related to the charge-conjugated
spinor. From Egs. (1) and (4), one concludes that the charge-
conjugation operation changes the sign of the vector potential
while keeping the sign of the scalar potential [6]. Therefore,
the Hamiltonian is invariant under charge conjugation when
there is only a scalar potential and, in such a case, the
antifermion energies are symmetric with the corresponding
fermion energies.

For spherically symmetric systems, the fermion Dirac
spinor can be written as

_ iGpe(r) ¢ij(0’ ®)
N\ Fu(r)G 7 pem, (0, 9)

.Gm( Km 95
[ (r) dem; (0, @) ’ 5)
_Fnk(r) ¢7ij (99 <P)

where ¢,,;(0, ¢) are the spinor spherical harmonics and
G, (r) and F,,(r) are the radial wave functions for the upper
and lower components. The ¥ quantum number is related to
the total angular momentum j and orbital angular momentum
[ through

-+, j=I1+1,
K:{(+) j=1+13 ©

1, j=1-1
Hence, « contains the information about both angular mo-
mentum quantum numbers /, j that can be obtained from
I =|k|+ i(k/lk| — 1)and j = || — 1/2. The values of k for
the upper and lower spinor spherical harmonics are such that,
if the upper spinor has orbital angular momentum /, the lower
spinor orbital angular momentum should be / = I — «/|«]|.
To describe the antinucleons, we obtain from Eq. (5) the
corresponding conjugate spinor

_FnK(r)iO—Z(PiKm,- (9’ (p) (7)
i Gue(r)ioady,, (0.9) |

which can still be written as

Ve = (_1)m,-7(:</|/<|)/2+1i (

¢c=il/2¢*=<

[ Fruie —c—m,; (0,
i Fue(r) ¢ (0, 9) ®
=G (1) ¢K—mj(0’ ®)

or, after performing the replacements

—K = K, (9a)
Foue(r) = Gae(r), (9b)
Gm((r) - Fﬁ/?(r)v (90)

(10)

Ipc — (_1)mj+(!?/\lz|)/2+1i < iGﬁk(r) ¢E’_mf(9’ (p)> .

~Fae(r) ¢, —m; (6, ¢)
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We can label the spinor 1/ using the quantum numbers of its
upper component, namely, 7, [, j. These are to be regarded as
the quantum numbers for the charge-conjugated spinor that is
the solution of the charge-conjugated Dirac equation (3).

For fermions, the first-order differential radial equations are
obtained from Eq. (2) in the usual way, leading to

1
G;uc + ﬂ G
r

(E+m - A)Fl’lkv
(11

1—«
—— Fye = —(E—m —X) Gy,

F,+
where A=V —Sand X =V + S.

We use the same procedure to obtain the radial differential
equations for antifermions from the conjugate Dirac Hamilto-
nian (3) and spinor (10). One obtains
G4 1+i

nk

Gft/? =—(E.—m—1X) Fﬁrz,

-k _ (12)

Fr—ik—’— Fﬁ/? =(Ec+m—A)Gﬁ,;

r

We observe that these equations for antifermions are very
similar to Egs. (11) for fermions, the main effect of charge
conjugation being the transformation A - —¥X and ¥ — —A
as already mentioned in the Introduction. Moreover, there is
another important modification: The binding energy for the
fermions is given by € = E — m while the binding energy

for antifermions is given by €. = —E. — m. In terms of these
eigenvalues, Egs. (11) and (12) become, respectively,
1+«
G + nk=(6+2m_A)Fm(7
(13)
, 1 —K
Fm( + Fn/( = _(6 - Z)Gnk
and
_ 14+k = _
Gl + % G = (ec +2m + %) e,
o (14)

nK

Fre +TFﬁ/Z = —(ec+A) G

It is also instructive to write the second-order differential
equations for both the upper and lower components of the
fermions and antifermions spinors:

Kk + 1) A d 1+«
G, ———G, —_— | — G
r2 we + +2m—A<dr+ r ) e
= —(e = X)(€ +2m — A)G ., (15)
. k=1 ¥ (d 11—«
Fn,( —2 Fn/c + D + Fn/c
r dr r
— (e — 2)(e+2m— A)F,,K (16)
and
k@4 - b2l d 14\~
Gl — ———Gpe — — Giiz
ke r2 " ec+2m+2(dr+ r ) *
= —(&c + A)(e + 2m + X) Gz, (17)
k@R —1) - A (d 11—k
Far — ——— Faue — — Far
e r2 e+ A (dr + r )
= —(&c + A)(€c + 2m + T) Fe. (18)
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From these sets of equations the interchange of roles of A
and ¥ in the equations for the upper and lower radial wave
functions for fermions and antifermions is even clearer. For
instance, the role of the A potential, which contributes to the
effective mass m* of fermions (2m™* = € + 2m — A), is played
by — X in the case of antifermions, with a “conjugate” effective
mass such that2m? = €. + 2m + X. In contrast, the role of the
¥ potential as the binding potential for fermions is now played
by —A for antifermions. We will discuss in the next section
the consequences of this role change for the level distribution
and the onset of the symmetries of the antinucleon spectrum.

Actually, the sets of equations (13) and (14) are identical
provided we make the correspondences ¥ — —A, A — —%,
and € — €. (corresponding to E — —E_). Therefore, for a
given pair (S, V) of potentials the numerical results for a
certain positive energy state (the binding energy and wave
functions) are the same as for a negative energy state with
the same quantum numbers and the pair (S, —V), except,
of course, for the total energy E and E.. We recall that
the classification of the single-particle levels is given by the
quantum numbers of the upper component in both cases; hence
a correspondence between the spin and pseudospin partners
with positive and negative energies can be made.

The second-order equations (15)—(18) allow us to identify
the spin- and pseudospin-orbit terms for both fermions and
antifermions [11]. These are

A 1+KG (spin)
- nK Spin),
€+2m—A r P
¥ 1—-«

F.« (pseudospin)
€e—X

for fermions, and

3/ 14+4xk - .
cromiT - Gic  (spin),
A 1-F Fyz (pseudospin)
€&+A 71

for antifermions. These last expressions make clear the role
that A and X potentials play, respectively, in the onset of the
spin and pseudospin symmetries for fermions and the reversal
of their roles for antifermions. If one divides the second-order
equations (15)—(18) by (twice) the effective masses referred to
above, one gets Schrodinger-like equations (see Ref. [11]),
thereby providing a way of obtaining the contributions of
their various terms to the single-particle binding energy e.
In particular, one gets for the spin- and pseudospin-orbit
contributions for the energy of the level with quantum numbers
ni (fermions)

A 1+« |G |2 }’2 dr
SO 0 (ewt2m—AY r e
ESO = — (19)

I IGnKI2 rtdr ’

2.2
fo G 2)<em+2m A) | Ful"ridr

EPSO _
fo | Fucl2r2dr

(20)

In these formulas, the integration is taken in the principal-value
sense whenever the denominators of the integrands are zero.
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TABLE I. Single-particle neutron binding energies, in MeV, of two spin and two pseudospin partners
for various strengths of the vector potential V;. The column for V, = 292.0 MeV corresponds to the best fit
to the neutron single-particle energies of 2°Pb. The states with zero binding energy are in the continuum.

Vo 0.0 100.0

PN —358.0 —258.0

Ao 358.0 458.0

€(2s1)2) —322.5962 —224.9267
e(1ds)) —326.7516 —228.7713
AE 4.1554 3.8446
€(289)2) —255.2061 —162.2730
e(liyy ) —266.6147 —172.3074
AE 11.4086 10.0344
e(1pi)) —338.3051 —239.6125
e(1p3)) —338.4124 —239.7783
AE 0.1073 0.1658
€(lhy)) —283.3606 —188.0162
e(1hy10) —284.4187 —189.6579
AE 1.0581 1.6417

200.0 292.0 300.0
—158.0 —66.0 —58.0
558.0 650.0 658.0
—128.2021 —41.6087 —34.3833
—131.5698 —44.0704 —36.7021
3.3677 2.4616 2.3188
—72.7440 —1.3198 0.0
—80.4942 —3.3984 0.0
7.7502 2.0786
—141.4138 —52.2731 —44.6683
—141.6810 —52.7714 —44.2065
0.2672 0.4983 0.4618
—94.6341 —14.1499 —7.9630
—97.2570 —18.5705 —12.5662
2.6229 4.4206 4.6031

This is the case for EYSO because € — ¥ is zero for some value
of r. For antifermions, the formulas are similar:

- > 4% |12 2
ESO _ b e o |Gl r2dr o
" I 1Gazl?r2dr ’
I ey o EaelP r? dr
ik i ik
PSO _ JO  (em+A)eet+2m+%) r @

" S5 \Fe P 2 dr

We will use these formulas later on to assess the perturbative
nature of the spin and pseudospin symmetries for fermions and
antifermions.

III. NUMERICAL RESULTS AND DISCUSSION

In previous work we used realistic mean-field Woods-
Saxon potentials in the Hamiltonian (1) to study the structure
of the neutron single-particle spectrum of 2%®Pb [10,11].
By varying the parameters of the Woods-Saxon potential,

namely, its depth, diffusivity, and range, we were able to
perform a systematic investigation of the pseudospin energy
splittings as a function of those parameters. We concluded
that the onset of the pseudospin symmetry in nuclei is
dynamical, since it results mainly from cancellations of several
terms contributing to the single-particle levels, instead of
being a consequence of a small pseudospin-orbit coupling.
An equivalent statement is that the pseudospin symmetry
in nuclei is nonperturbative, as was pointed out by other
authors [13].

In the present work, we follow a similar strategy, using
mean-field Woods-Saxon potentials whose diffusivity and
range are adjusted to reproduce the neutron single-particle
spectrum of 2% Pb, but allowing for the vector potential strength
Vo to vary, and study the resulting spectra for both neutrons and
antineutrons. We carry out this program by solving numerically
the first-order Dirac equations for fermions and antifermions,
that is, Eqgs. (13) and (14), and obtaining the radial wave
functions and eigenenergies.

TABLE II. The antineutron binding energies €. (in MeV) and splittings for two spin partners and
two pseudospin partners. The parameters are the same as in Table 1.

Vo 0.0 100.0

=0 —358.0 —258.0

Aoy 358.0 458.0

€(251)2) —322.5962 —420.7518
e(1ds2) —326.7516 —425.1387
AE 4.1554 4.3869
€(289)2) —255.2061 —349.7786
e(1iy1 ) —266.6147 —362.1573
AE 11.4086 12.3787
e(1p12) —338.3051 —437.2571
ec(1p3)2) —338.4124 —437.3241
AE 0.1073 0.0670
e(Thos) —283.3606 —380.3511
e(Thy1p) —284.4187 —379.6942
AE 1.0581 0.6569

200.0 292.0 300.0

—158.0 —66.0 —58.0

558.0 650.0 658.0
—519.2080 —609.9713 —617.8704
—523.7798 —614.6861 —622.5967
4.5718 4.7148 4.7263
—445.3284 —533.8162 —541.5317
—458.4515 —547.4968 —555.2563
13.1231 13.6806 13.7246
—536.3716 —627.6573 —635.5988
—536.4082 —627.6713 —635.6111
0.0366 0.0140 0.0123
—476.6347 —566.1890 —573.9897
—476.9910 —566.3244 —574.1078
0.3563 0.1354 0.1181
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We used the following parameters, adjusted to 2°8Pb: Sy =
—358.0 MeV for the depth of S, and a, = a; = 0.6 fm and
R, = R, = 7.0 fm for, respectively, the diffusivity and range
of both V and § potentials [10,11]. We vary Vj, covering a
broad range of values for the binding potential. The parameter
Vo = 292.0 MeV corresponds to the best fit to the neutron
spectrum of 2%8Pb.

In Table I the binding energies € and the energy splittings
AE for two pseudospin and two spin partners of nucleon
single-particle states are shown, for a vector potential strength
varying from Vp = 0 to Vy = 300.0 MeV. As the magnitude
of Vj increases, the magnitude (absolute value) of Xy = Sy +
Vo decreases and the energy splittings between pseudospin
partners become smaller. Concomitantly, the magnitude of
Ao = Vo — Sy increases and the energies of the spin partners
move away from each other. These results are in agreement
with those of previous work [11], and they occur because, for
nucleon systems, the ¥ (A) potential drives the pseudospin-
(spin)-orbit interaction. Moreover, one sees that, since X is the
binding potential, for | ¥y| < 66.0 MeV, the potential becomes
too shallow and the higher energy states become unbound.

In Table II we present the same quantities for antineutrons,
namely, the binding energies €. and the energy splittings for
the same two spin and pseudospin partners, using the same
values of Vj as in Table I. This time, as the magnitude of
¥ decreases (and thus A increases) the energies of the spin
partners become quasidegenerate, whereas the energies of the
pseudospin partners move away from each other as was already
remarked by Zhou et al. [5]. This can be readily explained by
the reversal of the role played by the ¥ and A potentials
in the spin and pseudospin symmetries, as explained before.
In contrast to the neutrons, for antineutrons the energies of
conjugate spin partners become almost degenerate because of
the smallness of the X potential as compared to the A potential,
which drives the spin splitting for neutrons.

A, [MeV]
400 500 600 700
15 ‘ i | |
E— 255" 1dy)
—— = 2d5,-1gy,
r V() ‘: 0 MeV —_— 22;)3’ Ly, i
i - 1py - 1y
} \.\_\ 77777 lf,sz'1f7‘z
10 | = T
S N
§ I R N NV, =292 MeV |
: s >

& !

a sk |
0 [ | | | ‘7
-400 -300 -200 -100 0

Z,[MeV]

FIG. 1. Splittings for spin and pseudospin partners for neutrons.
The dashed line with V, = 292 MeV represents the physical region.
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A,[MeV ]
400 500 600 700
T T T T T
200 | T i
- ig%'ﬁn 2
B e IE!/Z'I?}Z i
sk | T e Vom 292 MeV
'; =0Me§/’.—___’____.,._.,.§__ ..... |
S 11— -
&y LommmmT T |
< b ! i
s —
O | :%’7‘__’——>f-:;:_—~7_‘_:7:__»:~T—T;t:‘—< = Ti‘ ‘
400 300 200 -100 0
%, [MeV ]

FIG. 2. Splittings for spin and pseudospin partners for antineu-
trons. The dashed line with V, = 292 MeV represents the physical
region.

Because of the correspondence that can be established
between the radial equations for particles and for antiparticles
mentioned at the end of Sec. II, it is interesting to note that if
we computed the energies and splittings for Vy < 0, in the case
of the neutrons, for a spin or pseudospin partner, we would get
the same values as for the corresponding antineutron spin or
pseudospin partner with the positive symmetric value | Vy|, and
vice versa (the results for antineutrons with V) < 0 are equal to
the results for fermions with the symmetric value | Vy|). In other
words, for the corresponding single-particle states of positive

5
L — /A 4
o—o0 Ip)lpy, y/
| m---m TT,- T, 7, _|
4 A-—A Thyy-Thy, ///
0——oO  Irip i S/
— | G---O My 1, Y i
Am A lhgy-Thyy 7
E 3 I /// |
— R
2
.
1 - ]
0 | | | |
0 1 2 3 4 5
AE[MeV ]

FIG. 3. Spin-orbit term splittings A ES©, that is, the difference in
the energies of the terms (19) (neutrons) and (21) (antineutrons), for
three spin partners plotted against their respective energy splittings
AE. The thicker solid line represents the values for which AES® =
AE. The calculation is done for the four positive values of V, in
Tables I and II.
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T T
or @/@Q’ |
— BFB---u- T--8 x &Em
% -5 —O  I5-ldy, |
E G--8 2, lg,
= A— A 2g,- i,
8 I *—e Zglz'THS/Z i
qu m—a 2dg,-Tg,
A—-a  2g,-Th,,
< _107 A—mm T AL )
-~
x
7 La, |
-15 ‘ |
; 5 10 15
AE[MeV ]

FIG. 4. Pseudospin-orbit term splittings AETSO, that is, the
difference in the energies of the terms (20) (neutrons) and (22)
(antineutrons), for three spin partners plotted against their respective
energy splittings AE. The calculation is done for the four positive
values of Vj in Tables I and II whenever bound states exist. The points
labeled by “x” mark the V;, = 0 point for each pair of levels.

and negative energies, the behavior of neutrons for Vy > 0 is
the same mutatis mutandis as that for antineutrons with vV < 0,
and vice versa. Actually, this correspondence can already be
seen from Tables I and II, since for Vj = O the single-particle
states of neutrons and antineutrons with the same quantum
numbers should have the same binding energies; and indeed
this is what comes out from the calculations.

We now examine in some more detail both symmetries and
their dependence on the central potentials ¥ and A for neutrons
and antineutrons. In Fig. 1 we show the splittings A E for three
spin and pseudospin partners as a function of X, the binding
potential depth. The vertical dashed line for V) = 292 MeV
stands for the parameters that best reproduce the experimental
single-particle energies of 2°Pb. For large absolute values of
| 2| the spin symmetry is better realized because the strength
of the A potential, A(, becomes smaller and thus the spin-orbit
interaction gets weaker. As |Xy| decreases, the spin-orbit
interaction gets more and more important and the deviation
from the exact symmetry gets bigger. In the same figure we
also represent the splittings for the pseudospin partners. The
pseudospin symmetry never becomes an exact one, although

PHYSICAL REVIEW C 81, 064324 (2010)

the splitting for the partners chosen stay close to zero in the
physical region. But this is definitely not the case for large
Y. From the same figure one also concludes that the quality
of both spin and pseudospin symmetries, as measured by
the splittings, is similar for 2°*Pb. However, there is clearly
a different behavior of the spin and pseudospin splittings,
respectively, when A decreases and when |X| decreases.

A similar analysis for antineutrons can be made by looking
at Fig. 2, where the splittings for three pseudospin and spin
partners with the same quantum numbers as in Fig. 1 are shown
again as a function of X. One sees that for antineutrons the
spin symmetry for small X, (physical region) is very good.
On the contrary, pseudospin symmetry is broken significantly.
This, of course, was to be expected because of the roles that
the ¥ and A potentials now play in the onset of spin and
pseudospin symmetries. From this figure and Fig. 1 one can
also see that, as remarked before, for V; = 0 the antinucleon
levels have the same splittings as the corresponding neutron
levels. This is because in this case X = —A, and therefore
the charge-conjugation operation A —- —%X ¥ — —A does
not change the potentials. The total energy spectrum of the
neutrons is then exactly symmetric with the total energy
spectrum of the neutrons (E. = —E).

InFigs. 3 and 4 are shown the splittings (i.e., the differences)
of the (pseudo)spin-orbit [(P)SO] terms Eqgs. (19) and (20)
(neutrons) and Egs. (21) and (22) (antineutrons) for three
(pseudo)spin partners. The calculations were made for the
four positive values of Vj shown in Tables I and II. From
these figures one can clearly see the different natures of spin
and pseudospin in nuclei, for both neutrons and antineutrons.
There is a correlation between the values of the spin-orbit
coupling and the energy splittings for spin partners, the ratio
AEPS/AE being very close to 1 for antineutrons. This an
unmistakable sign of the perturbative nature of spin symmetry
in nuclei, for both neutrons and antineutrons.

The situation for the pseudospin partners is completely
different. There is no correlation between the pseudospin
term splittings and the energy splittings, even for small
values of AE. We see that even the sign is different in
most cases. Therefore, in spite of the fact mentioned earlier
that there is a connection between the strength of the X
(A) potential and neutron (antineutron) pseudospin energy
splittings, there is not a relation between the corresponding
pseudospin-orbit terms and the energy splittings, that is, the
onset of pseudospin symmetry. Thus we can conclude that the
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FIG. 5. Neutron radial wave func-
tions G and F of the spin pair 1 f5/,-
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lij» for the physical parameters in
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pseudospin symmetry in nuclei is not perturbative, for either
neutrons or antineutrons.

Finally, we present the radial functions G and F of one spin
doublet and one pseudospin doublet. We chose the pairs [1 f5/>-
1f7/2] and [2g7,2-1i11,2] because they have about the same
energy splittings for neutron levels for the physical parameters.

One sees from Fig. 5 that the spin and pseudospin pair
degeneracy for neutrons is related to the similarity of the G and
F wave functions, respectively. This can be understood by just
remarking that the second-order equations for these functions,
having the same quantum numbers for each pair, are basically
the same when the eigenvalues are very similar, which
implies, for normalized wave functions, that the corresponding
solutions should also very similar.

This can also be seen from Fig. 6 for the spin doublet,
which is so highly degenerate that the two radial functions G
can hardly be distinguished. Comparing the two figures, one
can also see that the amplitude of the upper radial functions G
is bigger for the antineutron case. This is basically due to the
increased kinetic energy of the antineutrons, which one can
roughly estimate by the difference between the depth of the
potential well and the binding energy.

This analysis of the radial functions can assess only the
amount of degeneracy of corresponding doublets and not
the perturbative nature of the respective symmetries. There
are some possibilies for performing such an analysis using the
radial functions, as was done by Marcos et al. [14], but they
are rather indirect. The similarity of the pseudospin partners’
radial functions F' as a signature for pseudospin symmetry was
already shown by Ginocchio and Madland in [15].

IV. CONCLUSIONS

In this paper, we systematically examined the spin and
pseudospin symmetries in nuclei for realistic Woods-Saxon

potentials that fit the neutron single-particle spectrum of 28Pb.
This analysis covers both the nucleon and the antinucleon
spectra, obtained by charge conjugation of the Dirac equation
for mean-field scalar and vector potentials. By solving the
Dirac equation for neutrons and antineutrons for several values
of the depth of the vector potential, we were able to perform
a systematic analysis of spin and pseudospin symmetries
by computing the energy splittings of the corresponding
doublets, as well as computing the spin- and pseudospin-orbit
contributions to those splittings. From that analysis, one
concludes that spin symmetry, besides being almost exact for
antinucleons, is perturbative and thus can be realized exactly.
On the other hand, pseudospin symmetry, for both nucleons
and antinucleons, is found to be not perturbative. This is
probably related to the fact that the potential that drives this
symmetry is, in both cases, also the binding potential, and
thus one cannot have bound states in the conditions of exact
pseudospin symmetry for the type of potentials studied in this
paper, which go asymptotically to zero.

The main difference between the spectra of single-particle
levels of neutrons and antineutrons is the much increased depth
of the potential (by about ten times) and the kinetic energies.
In this sense, the antinucleon bound states are more relativistic
than the nucleon states. However, the main features of the onset
of spin and pseudospin symmetry are the same, the differences
being basically quantitative.
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