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I. INTRODUCTION

Nuclei being far from the bottom of the stability valley are
studied extensively at experimental facilities with radioactive
beams. One of the fruits of this type of research is the
production of light exotic nuclei. Let us refer to, for example,
a recently identified new double-magic nucleus, 24O [1], at
the neutron drip line. The exact location of the particle drip
lines limits the region for these studies and it is intensively
investigated by both experimental and theoretical methods.
Theoretical prediction of the drip lines is based on mass
(binding energy) calculations because particle separation
energies can be easily deduced.

There are two important theoretical frameworks for global
mass calculations. Microscopic Hartree-Fock (HF) or Hartree-
Fock-Bogoliubov (HFB) calculations with sophisticated ef-
fective density-dependent interactions are very successful in
this field. In the best HFB mass formula so far [2] the rms
error is 674 keV [3]. In earlier HF calculations [4,5] this
number was somewhat larger, namely, 805 and 822 keV [3].
To achieve this improved fit a new parametrization of the
effective nucleon-nucleon interaction has been introduced and
the pairing interaction has been treated differently than in the
earlier calculations.

Surprisingly a more simple alternative procedure in the
framework of the so-called macroscopic-microscopic (MM)
formalism can compete with the microscopic calculations in
the calculation of the binding energies. The rms error in the
MM calculation is 676 keV. We may say that the quality of
the microscopic and MM methods are the same. Despite the
almost identical global fits, however, the microscopic and MM
methods show considerable differences when the neutron drip
line is approached [3].

The key quantity of the MM calculations is the shell
correction. The concept of the shell correction was suggested
a long time ago by Strutinski [6,7] and it is still in use.
For example, in a recent global mass calculation [8] the

basic ingredient of the shell correction method, the smoothed
single-particle density, is calculated in a semiclassical way by
the Wigner-Kirkwood expansion. The other elements of the
Strutinski method were not altered.

Since the invention of the shell correction there have been
several refinements of the original method. In addition to
the original energy averaging, a smoothing in the particle
number space was introduced [9,10]. Even a combination of
the two averaging spaces was considered [11]. The particle
mean field, the simple harmonic oscillator, or the Nilsson
potential was replaced in the calculations by more realistic
phenomenological forms in which the spectrum has a contin-
uum beside the discrete single-particle levels. The treatment
of the single-particle level density due to the continuum was
a long-standing problem [12,13] but an elegant solution was
finally reached [14,15].

A large part of the uncertainty due to the proper choice
of the technical parameters of the smoothing method has
been removed by introduction of the generalized Strutinski
procedure [15,16], which made it possible to calculate reliable
shell correction values for medium and heavy nuclei, where
the smoothed level density has a long region with linear energy
dependence. As is discussed in Sec. IV, for lighter nuclei the
length of the linear region is reduced due to the reduction of
the number of the occupied shells and the increase of the shell
gap. For light nuclei the lower and upper ends of the spectrum
distort linearity; therefore the method is not appropriate for
light nuclei.

The main goal of this work is to develop a new method
that is free from this limitation and is applicable for the whole
nuclear chart, even in the vicinity of the two drip lines. We
solve this problem by introducing a finite-range smoothing
instead of the infinite-range Gaussian smoothing used in the
Strutinski method.

The article is organized as follows. In Sec. II we recapitulate
the formalism of the calculation of the shell correction. In
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Sec. III we describe the standard Strutinski method with
the plateau condition. In Sec. IV we do the same with the
generalized Strutinski procedure, what we want to replace
in this work. In Sec. V we describe the new method with
finite-range smoothing in details. In Sec. VI we apply the new
method for several nuclei and calculate shell corrections for
neutrons and protons. Finally in Sec. VII we end with the main
conclusions of the article.

II. CALCULATION OF THE BINDING ENERGY BY USING
THE SHELL CORRECTION

The binding energy of an atomic nucleus composed of
A = N + Z nucleons (N denotes neutrons and Z denotes
protons) can be calculated in the microscopic-macroscopic
model (MM) as

B(N,Z) = Emacr(N,Z) + δE(N,Z), (1)

where Emacr(N,Z) is the binding energy calculated in the
macroscopic model (e.g., liquid drop or droplet model) and
δE(N,Z) is the shell correction. While Emacr(N,Z) is a
smooth function of the number of nucleons, the shell correction
takes care of the shell fluctuations of the binding energy
that is missing from the macroscopic model. Shell fluctu-
ations are present in any microscopic model. For example,
the shell correction can be calculated from single-particle
energies of self-consistent HF and relativistic mean-field
calculations [17,18]. In Ref. [18] shell corrections calculated
on the single-particle energies were used to generate a smooth
energy from the result of these microscopic calculations
and the typical phenomenological parametrizations of the
microscopically calculated macroscopic energy terms were
analyzed.

In the present work we use the simplest, that is,
the independent particle shell model to generate the single-
particle energies in a phenomenological nuclear potential for
the sake of simplicity only, because the smoothing procedure
could be tested equally well on the result of this simple model.
In this model we treat neutrons and protons separately. In this
case the shell correction

δE(N,Z) =
∑

τ=ν,π

δEτ (Nτ ) = δE(N ) + δE(Z) (2)

is the sum of the shell corrections δEτ (Nτ ) calculated for
neutrons, τ = ν with Nν = N , and for protons, τ = π with
Nπ = Z. In what follows we discuss the calculation of the
shell correction δEτ (Nτ ) for a given type of nucleons only.

The shell correction can be estimated as the difference of the
shell model binding energy Eτ

sp and its smoothed counterpart
Ẽτ calculated also in the shell model:

δEτ = Eτ
sp − Ẽτ . (3)

Here the shell model binding energy

Eτ
sp =

Nτ∑
j=1

Eτ
j (4)

is a sum of the single-particle energies Eτ
j of the lowest energy

orbits, from Eτ
1 until the Fermi level. In the sum we can take

into account the ni-fold degeneracies of the shell model orbits
and use only the different single-particle energies denoted
by eτ

i :

Eτ
sp =

∑
i

nie
τ
i . (5)

The key quantity of the MM model is the smoothed
energy Ẽτ ; therefore, we have to give a unique definition
for calculating it unambiguously. If we have the bound
single-particle energies eτ

i , the density of the bound nuclear
levels is

gτ
d (E) =

∑
i

niδ
(
E − eτ

i

)
. (6)

The particle number as a function of the energy E of the single
nucleon considered is an integral of the level density in Eq. (6);
that is, it is equal to the following step function:

nτ (E) =
∫ E

−∞
gτ

d (e)de =
∑

i

ni�
(
E − eτ

i

)
, (7)

where �(x) is a Heaviside function of the form

�(x) =
{

0, if x < 0

1, if x � 0.
(8)

Because in the smoothing procedure we treat neutrons and
protons on the same footing, we can drop the τ index for
a moment. (We include it again later when it is needed to
avoid ambiguity.) We can calculate the smoothed level density
g̃(E) from the level density in Eq. (6) by folding it with a
properly selected smoothing function: fp(x). The smoothing
function spreads the energy of a discrete level over a certain
energy range characterized by the smoothing range parameter
γ . Therefore, the smoothed level density is

g̃(E) = 1

γ

∫ +∞

−∞
g(e)fp

(
e − E

γ

)
de. (9)

The smoothing function in Eq. (9) is usually a product of a
weight function w(x) and a polynomial hp(x) of degree p:

fp(x) = w(x)hp(x). (10)

The latter is called a curvature correction polynomial. Because
the smoothing function fp(x) = fp(−x) is an even function
of x, for an even weight function w(x) the polynomial hp(x)
should also be even and the coefficients of the odd terms in
it should be equal to zero. Therefore, the curvature correction
polynomial has the form

hp(x) =
∑

i=0,2,...,p

cix
i . (11)

The ci coefficients of the curvature correction polynomial
hp(x) are determined from the so-called self-consistency
condition [19], which requires that the smoothing should
reproduce the original function if it is a polynomial gn(x)
with degree n � p + 1:

gn(x) =
∫ +∞

−∞
gn(x ′)fp(x − x ′)dx ′. (12)
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We calculate the smoothed energy by using the smoothed
level density in Eq. (9):

Ẽ =
∫ λ̃

−∞
εg̃(ε)dε. (13)

The smoothed Fermi-level λ̃ is calculated from the condition
that the number of neutrons and protons, that is, the particle
number, is given by

N =
∫ λ̃

−∞
g̃(ε)dε. (14)

The smoothed Fermi-level λ̃ is different from the Fermi-level λ
because the level density has been modified by the smoothing.

III. STANDARD STRUTINSKI METHOD
WITH PLATEAU CONDITION

Strutinski [6,7] used a smoothing function with the Gaus-
sian weight function

w(x) = 1√
π

exp(−x2), (15)

and it can be shown that the curvature correction polynomials
for a weight function of Gaussian shape are the associated
Laguerre-polynomials:

hp(x) = L
1/2
p/2(x2). (16)

Therefore, in the standard Strutinski method the smoothing
function is

fp(x) = 1√
π

exp(−x2)L1/2
p/2(x2). (17)

For nuclei lying on the bottom of the stability valley the single-
particle potential can be approximated by a simple harmonic
oscillator (h.o.) form. For a nucleus with mass number A the
distance of consecutive shells can be expressed by the well-
known rule [20]

h̄	0 = 41A−1/3(MeV). (18)

The shell structure of this simple h.o. model is modified by
the presence of the spin-orbit interaction and also by the
nonspherical shape of deformed nuclei but the quantity in
Eq. (18) is still serves as a reasonably good measure for the
shell structure. An attractive feature of the h.o. potential is that
the shell correction δE(γ, p) as a function of the smoothing
range γ shows a wide plateau in which the

∂δE(γ, p)

∂γ
= 0 (19)

plateau condition is fulfilled. More precisely, the fulfillment
of the plateau condition is valid if at the same time the values
belonging to the plateau are practically independent of the p

value used. It has been observed that the plateau condition is
fulfilled for the h.o. potential. Because γ and p are technical
parameters of the smoothing procedure and they have no
physical meaning, it is natural to expect that the definition of
the smoothed quantities should not depend strongly on these
values. Therefore, the shell correction calculated for the h.o.

potential is well defined. This nice feature of the h.o. potential
is related to the fact that this potential has only bound states
(even at high positive energy values). For potentials that are
similar to the harmonic oscillator potential, for example, the
Nilsson potential, we can always find regions for γ where the
plateau condition is fulfilled [12,21]. Because these potentials
have only bound states (infinitely many) and no continuum,
the ending of the bound states does not spoil the picture.

IV. GENERALIZED STRUTINSKI PROCEDURE
FOR SPECTRA WITH THE CONTINUUM

However a more realistic single-particle potential has a
discrete spectrum with a finite number of bound states, ei < 0,
and a continuum of scattering states with E > 0 energy. The
full level density in this case is a sum of the level densities of
the discrete states gd (E) and that of the scattering states gc(E)
forming the continuum

g(E) = gd (E) + gc(E). (20)

Now the smooth level density has to be calculated again
with the prescription of Eq. (9). It was realized by Brack and
Pauli [21] that for this case the plateau condition cannot be
satisfied because the δE(γ, p) curves, what we call plateau
curves, do not have wide plateaus, where Eq. (19) is fulfilled.
They searched for the minima δE(γp, p) of the plateau curves
for each p value and introduced the concept of local plateau
condition. At the minima, that is, at γ = γp, Eq. (19) is
certainly satisfied. An additional requirement of the local
plateau condition is the approximate p independence of the
δE(γp, p) values, which is satisfied if the variation of the
δE(γp, p) values are small.

It was shown in Ref. [15] that sometimes even the local
plateau condition might not be fulfilled and the smoothing
procedure of the standard Strutinski method might not able
to furnish us with well-defined smoothed energy. A typical
nucleus for which the local plateau condition fails if the
continuum part of the spectrum is taken into account is 146Gd,
as one can see in Fig. 1. Although one can find minima for
each plateau curve, the shell correction values at these minima
vary too much (even an approximate p independence does not
hold). Therefore it is not surprising that the δE(γp, p) values
deviate considerably from the semiclassical values.

To address this difficulty, in Ref. [15] a modified plateau
condition was suggested. In the modified plateau condition the
plateau condition in Eq. (19) is replaced by the requirement that
in a certain energy region the smoothed level density should
be fit well by a straight line.

The shell correction δE(γp, p) for a given p should be
calculated with those γp values for which the smoothed level
density can be fit best by a linear function, y(E) = aE + b in a
certain energy range, [el, eu]. So we should find the minimum
of the function in the variable γ for each p value by

χ2(γ, p) =
nu∑
i=1

[g̃(qi, γ, p) − y(qi)]
2. (21)

Here qi for i = 1, .., nu is a mesh of the energy interval
[el, eu] used, and γp is the value where the function χ2 has its
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minimum at a given p value. To get rid of the shell fluctuations
the length of the interval must be larger than the estimated shell
gap:

eu − el = 1.5 h̄	0. (22)

Having selected the proper γp value for a set of p values
between pmin = 6 and pmax = 14, the mean value and the

variation of the corresponding δE(γp, p) values must be
calculated as follows:

δE = 2

(pmax − pmin + 2)

∑
p=pmin,pmin+2,...,pmax

δE(γp, p),

(23)

σ =
√√√√ 2

(pmax − pmin + 2)

∑
p=pmin,pmin+2,...,pmax

[δE(γp, p) − δE]2. (24)

Because in Ref. [15] this variation was reasonably small for
most of the nuclei, the mean in Eq. (23) was used to define the
shell correction, and the variation in Eq. (24) was considered
as an uncertainty of the method. The procedure described
previously was called as a generalized Strutinski procedure.

To illustrate the use of the modified plateau condition we
present the smoothed level densities for the 146Gd nucleus in
Fig. 2. The lower and upper ends of the energy interval in
which the best linear fit of the g̃(E) is required are shown by
solid triangles on the E axis. Practically no p dependence of
the g̃(E) curves can be observed in the [el, eu] interval where
g̃(E) apparently behaves as a linear function of E. Some p

dependence can only be observed at around E ≈ −10 MeV,
being a bit above the λ̃ value, and at higher energy in the E =
0 MeV region, which has no influence on the shell correction.
The large bump of the smoothed level density around E = 0
MeV is the effect of the higher end of the spectrum. In the
positive part of the spectrum only a few neutron resonances
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0

δE
n(γ
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p =  6
p =  8
p = 10
p = 12
p = 14
W-K

FIG. 1. Neutron shell correction δEn(γ, p) for the nucleus 146Gd
as a function of the smoothing range γ calculated for p = 6, .., 14
by using the Gaussian weight function for the smoothing functions
fp . Solid circles on the different curves denote the [γp, δEn(γp)]
points, where γp values belong to the minima of the function in
Eq. (21) and the δEn(γp, p) values are the results of the generalized
Strutinski procedure. The dotted horizontal line shows the value of
the semiclassical value δEsc = Esc − En

sp.

contribute to the level density and their effect is smoothed by
the smoothing parameters, which are the abscissas of the solid
circles in Fig. 1. These γp values are between 10 and 15 MeV;
therefore the end effect is spread well below the threshold.
The effect of the lower end is less pronounced but can be seen
at E < −35 MeV. Here the derivative of g̃(E) with respect
to E changes and at E < −45 MeV g̃(E) goes below zero
for a while. The main feature of the g̃(E) is that the linearity
required in Eq. (1) holds only at a certain distance from the
lower and upper ends of the spectrum.

In Fig. 1 the solid circles on the different p curves show the
[γp, δEn(γp, p)] points where the γp values are those where
the function in Eq. (21) has its minimum. One can see from the
circles that these shell correction values have a much smaller
variation (σ ) than the shell correction values at the minima
of the curves. Moreover the mean of the δEn(γp, p) values
denoted by circles is in good agreement with the dotted line
showing the semiclassical value. In Ref. [15] it was found that
this situation is quite typical and the generalized Strutinski
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FIG. 2. Energy dependence of the smoothed level densities
calculated in the generalized Strutinski procedure for p = 6, 10, 14
by using a Gaussian weight function for the smoothing functions fp

for the nucleus 146Gd. The lower and upper ends of the interval [el, eu]
in which the condition of the best linear fit is applied are shown by
triangles on the E axis.
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procedure gave values similar to the result of the semiclassical
averaging based on the Wigner-Kirkwood expansion [21–27]
in those cases in which the latter could be applied. Moreover
the generalized Strutinski procedure gave results similar to
those of the standard one for all cases where the plateau
condition was fulfilled. But it gave a well-defined value for the
smoothed energy even in cases like 146Gd where we cannot
really speak about plateau.

It turned out only later, in Ref. [16] where the generalized
Strutinski procedure was used for deformed nuclei, that the
function in Eq. (21) might have more than one minimum in γ .
It was concluded in Ref. [16] that the minimum at the smaller
γ value should be selected.

An uncertainty of the generalized Strutinski smoothing
procedure is that the results are slightly dependent on the
position of the [el, eu] energy interval used. For medium and
heavy nuclei the uncertainty of the generalized Strutinski
procedure was always below 250 keV. To get this small
variation, the energy interval [el, eu] was adjusted to the
smoothed Fermi level, and the upper end of the energy interval
was eu = λ̃ − h̄	0. If the interval was shifted up to have eu = λ̃

and the length was kept the same as in Eq. (22), a variation
of the shell correction by around 400 keV was observed. This
uncertainty was still reasonably small and it was comparable
to the typical deviation from the semiclassical result.

The dependence on the position of the interval become
stronger for light nuclei. If the mass number A is reduced,
the distance of the shells estimated in Eq. (18) increases and the
length of the interval in Eq. (22) also increases. We should use
larger and larger γ values for smoothing the shell fluctuations.
However, the region in which g̃(E) is linear becomes shorter
and shorter because the effect of the lower end shifts higher
and that of the higher end shifts lower. Therefore, for small
A there is not enough space where the required linear region
could develop. The linearity of the g̃(E) function is spoiled by
the end effects. This explains why the generalized Strutinski
procedure breaks down for light nuclei.

Therefore, in this work our goal is to find a new smoothing
procedure that is less sensitive to the end effects, but still keeps
the advantages of the generalized Strutinski procedure; that is,
the shell correction is practically independent of the p values
(σ is small). An additional requirement is that Ẽ resulting from
the new procedure should not be too different from the result
of the semiclassical procedure (Wigner-Kirkwood method) if
the latter approach can be applied.

V. NEW SMOOTHING PROCEDURE

A disadvantage of the smoothing procedures used so far is
that the Gaussian weight function w(x) used has an infinite
range; therefore, the effect of the energy ei is smeared to
the whole energy axis from −∞ to ∞. Therefore, the effect
of the lower and upper ends of the spectrum influences the
whole region of the smoothed level density and also the shell
correction δE. In this work we try to reduce the end effects
in these quantities by using weight functions that have only a
finite range. One possible candidate for a weight function with

finite range is the shape

w(x) =
{

ke
− 1

1−x2 , if |x| < 1

0, if |x| � 1.
(25)

The value of the normalization constant k should be chosen
from the condition

1 =
∫ +1

−1
w(x)dx. (26)

One advantage of the form in Eq. (25) is that all derivatives of
that function are continuous at |x| = 1, so the weight function
continues smoothly to the regions where it is equal to zero.
The effect of the smoothing with this form is localized to
the x ∈ [−1, 1] interval. To use the new smoothing function
we have to recalculate the curvature correction polynomials
hp(x) in Eq. (11) for the new weight function [in Eq. (25)].
The recalculated polynomials hp(x) will be different from the
one in Eq. (16) and they should satisfy the self-consistency
condition in Eq. (12), with the finite-range weight function.
As was shown in Ref. [19], the coefficients ci of the curvature
correction polynomials in Eq. (11) are solutions of the system
of linear equations

p∑
i=0

ciai+j = δj,0, 0 � j � p, (27)

where the coefficients al are the integrals:

al =
∫ 1

−1
w(x)xldx. (28)

The integration is over the interval where the weight function
w(x) is different from zero.

We present the coefficients ci for the p ∈ {0, 2, 4, 6} values
in Table I for illustration purposes. In Fig. 3. we present the
shape of the smoothing function fp(x) for a few p values
and the finite-range weight function in Eq. (25) w(x) = f0(x).
To show the difference from the standard Gaussian case, we
present similar curves with the Gaussian weight function in
Fig. 4. For both weight functions, for p > 0 the curvature
correction polynomials hp(x) have p = 2m zeros:

hp

(
x

(p)
j

) = 0, j = ±1, . . . ,±m, x−j = −xj . (29)

One can observe the positions of the roots x
(p)
j of Eq. (29) in

Figs. 3 and 4. For a fixed p value it is convenient to arrange
the positive roots of Eq. (29) so that they form a monotonous
series:

0 < x
(p)
1 < x

(p)
2 < · · · < x(p)

m . (30)

TABLE I. Coefficients of the curvature correction polynomials for
the lowest p values corresponding to the finite-range weight function
in Eq. (25).

p c0 c2 c4 c6

0 1 0 0 0
2 1.8934 −5.6506 0 0
4 2.7492 −20.62052 28.52324 0
6 3.5866 −48.45461 155.33082 −136.79695
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p =  0
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FIG. 3. Shapes of the finite-range smoothing function fp(x) for
p = 0, 2, 4, 14. Note that f0(x) = w(x).

In the smoothing function fp(x) in Eq. (10) the most important
part of the smoothing is produced by the central region in
hp(x): x ∈ [−x

(p)
1 , x

(p)
1 ], determined by the first root x

(p)
1 . One

can see in the figures that for p > 0 values, x(p+2)
1 < x

(p)
1 ; that

is, the value of x
(p)
1 decreases when p increases.

The finite-range smoothing has the advantage that the effect
that a certain single-particle energy, ei , vanishes beyond the
interval E ∈ [ei − γ, ei + γ ]. Therefore, the smoothed level
density becomes exactly zero for energies lying below (e1 −
γ ), while the Gaussian oscillates around zero. This oscillation
character appears at any value of the smoothing parameter.

If we go to higher E values, we can smooth the oscillatory
character of g̃(E) if we use large enough γ values in the
smoothing function with Gaussian weight function. This is
not the case, however, if we smooth with finite-range weight
function, where some undulation in g̃(E) remains even if we
use large smoothing range parameters. Therefore, it cannot be
well approximated by a straight line as it was in the generalized
Strutinski procedure.

-2 -1 0 1 2
0

0.5

1

1.5

2

p =  0
p =  2
p =  4
p = 14

FIG. 4. Shapes of the smoothing function fp(x) with Gaussian
weight function for p = 0, 2, 4, 14. Note that the Gaussian weight
function is f0(x) = w(x).

This seems to be an important difference between the
smoothed level densities calculated by using Gaussian or
finite-range smoothings.

We calculate the smoothed energy in Eq. (13) by using
the finite-range smoothing functions for a range of γ ∈
[γmin, γmax] and p ∈ {pmin, pmin + 2, . . . , pmax} values. This
allows us to study the plateau curves. For p = 0 the plateau
curve is a monotonously increasing function; therefore, neither
the plateau condition in Eq. (19) nor the local plateau condition
can be applied. (There is no γ value where the derivative
is zero.) This result shows the necessity of using curvature
correction polynomials.

For p > 0, plateau curves have minima (and maxima)
where the plateau condition in Eq. (19) is fulfilled locally.
However the plateau curves might have several minima and
we must find the proper one among those minima. A necessary
condition of the smoothing is that the smoothed level density
should not reflect the shell structure of the single-particle
levels. Therefore, in the smoothing procedure we have to
start searching for the minimum of δE(γ, p) from a (p-
dependent) γmin value for which the shell structure has already
disappeared.

The most important characteristic of the single-particle
spectrum is the largest gap between the occupied levels.
Therefore, we must determine the largest distance between
the consecutive occupied levels of the N particles (shell gap):

G = max{(ei+1 − ei)}. (31)

This G value is a more accurate measure of the shell structure
of the single-particle energies than the h̄	0 in Eq. (18). To
estimate a reasonable γmin value, we have to determine the
effective width of the smoothing function with a given p.
The effective width corresponds to the central peak of hp(x)
in the interval x ∈ [−x

(p)
1 , x

(p)
1 ]. Because the effective range

of the smoothing function decreases for increasing p, for
larger p values one should use larger γ values to have the
same smoothing effect. To compensate for this effect, it is
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n(γ

) 
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FIG. 5. Neutron shell corrections δEn(γ, p) for the nucleus 146Gd
as a function of the smoothing range γ calculated for p = 6, .., 14
by using the finite-range weight function for the smoothing functions
fp . The dotted horizontal line shows the value of the semiclassical
value δEsc = Esc − En

sp.
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FIG. 6. Neutron shell corrections δEn(γ, p) for the nucleus 132Sn
as a function of the smoothing range γ calculated for a set of p values
by using the finite-range smoothing function fp . The dotted horizontal
line shows the value of the semiclassical value δEsc = Esc − En

sp.

worthwhile to introduce a renormalized smoothing range as
follows:

p = x
(p)
1 γp, (32)

in which the p dependence of the smoothing is considerably
reduced.

To smooth the fluctuations due to the major shells this
p range should be larger than the shell gap p > G. To
achieve this we introduce the factor F > 1 and calculate a
minimal value for the renormalized range p,min = FG. (We
observed that the optimal value for the factor F is F = 1.5–2
for light and F = 2.5–3.5 for heavier nuclei.) Having fixed
this minimum we search for the first minimum of δE(γ, p) for

γ � γp,min = FG

x
(p)
1

. (33)

This criteria serves as a guide to select the proper minimum
of the plateau curve δE(γp, p). For most nuclei the plateau
curves have multiple minima at γp,1 < γp,2 <, . . . , < γp,l .
The number of minima l generally increases when p increases.
We observed that for p = 2 we have at most two minima, that
is, l = 1 or l = 2, and one of them satisfies the following

condition:

2,l = x
(2)
1 γ2,l ∼ FG. (34)

For higher p values the proper minimum should be close to this
value because we reduced the p dependence considerably by
using the renormalized smoothing range. Therefore, we have
to select the kth minimum, for which p,k = x

(p)
1 γp,k ≈ 2,l .

If we select the smoothing range according to this criteria, then
the variation of the corresponding δE(γp,k, p) values will be
small.

VI. DETAILS OF THE NUMERICAL CALCULATIONS

We used a Saxon-Woods (SW) potential with a spin-orbit
term. For protons it was complemented by a Coulomb potential
of a uniformly charged sphere with a diffuse edge (having this
this form is necessary to be able to calculate the semiclassical
results for comparison.) The parameters of the potentials were
that of the so-called universal potential given in Ref. [28]. The
depth of the central potential for neutrons (τ = ν) t3 = 1/2 or
for protons (τ = π ) t3 = −1/2 is given by

Vτ (Z,N) = −V

[
1 − 2κt3

N − Z

A

]
, (35)

where κ = 0.86 and V = 49.6 MeV. The depth of the spin-
orbit potential is

Vso = −λsoVτ

4

( h̄

2µc

)2
, (36)

with the reduced mass µ of the nucleon and λso = 35(36)
for neutrons (protons). The diffuseness was a = aso = aC =
0.7 fm, the same for all potential terms. The radius parameters
were r0 = 1.347 fm and r0 = rC = 1.275 fm for neutrons
and protons, respectively, while for the spin-orbit term
rso = 1.31(1.32) fm for neutrons (protons). These potential
parameters might not be optimal for the individual nuclei
but give a good general N and Z dependence all over
the nuclear chart, at least for our purpose of testing our
method.

The single-particle energies ei of the single-particle Hamil-
tonian were calculated by diagonalizing the matrix of the
Hamiltonian in the h.o. basis having 20 principal h.o. quanta
and maximal orbital angular momentum 9. (An increase of the

TABLE II. Neutron shell corrections δEn and their variations σ calculated using the finite-range weight function (FR) and the generalized
Strutinski procedure G in comparison with the semiclassical shell correction δEsc = Esc − En

sp calculated for several nuclei. Their deviations
from the semiclassical results �FR = |δEsc − δEn(FR)| and �G = |δEsc − δEn(G)| are also shown. All energies are in MeV units.

Nucleus δEn(FR) σ δEn(G) σ δEsc �FR �G

68Ni 0.16 0.12 0.50 0.07 0.81 0.65 0.31
78Ni −3.59 0.07 −2.78 0.16 −4.21 0.62 1.43
90Zr −7.42 0.06 −7.35 0.17 −6.82 0.60 0.53
122Zr −5.92 0.11 −4.52 0.15 −6.33 0.41 1.81
124Zr −4.12 0.12 −3.25 0.13 −4.35 0.23 1.10
100Sn −8.16 0.20 −6.95 0.23 −7.50 0.66 0.55
132Sn −9.85 0.14 −8.58 0.10 −8.87 0.98 0.29
146Gd −10.26 0.07 −10.33 0.20 −9.79 0.47 0.54
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TABLE III. Proton shell corrections δEp and their variations σ calculated using the finite-range weight function (FR) and the
generalized Strutinski procedure G in comparison with the semiclassical shell correction δEsc = Esc − En

sp calculated for several nuclei.
Their deviations from the semiclassical results �FR = |δEsc − δEp(FR)| and �G = |δEsc − δEp(G)| are also shown. All energies are in MeV
units.

Nucleus δEp(FR) σ δEp(G) σ δEsc �FR �G

90Zr 1.59 0.19 1.88 0.20 1.44 0.15 0.44
100Sn −7.47 0.064 −7.42 0.14 −7.01 0.46 0.41
132Sn −7.39 0.068 −6.04 0.12 −6.64 0.75 0.60
146Gd 4.89 0.10 5.28 0.24 4.52 0.37 0.76
180Pb −8.94 0.15 −7.78 0.04 −8.62 0.32 0.84
208Pb −7.57 0.07 −6.73 0.03 −7.29 0.28 0.56

size of the basis did not change the results.) The same basis was
used for diagonalizing the free Hamiltonian (without nuclear
potential terms) to get the positive energies e

(0)
i needed to

include the effect of the continuum in the Green’s function
method described in Ref. [16] in detail. From the difference
of the smoothed level densities of the spectra of the true and
the free Hamiltonians, the effect of the artificial nucleon gas
cancels out and we get the same smoothed continuum level
density as we could get by smoothing the continuum level
density derived from the derivative of the scattering phase
shifts [16].

In Fig. 5 we show the plateau curves for the 146Gd
nucleus with the finite-range smoothing and the result of the
Wigner-Kirkwood calculation as a reference. The range of the
p values used in the present work was taken to be the same as
in Ref. [15] to make comparison with those results possible.
Using the new method with the finite-range smoothing we are
able to use the local plateau condition to choose the γp values
where the δE(γ, p) curves have minima for all the plateau
curves shown. The shell correction values at the minima of the
curves agree very well (within 500 keV) with the horizontal
line representing the result of the semiclassical calculation.
Because the σ variation of the δE(γp, p) values in Eq. (24) is
small the shell correction value calculated from the mean in
Eq. (23) is well defined.

In Fig. 6 we show an example of the double-magic 132Sn
nucleus where the σ variation is smaller than 200 keV and the
deviation from the semiclassical value � is less than 1 MeV.

TABLE IV. Shell correction δEn, the variation σ in Eq. (24),
and the semiclassical shell correction δEsc = Esc − En

sp calculated
for several nuclei. The deviations � = |Esc − Ẽ| are also shown. All
energies are in MeV units.

Nucleus δEn σ δEsc �

16O −1.63 0.04 −1.57 0.06
18O 2.67 0.04 3.01 0.34
20O 3.25 0.24 3.11 0.14
22O 0.12 0.53 0.09 0.03
24O −1.68 0.49 −1.69 0.01
20Ne 3.07 0.56 3.01 0.06
40Ca −1.77 0.35 −0.66 0.97
48Ca −2.91 0.24 −2.59 0.32

This is the largest deviation from the cases listed in Table II.
One can observe in both Figs. 5 and 6 that the γp values,
where the minima of the δE(γp, p) appear, are increasing
with increasing p values. This can be compensated to some
extent if we use the renormalized smoothing range p defined
in Eq. (32).

The δE(γp, p) plateau curves are very similar for most
nuclei we calculated if we select the values of the first γp

minima of the different p curves beyond γp,min in Eq. (33).
We identify the shell correction with the mean values of the
δE(γp, p) in Eq. (23) and its σ variation with the uncertainty
of the shell correction.

In Table II we show the shell corrections for neutrons and
for a set of medium and heavy nuclei resulting from the new
smoothing procedure δEn(FR) and those of the generalized
Strutinski procedure δEn(G). Their σ variations are in the
third and fifth columns. In the last two columns we compare
their values to those of the semiclassical procedure given in
Ref. [13]. The differences from δEsc are below 1 MeV for
the new procedure, which is a bit better agreement than when
using the generalized Strutinski procedure. The averages of
the differences are 0.6 and 0.8 MeV for these two procedures,
respectively.

In Table III we show similar results for protons, where the
averages of the differences from the semiclassical results are
0.4 and 0.6 MeV for the new procedure and for the generalized
Strutinski procedure, respectively. So the new procedure can
be applied for protons as well.

TABLE V. Shell correction δEp , the variation σ in Eq. (24), and
the semiclassical shell correction δEsc = Esc − Ep

sp calculated for
several nuclei. All energies are in MeV units.

Nucleus δEp σ δEsc �

16O −1.65 0.03 −1.44 0.21
18O −1.65 0.10 −1.66 0.01
20O −2.09 0.19 −1.90 0.19
22O −2.30 0.15 −2.14 0.16
24O −3.10 0.66 −2.36 0.74
40Ca −1.62 0.12 −0.91 0.71
48Ca −1.70 0.19 −1.44 0.26
48Ni −0.80 0.36 −1.23 0.43
56Ni −3.67 0.29 −3.45 0.22
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FIG. 7. Neutron shell correction δEn(p) for the nucleus 24O
as a function of the renormalized smoothing range p calculated
for a set of p values by using the finite-range smoothing function
fp . The dotted horizontal line shows the semiclassical value δEsc =
Esc − En

sp.

These differences are not large, neither for neutrons nor for
protons. The result of the new procedure is generally closer
to the semiclassical result if we approach the drip lines. See,
for example, the 78Ni, 122Zr, and 124Zr nuclei for neutrons
and the 180Pb nucleus for protons. Therefore, we believe that
the finite-range smoothing allows us to approach the drip line
closer than we can approach it by using the infinite-range
Gaussian weight function.

The basic advantage of the new method is, however, that
the determination of the proper shell correction value is better
defined. The values resulting from the new procedure are free
from most of the uncertainties of the generalized Strutinski
smoothing procedure. For example, they do not depend on the
position of the interval where the linearity of the smoothed
level density is required.

The most important advantage of the new procedure is that
it can be applied for light nuclei where, as we have discussed
in Sec. IV, the generalized Strutinski procedure cannot be
applied.

The results of the new method for light nuclei are shown in
Table IV for neutrons and in Table V for protons. One can see
that the agreement with the semiclassical values is as good it
was for heavier nuclei. We received especially good agreement
for oxygen isotopes, even at the neutron drip line.

In Fig. 7 we show the neutron plateau curves for the new
double-magic nucleus 24O as functions of the renormalized

smoothing range parameter p, for p = 6, 8, . . . , 14. The
semiclassical result is the dotted horizontal line. The minima of
each curve are denoted by solid circles on the corresponding
curves. One can see that the δEn(p, p) values denoted by
circles are between −0.9 and −2.3 MeV and their p values are
quite similar at p ∼ 8 MeV. The variation of the δEn(p, p)
values is σ ∼ 0.5 MeV and their mean value coincides with
the semiclassical value. This is certainly an accident but one
can see that the � value is small for the other O isotopes too.
Observe also that the positions of the minima of the different
p curves in this figure scatter much less in  (∼15%) than the
locations of the minima in Fig. 6 where the smoothing range
γ was used (∼90%) or in Fig. 5 where the smoothing range γ

was used (∼70%).
Therefore, we believe that the finite-range smoothing allows

us to approach the drip line closer than we can approach it by
using the infinite-range Gaussian weight function.

VII. CONCLUSION

The new method uses a finite-range smoothing function
that makes it possible to localize the effect of a single-particle
state with energy ei to a finite energy range: [ei − γ, ei + γ ].
This localization makes it possible to extend the region of
applicability of the emthod to closer to the end regions of
the spectrum. This helps in calculating shell corrections for
slightly bound nuclei lying closer to drip lines and also for
lighter nuclei, where the shell gap is large; therefore, larger
values of γ values are needed to smooth the shell structure out.
The new method works equally well for calculating neutron
and proton shell corrections.

We introduced a renormalized smoothing range in which
the p dependence of the smoothing range was reduced
considerably. Using this renormalized range the selection of
the proper minima of the plateau curves was easier.

Therefore, we recommend the use of the new procedure
with finite-range smoothing first of all for light nuclei, where
the generalized Strutinski method cannot be applied. We also
recommend its use in regions close to drip lines where the
finite-range smoothing seems to work somewhat better than
the generalized Strutinski method.
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