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We present a new theoretical approach to evaluate α-decay properties of deformed nuclei, namely the
multichannel cluster model (MCCM). The deformed α-nucleus potential is taken into full account, and the
coupled-channel Schrödinger equation with outgoing wave boundary conditions is employed for quasibound
states. Systematic calculations are carried out for well-deformed even-even nuclei with Z � 98 and isospin
dependence of nuclear potentials is included in the calculations. Fine structure observed in α decay is well
described by the four-channel microscopic calculation, which is performed for the first time in α-decay studies.
The good agreement between experiment and theory is achieved for both total α-decay half-lives and branching
ratios to the ground-state rotational band of daughter nuclei. Predictions on the branching ratios to high-spin
daughter states are presented for superheavy nuclei, which may be important to interpret future observations.
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I. INTRODUCTION

Accurate calculations of absolute α-decay half-lives have
been obtained with both phenomenological and microscopic
methods, and some important ingredients such as various
shell effects are revealed [1–14]. The main focus of these
α-decay calculations is generally on favored α transitions
(i.e., � = 0). Besides this, the renewed interest in α decay
has recently been stimulated by the study of fine structure,
which poses a tough test of traditional decay theories and a
stringent challenge of experimental studies. In this case, the
phenomenon of α decay is much more complicated since there
exists significant coupling among different channel states. For
even-even nuclei, the decay ends up in different daughter states
for which the spin-parity is well known in experiment and the
branching ratios can be measured with reasonable accuracy.
Compared with favored transitions, such transitions involve
not only the decay energy Qα and the energy spectrum EJd

in daughter nuclei but also the nonzero angular momentum
� �= 0. Moreover, the internal structure of nuclear states has
some influence on these transitions as well.

There are some primary studies on α-decay fine structure
of well-deformed α emitters [15–17]. They, working in
the Wentzel-Kramers-Brillouin (WKB) framework, reduce
α decay as a one-dimensional semiclassical problem. The
decay widths for the transitions to various daughter states
are evaluated at slightly different decay energies and various
centrifugal barriers, ignoring the mixing of channel states
during the tunneling. Within this framework, favored α tran-
sitions and, sometimes, 0+ → 2+ transitions can be described
with satisfied accuracy. There is, however, a tendency toward
overestimating the branching ratios for 0+ → 4+ transitions
in the various WKB calculations, and the deviation of the
branching ratios to 4+ states is significantly larger than those
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of 0+ → 0+, 2+ transitions. The apparent reason is that the
coupling effect of various channel states is not included in
these calculations. A remedy for this has been achieved by
the coupled-channel approach [18–21], where α decay is
understood as a three-dimensional quantum problem and the
exact solution of the coupled-channel Schrödinger equation
becomes necessary.

Recently we have developed the theoretical formalism
based on the coupled-channel approach to study 0+ → 0+, 2+
α transitions in deformed nuclei [20,21]. When we take into
account more decay channels for α decay to the ground-state
rotational band of daughter nuclei, a large increase of com-
putational time has to be spent due to the complication of the
numerical double-folding potential and also because very high
precision is required to solve the coupled-channel Schrödinger
equation. To overcome this difficulty, improvements have been
made in two ways: On the one hand, instead of the numerical
double-folding potential, we employ a simple nuclear potential
of popular Woods-Saxon shape in our calculations. This
potential not only has a simple and clear analytical expression
but also achieves remarkable success in both nuclear structure
and nuclear reactions. On the other hand, in contrast to
the usual coupled-channel calculations where the multipole
expansion is employed to deal with the deformed α-nucleus po-
tential [18–21], the present study, based on an axially deformed
Woods-Saxon potential, takes into full account the coupling
potential between different channels using the matrix diago-
nalization instead. This allows one to perform a multichannel
analysis of α decay in a straightforward and consistent manner.
For the sake of clarity, we refer to this new approach as the
multichannel cluster model (MCCM). In this work we report
on a four-channel calculation of total α-decay half-lives and
branching ratios to various daughter states, which is the first
theoretical attempt to simultaneously describe α transitions to
four daughter states within the coupled-channel framework.

This article is organized in the following way. In Sec. II,
we present the detailed formulas of the calculation of α-decay
half-lives and branching ratios within the MCCM, and the
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coupling α-nucleus potential connected with the deformation
and orientation is discussed in detail. In Sec. III, the new
theoretical results of our calculations are compared with the
experimental data, and some predictions of the branching ratios
to high-spin daughter states are also given for superheavy
nuclei. A summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK FOR α DECAY
OF DEFORMED NUCLEI

The study of α decay includes two distinct aspects. The
first one is the α-formation problem closely related to nuclear
structure. It concerns the probability that an α cluster is
present in decaying nuclei. The other is the barrier penetration
problem, which has been extensively studied since α decay
was described in 1928 as a quantum mechanical tunneling
effect [22,23]. Considering that the crucial role in the α-decay
process is played by the quantum tunneling through the
potential barrier, it is really applicable and convenient to
make the analysis of α decay in the framework of the cluster
model [1,2]. In the α-cluster representation of the decaying
nucleus, the principal dynamical variables are, respectively, the
α-core relative coordinate vector r and the daughter internal
coordinate orientation �d with respect to the laboratory
reference system. The α-core Hamiltonian can be written as

H = − h̄2

2µ
�2

r +Hd (�d ) + V (r,�d ), (1)

where µ is the reduced mass of the α-core system, Hd (�d ) is
the intrinsic Hamiltonian of the core nucleus, describing the
rotation of the core with excitation energies EJd

, and V (r,�d )
represents the interaction between the centers of mass of the
core and the α particle. We restrict our attention to the situation
of a spherical α cluster interacting with a reflection- and axial-
symmetric core nucleus with quadrupole and hexadecapole
deformations. In such a picture, one obtains the usual coupled-
channel equations for radial components [20,21][

− h̄2

2µ

(
d2

dr2
− �I (�I + 1)

r2

)
− QJd

]
uI (r)

+
∑

J

VI,J (r)uJ (r) = 0, (2)

where the index I denotes the decay channel defined by
the quantum numbers n�j of α-core relative motion and
the internal quantum numbers JdEJd

of core nuclei, and the
quantity QJd

, given by QJd
= Q0 − EJd

, is the released energy
leaving the daughter nucleus in the state Jd . The interaction
matrix is given by

VI,J (r) = (�I (r̂,�d )||V (r,�d )||�J (r̂,�d )), (3)

where �I (r̂,�d ) stands for the angular component of the decay
channel I , and the round brackets represent integration over
all coordinates except the radial variable r .

In the microscopic theory of α decay, the basic quantity is
the channel wave function describing the decay to a certain
daughter state. Its eigencharacteristics n�j are defined by the
Wildermuth condition [24], which relates the α cluster to the

shell model and accounts for the Pauli exclusion principle.
The partial decay width is determined from the asymptotic
behavior of the channel wave function. Initially, we need to
deal with the interaction matrix elements consisting of nuclear
and Coulomb components. The nuclear coupling component
can be generated by changing the radius in the Woods-Saxon
potential to a dynamical operator [25]

R → R0 + Ô = R0 + β2RdY20 + β4RdY40, (4)

where β2 and β4 are the quadrupole and hexadecapole
deformation parameters of the daughter nucleus, respectively.
And thus the deformed nuclear potential is written as

VN (r, Ô) = V0

1 + exp[(r − R0 − Ô)/a]
. (5)

The parameter R0 is well considered here and given by R0 =
Rd + 1.17 (fm), where the constant results from the finite size
effect of the α cluster. The radius Rd and the diffuseness a have
the following form, including the isospin-dependent term:

Rd = (1.00 + 0.39Id )A1/3
d (fm), (6a)

a = 0.50 + 0.33Id (fm), (6b)

where Id = (Nd − Zd )/Ad . To evaluate the matrix elements
of this deformed potential between the channel states |I0〉 and
|J0〉, we first search for the eigenvalues λα and eigenvectors
|α〉 of the operator Ô. They can be easily obtained by
diagonalizing the matrix Ô, whose elements are written in
terms of the Clebsch-Gordan coefficient as follows [25]:

Ôij =
∑
�=2,4

√
(2� + 1)(2I + 1)

4π (2J + 1)
β�Rd × [〈I, 0, �, 0|J, 0〉]2,

(7)

where I = 2(i − 1), J = 2(j − 1). Then, following the gen-
eral quantum theories we obtain

V N
ij (r) = 〈I0|VN (r, Ô)|J0〉 =

∑
α

〈I0|α〉〈α|J0〉VN (r, λα).

(8)

For the deformed Coulomb interaction V C(r), we express it to
the first order in

∑
� β�Y�0, and thus its matrix elements can

be given by

V C
ij (r) =

[
ZαZd

2RC

(3 − r2/R2
C)θ (RC − r)

+ ZαZd

r
θ (r − RC)

]
δij

+
∑

�

3ZαZd

2� + 1

[
r�R

−(�+1)
C θ (RC − r)

+R�
Cr−(�+1)θ (r − RC)

]
×β�

√
(2� + 1)(2I + 1)

4π (2J + 1)
[〈I, 0, �, 0|J, 0〉]2, (9)
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where RC = 1.20(A1/3
α + A

1/3
d ) (fm), θ (r) = 1 if r � 0 and

θ (r) = 0 if r < 0. In conclusion, the interaction matrix element
is a sum of V N

ij (r) and V C
ij (r).

Next, we solve the coupled equation (2) describing the
motion of the α particle in the deformed potential. The radial
wave functions in Eq. (2) should be regular at the origin,
un�j (r → 0) = 0. Furthermore, they should be proportional to
a purely outgoing Coulomb wave at a large distance R,

un�j (r) � N�j

[
G�

(
kJd

r
) + iF�

(
kJd

r
)]

, (10)

where N�j are normalization constants determined by the
boundary condition, G�(kJd

r) and F�(kJd
r) are, respectively,

the irregular and regular Coulomb wave functions with
kJd

= √
2µQJd

/h̄. When integrating the coupled equations (2)
numerically, following Refs. [20,21], we adjust the potential
depth V0 to make all channels simultaneously characterized by
the experimental QJd

values. This means that the α-nucleus
potential remains the same for all channels of a given α

emitter. Then, we consider the Pauli exclusion principle for the
nucleons in the preformed α cluster with respect to those in the
core nucleus, which results in a nonlocal α-core interaction.
With this in mind, the quantum number n (i.e., the number of
internal nodes in the radial wave function) is chosen to satisfy
the Wildermuth condition [24],

G = 2n + � =
4∑

i=1

gi. (11)

In this expression, gi are the corresponding oscillator quantum
numbers of the nucleons composing the cluster, whose values
are required to guarantee the α cluster entirely outside of
the shell occupied by the core nucleus. This is sufficient
to account for the main effects of the Pauli principle, and
the remaining effects are largely absorbed into the effective
α-nucleus potential via the fit of the parameters. In the present
study, the global quantum number G is taken as G = 22 for
heavy and superheavy nuclei with N > 126. This agrees well
with the previous calculations [1,6,14,20,21].

By calculating the decay probability current with the
asymptotical behavior of the radial wave function, one can
ultimately express the partial width of the channel �j in the
following form [20,21]:


�j (R) = h̄2kJd

µ

|un�j (R)|2
G�

(
kJd

R
)2 + F�

(
kJd

R
)2 . (12)

It is worth stressing that the distance R should be large enough
to exclude the coupling among various outgoing waves and
the expression Eq. (12) is rather insensitive to the choice
of R.

In order to compare the theoretical and experimental α-
decay quantities, one may need to include the α-preformation
probability which measures the extent to which the α cluster is
formed at the nuclear surface. This can be taken into account
by multiplying the partial decay width by a α-preformation
factor Pα . This factor in principle can be expressed by the
overlap integral between the wave function of the parent
nucleus and the decaying-state wave function of the α-daughter
system. However, it is extremely difficult to achieve these

wave functions due to the insufficient knowledge of nuclear
potentials involved, together with the additional complication
of the nuclear many-body problem. This notwithstanding, the
microscopic calculation of Varga et al. [26] indicates that the
weight of α clustering is as high as 0.3 for the typical nucleus
212Po with two protons and two neutrons outside the double
closed shell. The analysis of Stewart et al. [27] shows that the
internal amplitudes associated with the α-preformation factors
are essentially constant over a wide range of even-even actinide
nuclei. Experimentally, it is known that the preformation factor
varies slowly in the open-shell region and has a value less than
unity [28]. As before, we take the same preformation factor
for all even-even nuclei. This means that there is a single free
parameter for the preformation factor. In the present study,
its value is taken as Pα = 0.39, remaining the same as in the
previous systematic calculations [20,21]. This procedure is
consistent with Buck’s model [1] and the value agrees well
with both the microscopic calculations and the experimental
results [26–28].

III. NUMERICAL RESULTS AND DISCUSSIONS

The main focus of our analysis is on even-even trans-
fermium nuclei. These nuclei, typically with Z ≈ 102 and
N ≈ 150–160, are at the gateway to the superheavy mass
region, and their stability is attributed to shell effects, similar
to predicted superheavy elements. Moreover, near their ground
states, they are all characterized by similarly strong collective
motion with regular ground-state rotational spectrum (i.e.,
2+, 4+, 6+, . . .). This affords us an excellent opportunity to
test nuclear models. In a word, the α-decay study of these
deformed transfermium nuclei may not only provide a stern
test of α-decay theoretical models but also lay the groundwork
for further researches on superheavy nuclei.

In α-decay studies, it is well known that the Q0 value is the
most crucial quantity in the evaluation of α-decay half-lives.
And the excitation spectrum in the daughter nuclei, especially
the energy of the 2+ level, has a significant effect on α-decay
fine structure [21]. Consequently, we use their experimental
data in our calculations [29–31]. But in some α emitters under
investigation, the spectroscopic information does not exist for
highly excited states. For these nuclei, we parametrize the
ground-state rotational band of the daughter nucleus as EJd

=
κJd (Jd + 1), where κ is adjusted to the available experimental
excitation energies. This is a good approximation, because
the high-spin channels are strongly restrained by the large
centrifugal barrier so that the exact location of highly excited
states play a minor role in the four-channel calculations, and
the results obtained from the above systematic trend are very
close to the experimental values. The deformation parameters
of daughter nuclei are taken from the theoretical values of
Möller et al. [32].

Within the MCCM, we have performed a detailed α-decay
study of highly deformed nuclei. Table I shows the numerical
results of our evaluations for even-even nuclei. The first
column of Table I denotes the decay from the ground state
of the parent nucleus to the various final states of the daughter
system. The second and third columns are, respectively, the
decay energy Q and relative angular momentum � of each
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TABLE I. Comparison of the calculated α-decay half-lives and branching ratios to various daughter states (0+, 2+, 4+, and 6+) with the
experimental data for well-deformed α emitters. As additional information, the deformation parameters β2 and β4 of daughter nuclei are also
given in the table.

Decay Q (MeV) � bexp (%) bcal (%) T
exp

1/2 (s) T cal
1/2 (s)

244Cf → 240Cm + α (β2 = 0.224, β4 = 0.087)
0+ → 0+ 7.329 0 75.00 73.17
0+ → 2+ 7.294 2 25.00 25.24
0+ → 4+ 7.203 4 − 1.59 1.66 × 103 1.47 × 103

0+ → 6+ 7.063 6 − 7.12 × 10−3

246Cf → 242Cm + α (β2 = 0.224, β4 = 0.079)
0+ → 0+ 6.862 0 79.30 75.91
0+ → 2+ 6.819 2 20.60 22.89
0+ → 4+ 6.725 4 0.15 1.19 1.29 × 105 1.19 × 105

0+ → 6+ 6.574 6 1.60 × 10−2 3.58 × 10−3

248Cf → 244Cm + α (β2 = 0.234, β4 = 0.073)
0+ → 0+ 6.361 0 80.00 79.22
0+ → 2+ 6.319 2 19.60 19.98
0+ → 4+ 6.218 4 0.40 0.79 2.88 × 107 2.43 × 107

0+ → 6+ 6.064 6 − 4.58 × 10−3

250Cf → 246Cm + α (β2 = 0.234, β4 = 0.057)
0+ → 0+ 6.128 0 84.70 80.74
0+ → 2+ 6.086 2 15.00 18.56
0+ → 4+ 5.987 4 0.30 0.70 4.13 × 108 3.29 × 108

0+ → 6+ 5.831 6 1.00 × 10−2 3.91 × 10−3

252Cf → 248Cm + α (β2 = 0.235, β4 = 0.040)
0+ → 0+ 6.217 0 84.20 82.85
0+ → 2+ 6.174 2 15.70 16.45
0+ → 4+ 6.073 4 0.24 0.70 8.61 × 107 1.05 × 108

0+ → 6+ 5.920 6 2.00 × 10−3 4.92 × 10−3

254Cf → 250Cm + α (β2 = 0.225, β4 = 0.030)
0+ → 0+ 5.926 0 83.00 85.62
0+ → 2+ 5.884 2 17.00 13.76
0+ → 4+ 5.783 4 − 0.62 1.69 × 109 3.17 × 109

0+ → 6+ 5.625 6 − 3.02 × 10−3

246Fm → 242Cf + α (β2 = 0.224, β4 = 0.079)
0+ → 0+ 8.373 0 80.00 72.88
0+ → 2+ 8.329 2 20.00 25.44
0+ → 4+ 8.223 4 − 1.67 1.20 × 100 1.87 × 100

0+ → 6+ 8.058 6 − 1.06 × 10−2

248Fm → 244Cf + α (β2 = 0.234, β4 = 0.073)
0+ → 0+ 7.999 0 80.00 73.90
0+ → 2+ 7.958 2 20.00 24.49
0+ → 4+ 7.862 4 − 1.59 3.87 × 101 3.17 × 101

0+ → 6+ 7.712 6 − 2.20 × 10−2

250Fm → 246Cf + α (β2 = 0.234, β4 = 0.057)
0+ → 0+ 7.557 0 83.00 75.51
0+ → 2+ 7.516 2 17.00 23.16
0+ → 4+ 7.410 4 − 1.31 2.20 × 103 1.20 × 103

0+ → 6+ 7.249 6 − 1.49 × 10−2

252Fm → 248Cf + α (β2 = 0.235, β4 = 0.040)
0+ → 0+ 7.153 0 84.00 79.22
0+ → 2+ 7.111 2 15.00 19.62
0+ → 4+ 7.015 4 0.97 1.15 9.14 × 104 4.82 × 104

0+ → 6+ 6.868 6 2.30 × 10−2 1.37 × 10−2
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TABLE I. (Continued.)

Decay Q (MeV) � bexp (%) bcal (%) T
exp

1/2 (s) T cal
1/2 (s)

254Fm → 250Cf + α (β2 = 0.245, β4 = 0.026)
0+ → 0+ 7.307 0 85.00 81.09
0+ → 2+ 7.264 2 14.20 17.81
0+ → 4+ 7.163 4 0.82 1.08 1.17 × 104 1.01 × 104

0+ → 6+ 7.008 6 6.60 × 10−3 1.30 × 10−2

256Fm → 252Cf + α (β2 = 0.236, β4 = 0.015)
0+ → 0+ 7.027 0 85.00 84.44
0+ → 2+ 6.981 2 15.00 14.66
0+ → 4+ 6.875 4 − 0.89 1.17 × 105 1.33 × 105

0+ → 6+ 6.708 6 − 6.85 × 10−3

252No→ 248Fm + α (β2 = 0.235, β4 = 0.049)
0+ → 0+ 8.551 0 75.00 75.43
0+ → 2+ 8.507 2 25.00 22.96
0+ → 4+ 8.404 4 − 1.59 3.91 × 100 2.68 × 100

0+ → 6+ 8.243 6 − 2.76 × 10−2

254No→ 250Fm + α (β2 = 0.235, β4 = 0.033)
0+ → 0+ 8.223 0 − 77.87
0+ → 2+ 8.179 2 − 20.63
0+ → 4+ 8.076 4 − 1.48 5.67 × 101 3.04 × 101

0+ → 6+ 7.915 6 − 2.48 × 10−2

256No→ 252Fm + α (β2 = 0.245, β4 = 0.018)
0+ → 0+ 8.582 0 87.00 80.35
0+ → 2+ 8.535 2 13.00 18.32
0+ → 4+ 8.427 4 − 1.31 2.93 × 100 1.77 × 100

0+ → 6+ 8.256 6 − 2.19 × 10−2

256Rf→ 252No + α (β2 = 0.236, β4 = 0.024)
0+ → 0+ 8.930 0 − 78.89
0+ → 2+ 8.883 2 − 19.56
0+ → 4+ 8.776 4 − 1.52 2.00 × 100 9.89 × 10−1

0+ → 6+ 8.609 6 − 2.65 × 10−2

258Rf→ 254No + α (β2 = 0.246, β4 = 0.011)
0+ → 0+ 9.250 0 − 80.26
0+ → 2+ 9.206 2 − 18.26
0+ → 4+ 9.105 4 − 1.45 9.23 × 10−2 9.43 × 10−2

0+ → 6+ 8.946 6 − 2.71 × 10−2

260Sg→ 256Rf + α (β2 = 0.247, β4 = −0.007)
0+ → 0+ 9.923 0 83.00 83.66
0+ → 2+ 9.872 2 17.00 15.23
0+ → 4+ 9.753 4 − 1.09 7.20 × 10−3 6.88 × 10−3

0+ → 6+ 9.566 6 − 1.65 × 10−2

decay channel. The experimental and theoretical values of the
branching ratios to various daughter states are listed in columns
4 and 5. The experimental and theoretical α-decay half-lives
are given in the last two columns. As additional information,
the values of deformation parameters β2 and β4 are also listed
in the table. As one can see, there is good agreement in both the
branching ratios and the total α-decay half-lives. In particular,
the experimental half-lives are well reproduced with a factor of
less than 2. For the branching ratios, the most accurate results
are those of the transitions from ground states to ground states
and from ground states to first excited 2+ states. The results
for the transitions to second excited 4+ states are less accurate.

For the transitions to excited 6+ states, the results are slightly
worse but acceptable.

As one would expect, it is very difficult to calculate a small
component accurately and safely because it is rather sensitive
to various factors in a complicated system. It is known from
available experimental cases that the branching ratio to the
4+ state of the daughter nucleus is generally less than 1%
and that to the 6+ state is even less than 0.02%. Obviously,
the branching ratios to highly excited states indeed belong
to the category of small components. On the other hand, with
the increasing of �, the error bar of the experimental data
becomes larger and larger, and the branching ratios of many
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nuclei need to be measured with improved accuracy. So it is
not so surprising that there are slightly large deviations for the
branching ratios to highly excited states.

Compared with the previous WKB studies, our results give
a preferable description of α-decay fine structure, especially
for the transitions to highly excited states. The reason for this
is that the significant coupling of different decay channels is
included in our calculations. Additionally, by extending the
systematic trend of excitation energies EJd

in daughter nuclei,
we make some predictions of the α-decay branching ratios
to high-spin daughter states for superheavy nuclei within the
MCCM framework. This predictive power may be a very useful
tool for estimating the α-decay properties of superheavy nuclei
to be studied. It will be of great interest to compare these the-
oretical predictions with future experimental measurements.

IV. SUMMARY

In summary, we present in this paper a detailed α-decay
study of well-deformed even-even nuclei by the multichannel
cluster model (MCCM). Based on an axially deformed
Woods-Saxon potential, the coupling potential is taken into
full account in terms of the general quantum theories, and
the decay width is computed by utilizing the quasibound

solution of the coupled-channel Schrödinger equation. This
is the first four-channel calculation of α decay within the
framework of the coupled-channel approach. Our calcula-
tions take into account the coupled-channel effect resulting
from nuclear deformation and the internal structure effect
of nuclear states. The results shown in Table I are very
satisfactory. Some predictions of the branching ratios to
high-spin daughter states are made for superheavy nuclei.
A precise measurement of these branching ratios is a good
test of our calculations, and will give us valuable guidance to
improve α-decay studies for the superheavy mass region. It
will be interesting and desired to use general quantum theories
and reasonable structure ideas to achieve more information on
α decay.
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